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ABSTRACT 

In this paper, deformation of a drop suspended in another immiscible fluid that is influenced by an external 
uniform electric field is investigated through fully 3D numerical simulations. The electric field is applied by 
imposing an electric potential difference in the ambient fluid. The Leaky dielectric model is used to obtain the 
electric field, charge distribution and eventually applied electric force at the interface. This force creates both 
oblate and prolate shapes, and also induces various Electrohydrodynamic flows inside and outside of the drop 
depending on the conductivity and permittivity ratio of the drop and the ambient fluid. A finite 
difference/front-tracking method is used. The results are presented for a wide range of non-dimensional 
parameters for predicting the drop deformation quantitatively and qualitatively. Different flow patterns are 
induced inside and outside of the drop. The results show a good agreement with theoretical and experimental 
results in the literature. For the sake of consideration of the problem in more detail, four specific cases are 
investigated.  

Keywords: Oblate/prolate shape; Electric conductivity/permittivity; Front-tracking method. 

NOMENCLATURE 

a drop radius  
D drop deformation 
E∞ electric field  
Fel electric force  
H the height of the domain  
L the length of the domain  
q electric charge  
r density ratio 
te charge relaxation time  
th characteristic hydrodynamic time  
W the width of the domain  
γ interfacial tension  

ε electric permittivity  
εr electric permittivity ratio 
ε0 electric permittivity of free space  
λ viscosity ratio 
μ viscosity  
ρ density  
σ electric conductivity  
σr electric conductivity ratio 
τ dimensionless time 

ϕ electric potential  

Ф discrimination function 
ω vorticity  

1. INTRODUCTION

Electrohydrodynamics (EHD) as an 
interdisciplinary phenomenon, has recently been 
investigated by several researchers. In fact, EHD 
deals with both hydrodynamic flows influenced by 
electric currents and electric problems correlated 
with hydrodynamics. It has numerous applications 
like biotechnological processes, fuel atomization, 
ink jet printing, pumping, boiling, increasing heat 
and mass transfer and formation, transmission, 
coalescence and breakup of drops in microfluidic 
devices (Cho et al. 2003). A new application of this 

phenomenon is the Lab on Chip technology which 
uses the drop deformation and its 
Electrohydrodynamic flows as a micro reactor 
(Zeng et al. 2004). In general, when a liquid is 
influenced by an external electric field, two 
processes will happen, polarization of the molecules 
and migration of the free charges. Therefore, the 
liquid behaviour is limited to perfect dielectric and 
perfect conductor. While the first studies of 
Electrohydrodynamics suggested that under 
influence of electric field, a drop suspended in 
another immiscible fluid will only deform into 
prolate shape, (Basaran et al. 1990; O'Konski et al. 



M. Akbari and S. Mortazavi / JAFM, Vol. 10, No. 2, pp. 693-702, 2017.  
 

694 

1953 and Taylor 1964), Allan et al. (1962) 
experiments showed that both prolate and oblate 
shapes will occur. Taylor explained this 
phenomenon. He stated that, even a small 
conductivity in the ambient fluid can cause 
migration of free charges to the interface and 
eventually creating tangential stresses and inducing 
electrohydrodynamic flows inside and outside of 
the drop. The induced flow depends on the electric 
conductivity and permittivity of the drop and the 
ambient fluid. He proposed a linear theory which is 
well-known as leaky dielectric model and suggested 
a mathematic formulation for predicting the 
deformation of the drop qualitatively and 
quantitatively. Several investigators have used this 
model to solve the problem numerically. Sherwood 
did the first numerical simulation of the problem of 
a single drop in an electric field using boundary 
integral method in the limit of Stokes flow and 
found a good agreement with Taylor theory 
(Sherwood 1988). Tsukada et al. (1993) studied 
induced circulatory flows inside and outside of a 
drop using Galerkin finite element and found a 
good agreement with Taylor theory. Feng et al. 
(1996) simulated a single drop deformation in both 
Stokes and finite Reynolds numbers by using 
Galerkin finite element method. They found a good 
agreement with Taylor theory for small 
deformations although there was some discrepancy 
for large deformations. Also Feng investigated the 
effects of charge convection in leaky dielectric 
model for finite electric Reynolds numbers (Feng 
1999). Zhang et al. (2005), studied numerical 
simulation of drop deformation using two 
dimensional Lattice-Boltzmann method for the first 
time and reported relevant results. Tomar et al. 
(2007) simulated drop deformation for perfect 
dielectrics and perfect conductors using VOF 
(volume of fluid) method and reported a good 
agreement with Taylor theory for small 
deformations. Lac et al. (2007) studied the effects 
of electric fields on a suspended drop in leaky 
dielectric model using axisymmetric boundary 
integral method. They also simulated the EHD 
breakup of drops. Hua et al. (2008) considered 
numerical simulation of drop deformation/motion 
with axisymmetric front-tracking method and using 
three perfect dielectric/conductor and leaky 
dielectric models. They found good agreement with 
Taylor theory. Herrera et al. (2011) used a charge 
convective approach for simulation of EHD 
problems using VOF method. They studied drop 
deformation and validated their results with Taylor 
theory. Paknemat et al. (2012) investigated the drop 
deformation and breakup for both perfect and leaky 
dielectric models using level set method. Yang et al. 
(2013) studied axisymmetric drop deformation 
through a 3D phase field model and reported that 
the drop takes different shapes until reaching steady 
state. Hu et al. (2015) developed a hybrid immersed 
boundary (IB) and immersed interface method 
(IIM) to simulate the dynamics of a drop in an 
electric field. They reported a good agreement with 
Taylor theory for small deformations. Simulation of 
several drops in a simple shear flow under uniform 
electric field was performed by Fernández (2008) in 
three dimensions. They studied the behaviour of 

emulsion for leaky dielectric drops. However, they 
did not address the deformation of a drop under 
uniform electric field. 

In this study, three dimensional numerical 
simulation of drop deformation suspended in 
another immiscible fluid under influence of external 
uniform electric field is investigated. The effects of 
hydrodynamics are absent and only the electrostatic 
forces cause the drop to deform in an oblate or 
prolate shape. Effect of hydrodynamics on the drop 
evolution is left for future investigations. Schematic 
configuration of domain along with non-
dimensional parameters and governing equations is 
presented later, then the results are discussed and a 
conclusion will terminate this paper.  

2. PROBLEM DEFINITION AND 

GOVERNING EQUATIONS 

2.1 Flow Geometry 

In this paper, the effect of external uniform electric 
field on a drop suspended in another immiscible 
liquid is investigated through fully 3D numerical 
simulations. A schematic of the problem is shown 
in Fig. 1. As shown in Fig. 1, the domain is a box 
that its length (L) is equal to its height (H). To 
remove the effects of the walls on drop behaviour, 
the drop radius is taken