
Journal of Applied Fluid Mechanics, Vol. 10, No. 2, pp. 661-666, 2017. 
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
DOI: 10.18869/acadpub.jafm.73.239.26891 

Onset of Darcy–Benard Penetrative Convection in 
Porous Media 

Y. H. Gangadharaiah  

Presidency University, Bangalore 560 089, India 

Email: gangu.honnappa@gmail.com 

(Received July 7, 2016; accepted December 19, 2016) 

ABSTRACT 

The onset of Darcy–Benard penetrative convection in a liquid saturated porous layer of high permeability of 
practical importance is investigated by employing the Brinkman–Forchheimer– Lapwood extended Darcy flow 
model with fluid viscosity different from effective viscosity. The lower boundary is taken to be rigid and 
isothermal and the upper surface is free and subject to the general thermal condition.  The critical eigen values 
are obtained numerically, in general, using Galerkin method. The stability of the system is found to be 
dependent on the dimensionless internal heat source strength Ns , permeability parameter e  and  the ratio of 

effective viscosity to fluid viscosity  . It is observed that the increase in the value of permeability parameter 
is to delay while increase in the value of internal heat source strength is to hasten the onset of convection in a 
fluid saturated porous layer.  

Keywords: Penetrative convection; Volumetric heat source; Darcy–Benard convection. 

NOMENCLATURE 

A ratio of heat capacity  
D differential operator  

md thickness of the porous layer 

ek effective thermal conductivity of the porous 

medium 
,l m wave number in x and y 

p  pressure 

R Rayleigh number  

eR effective Rayleigh number   

mR Rayleigh number in a porous medium 

T  temperature 

V


velocity  vector  (u, v, w) 

W amplitude  of perturbed vertical velocity 

  permeability parameter 

e effective permeability parameter 

  density 

 0 e
c  effective heat capacity of the porous medium 

 0 p l
c  heat capacity of the liquid 

  ratio of viscosities

1. INTRODUCTION

The convective instability in a horizontal fluid 
saturated porous layer heated from below is referred 
to as Darcy–Benard (DB) convection in which the 
instability is due to buoyancy forces. The DB 
convection has been studied extensively since the 
pioneering works of Horton and Rogers (1945) and 
Lapwood (1948) owing to its natural occurrence and 
also its importance in many scientific, engineering 
and technological applications. The copious 
literature covering different developments in this 
field are well documented in (Char and Chiang 1994; 
Kaviany 1995; Vafai (2000, 2005); Nield and Bejan 

2006; Barletta A and Rees, D.A.S. (2012) ;  Barletta 
A (2013); Barletta A (2014) ).  

There are situations of great practical importance 
where the porous material offers its own source of 
heat. This gives a different way in which a 
convective flow can be set up through the local heat 
generation within the porous media. Such a situation 
can occur through radioactive decay or through, in 
the present perspective, a relatively weak exothermic 
reaction which can take place within the porous 
material. To be more specific, internal heat is the 
main source of energy for celestial bodies caused by 
nuclear fusion and decaying of radioactive materials, 
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which keeps the celestial objects warm and active. It 
is due to the internal heating of the earth that there 
exists a thermal gradient between the interior and 
exterior of the earth’s crust, saturated by multi 
components fluids, which helps convective flow, 
thereby transferring the thermal energy toward the 
surface of the earth. Therefore, the role of internal 
heat generation becomes very important in several 
applications that include geophysics, reactor safety 
analyses, metal waste form development for spent 
nuclear fuel, fire and combustion studies, and storage 
of radioactive materials.  Penetrative convection in 
porous media has received great attention during the 
past few decades because of the importance of this 
process which occurs in many engineering and 
natural systems of practical interest such as 
geothermal energy utilization, thermal energy 
storage and recovery systems, petroleum reservoirs, 
industrial and agricultural water distribution, to 
name just a few applications. Very recent reviews by 
Nield and Bejan (2006); Carr (2004); Carr and Putter 
(2003); Hill (2004); Straughan (2008); Tse and 
Chasnov (1998); Straughan and Walker (1996); and 
Zhang and Schubert (2002). 

 
For a high porosity porous medium, Givler and 
Altobelli (1994) have demonstrated experimentally 
that the effective viscosity is about 7.5 times the fluid 
viscosity. Therefore, the aim of the present study is 
essentially to investigate the linear stability analysis 
of DB convection in a sparsely packed porous 
medium with internal heat generation by employing 
the Brinkman–Forchheimer– Lapwood-extended–
Darcy flow model with effective viscosity different 
from fluid viscosity. In the present work, the ratio of 
these two viscosities is taken as a separate parameter 
to know its influence on the critical stability 
parameters. Also, the values of the permeability 
parameter are suitably chosen in the range  

30 .1 1 0 ,   where   is the permeability 
parameter, as suggested by Walker and Homsy 
(1977). There exist several works on coupled 
Benard– Marangoni convection in a clear fluid layer 
(see C. Perez-Garcia and G. Carneiro(1991); Bragard 
and Velarde(1999); Orand Kelly(2002) ;  Char and 
Chiang (1994); C. E. Nanjundappa et al. (2011)  and 
references therein).  Shivakumara et al. (2009) have 
investigated the criterion for the onset of coupled 
Darcy–Benard–Marangoni convection in a liquid 
saturated porous layer of high permeability. It is 
shown that  increase in   and Bi, and decrease in 
ratio of viscosities  is to decrease the dimensions of 
the convective cell and thus the buoyancy force has 
a destabilizing effect on the system. 
 
The aim of this paper is, therefore, to study 
penetrative convection via internal heating in a 
fluid saturated porous medium with fluid viscosity 
different from effective viscosity. This is achieved 
by performing the linear stability analysis. The 
lower boundary is taken to be rigid and isothermal 
and the upper surface is free and subject to the 
general thermal condition. The eigen value problem 
is solved numerically, in general, using Galerkin 
method. A wide-ranging parametric study is under 
taken to explore their impact on the stability 

characteristics of the system. 

2. MATHEMATICAL FORMULATION 

We consider a Boussinesquian liquid saturated 
horizontal sparsely packed porous layer of thickness 
d with no lateral boundaries (see Fig. 1). The lower 
boundary is assumed to be rigid, while the upper free 
surface which is in contact with air and subjected to 
temperature-dependent surface tension forces is 
assumed to be flat and undeformable. A temperature 
difference of T is maintained between the boundaries 
of the porous layer with the lower boundary at a 
higher temperature than the upper boundary. A 
Cartesian coordinate system (x, y, z) is chosen such 
that the origin is at the lower boundary and the z axis 
is taken vertically upward. The gravity acts in the 
negative z direction. 

 

 
Fig. 1. Physical  configuration. 

 

The fluid density   is assumed to vary linearly with 
temperature in the form 

 0 01 T T                                                   (1)
 

where  is the positive coefficient of the thermal 
liquid expansion and 0  is the value at the reference 

temperature 0T . 

Thus, the governing equations for the porous layer in 
the Boussinesq approximation are: 

0V 


                      (2) 

 0

2

1
. b

e

CV
V V V V

t

p V g V
K


  

  

 
      

    

    

  
                      (3) 

      2
0 0 .p ee l

T
c c V T k T q

t
 

    



      (4) 

The temperature and pressure distributions in the 
basic state is given by  

  2
0 2 2b

T q d q
T z T z z

d  
         

                (5) 

  2
0 0 0b

T
P z P gz g z

d
  

                           (6) 

where the subscript b denotes the basic state. The 
pressure distribution is of no consequence here as we 
are going to eliminate the same. To study the stability 
of DB convection, we superimpose infinitesimal 
disturbances on the basic state solution and substitute 
into the governing Eqs. (2)–(4). Employing the well 
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known standard linear stability analysis procedure 
and eliminating the pressure from the momentum 
equation by operating curl twice and retaining the z-
component, we arrive at the following dimensionless 
equations 

2 2 2 21

Pr e hw R T
t

        
                

(7) 

 2 1 (1 2 )A T w Ns z
t

      
                (8) 

where 3
0 /R g Td     is the Rayleigh number,

2 / 2Ns qd T  is the dimensionless heat source 

strength, /e    is the effective porous 

parameter and /eR R  is the effective Rayleigh 

number. 

The boundary conditions at the bottom are for a rigid 
boundary insulated to temperature perturbations: 

0 0
w

w T at z
z


   


                              (9) 

2

2
0 1.

T w
w at z

z z

 
   
 

                            (10) 

The principle of exchange instabilities holds good 
even for the present configuration as well, hence the 
time derivatives will be dropped conveniently from 
Eqs. (7) and (8).Then performing a normal mode 
expansion and seek solutions for the dependent 
variables as 

       , , expw T W z z i lx my                     (11) 

and substituting them in Eqs. (7) and (8) (with t   

= 0), we obtain the following ordinary differential 
equations  

   22 2 2 2 2 2
eD a D a W R a                

(12)
 

 2 2 ( )D a f z W  
              

                (13) 

Where W is the amplitude of perturbed vertical 

velocity and   is the amplitude of perturbed 
temperature. In the above equations, / ,D d dz

2 2a l m  is the overall horizontal wave 
numbers and  

 ( ) (1 2 ) 1 .f z Ns z  
                                   (14)

 

The boundary conditions take the form 

0 0W DW at z                   (15) 

2 0 1.W D D W at z                   (16)
  

 

3. NUMERICAL SOLUTIONS 

Eqs. (12) and (13) together with the boundary 

conditions given by Eqs. (15) and (16) constitute an 
eigen value problem with R  as the eigen value. The 
Galerkin method is employed to solve the eigen 
value problem as explained in the book by Finlayson 
(1972). Accordingly, the unknown variables are 
written in a series of basis functions as 

1

,
n

i i
i

W A W


          
1

n

i i
i

B


                    (17) 

where iA  and iB  are constants and the basis 

functions iW  and i  will be represented by the 

power series satisfying the boundary conditions. 
Substituting Eq. (17) into Eqs. (12) and (13) and the 
Galerkin procedure of demanding the residues be 
orthogonal to the basis functions are applied, we get the 
following system of homogeneous algebraic equations. 

0ji i ji iC A D B                                                (18) 

0ji i ji iE A F B    
         

                               (19)
 
 

The coefficients jiC  to jiF  involve inner products 

of the basis functions and are given by 

2 2 2 2

2 2 2

(2 )

( )

ji j i e j i

e j i

C D W D W a DW DW

a a W W





  

  
  (20a) 

2
ji j iD R a W                                              (20b) 

( )ji i jE f z W                                (20c) 

2
ji j i j iF D D a                                   (20d) 

where the inner product is defined as
1

0

f g f g dz                                                       (21) 

The system of homogeneous equations given by Eq. 
(18) will have a nontrivial solution if and only if 

0
ji ji

ji ji

C D

E F
                                                       (22) 

The base functions iW and i are generally chosen 

such that they satisfy the corresponding boundary 
conditions but not the differential equations. We 
select the trial functions as 

1 2 33 5

2 2
i i i

iW z z z                                      (23)
 

11

2
i i

i z z                                                        (24) 

The inner products are evaluated analytically to 
avoid errors in the numerical integration. The 
minimum point of eR  as a function of wave number 

a gives the critical effective Rayleigh number ecR  

and the corresponding critical wave number ac. This 
procedure is repeated for different values of ,Ns  

and 2 .and the results are discussed in Section 4.  
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Table 1 Comparison of critical Rayleigh number ecR  and critical wave number ca  for different 

values of Ns  and 0e   (i.e., in the absence of a porous medium) 

Ns  
Char and Chiang (1994) Present analysis 

ecR  ca  ecR  ca  

0 

0.5 

1. 5 

5 

10 

15 

20 

30 

40 

70 

100 

669.013 

608.758 

557.618 

328.590 

215.415 

159.957 

127.144 

90.116 

69.778 

41.598 

29.629 

2.086 

2.070 

2.060 

2.035 

2.033 

2.034 

2.036 

2.038 

2.039 

2.042 

2.043 

668.998 

608.746 

557.607 

328.582 

215.409 

159.952 

127.14 

90.114 

69.776 

41.597 

29.628 

2.086 

2.070 

2.060 

2.035 

2.035 

2.034 

2.036 

2.038 

2.039 

2.042 

2.043 
 

 

4. RESULTS AND DISCUSSION  

The linear stability analysis has been carried out to 
investigate the effect of internal heat generation on 
the onset of the convection in a horizontal saturated 
porous layer. The lower boundary is rigid-
isothermal, while the upper boundary is free with 
general thermal convection boundary condition. The 
critical Rayleigh number ecR  and the 

corresponding critical wave number ca  are obtained 

numerically using the Galerkin technique for various 

values of physical parameters 2, andeNs   . The 

results presented here are for 6i j  ; the order at 
which the convergence is achieved, in general. 

To validate the numerical procedure used in the 
present study, the critical Rayleigh number ecR  and 

the corresponding critical wave number ca  obtained 

for different values of Ns  and 0e   (i.e., in the 

absence of a porous medium) are compared with 
those of Char and Chiang (1994) in Table 1. We note 
that the agreement is good and thus verify the 
accuracy of the numerical procedure employed. 

The presence of internal heating makes the basic 
temperature   distribution to deviate from linear to 
nonlinear which in turn have significant influence on 
the stability of the system. To assess the impact of 
internal heat source strength Ns  on the criterion for 
the onset of convection, the distribution of 

dimensionless basic temperature  b̂T z , is exhibited 

graphically in Fig. 2 for different values of Ns . 
From the figure it is observed that increase in the 
internal heat source strength amounts to large 

deviations in the distribution which in turn enhance 
the disturbances in the porous layer and thus 
reinforce instability on the system. 

 

 
Fig. 2. Basic state temperature distributions for 

different values of Ns . 
 

Figures 3 and 4 respectively show the variation of 
critical Rayleigh number cR  and the corresponding 

wave number ca  as a function of dimensionless 

internal heat source strength Ns  for different values 

effective permeability parameter 2
e . Fig. 3 clearly 

indicates that ecR  decreases monotonically with 

Ns  indicating the influence of increasing internal 
heating is to decrease the value of ecR  and thus 

destabilize the system. This is because; increasing 
Ns  amounts to increase in energy supply to the 
system. Eventually, this leads to large deviations in 
the basic state temperature distribution (see Fig. 2) of 
the parabolic type which in turn enhances the thermal  
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Table 2 Comparison of critical Rayleigh number ecR  and critical wave number ca  for different 

values of   and 2  

Ns  2  

1  3   5   

ecR  
ca  ecR  ca  ecR  ca  

0 

10 

50 

100 

964.362 

2119.232 

3541.012 

2.154 

2.264 

2.303 

768.145 

1158.123 

1640.984 

2.113 

2.188 

2.236 

729.235 

964.568 

1255.345 

2.102 

2.154 

2.200 

1 

10 

50 

100 

806.694 

1782.723 

2988.241 

2.129 

2.232 

2.275 

641.123 

970.234 

1377.123 

2.085 

2.159 

2.207 

608.908 

806.290 

1052.765 

2.074 

2.129 

2.171 

3 

10 

50 

100 

600.900 

1328..323 

2226.071 

2.111 

2.229 

2.280 

508.457 

723.237 

1026.432 

2.112 

2.143 

2.196 

453.237 

601.439 

784.568 

2.055 

2.111 

2.156 

5 

10 

50 

100 

476.118 

1049.324 

1754.982 

2.107 

2.240 

2.302 

378.798 

572.891 

812.786 

2.064 

2.143 

2.203 

359.123 

476.453 

620.657 

2.049 

2.107 

2.157 

 

 

disturbances in the saturated porous layer to hasten 
the onset of DB convection. Besides, increase in the 

value of effective permeability parameter 2
e  is to 

increase the critical Rayleigh number and thus its 
effect is to delay the onset of DB convection. The 
numerically calculated critical effective Rayleigh 
number ecR  and the corresponding wave number 

ca  are shown in Fig. 4 as a function of e for 

different values of Ns . Increase in 2
e is to 

increase ac and thus its effect is to decrease the 
dimensions of the convective cell and  increasing 
internal heating is to destabilize the system.  

 

 
Fig. 3. Plots of effective critical Rayleigh number 

ecR  versus internal heat source strength Ns  
for different values of effective permeability 

parameter 2
e . 

 
Fig. 4. Plots of effective critical wave number 

ca  versus effective permeability parameter 

2
e  for different values of internal heat source 

strength .Ns  

 
The critical Rayleigh number and wave numbers 

obtained numerically for different values of 2  

and Ns are presented in Table 3. From the table we 

note that an increase in the value of   is to decrease 
the critical Rayleigh number and thus making the 
system unstable. Nevertheless, increase in   is to 
decrease the critical wave number and hence its 
effect is to increase the dimension of convection 
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cells. Further, increase in 2  and Ns is to make 

the system more stable. 

5. CONCLUSIONS 

The effect of internal heat generation and thereby the 
influence of non-uniform basic temperature gradient 
on the onset of convection in a fluid saturated porous 
layer is investigated. The lower boundary is 
considered to be rigid – isothermal ,while the upper 
boundary is free and subject to a general thermal 
condition on the perturbed temperature. The 
resulting eigen value problem is solved numerically 
by employing the Galerkin technique. The following 
conclusions can be drawn from the present study: 

1. The effect of increase in the internal heat 
source strength Ns  is to decrease critical 
Rayleigh number ecR  and hence to hasten the 

onset of DB convection in a fluid saturated 
porous layer. 

2. The effect of increase effective permeability 

parameter 
2

e   is to delay the onset of DB 

convection. 

3. The effect increase ratio of viscosities   has 
destabilizing effect on the system.  
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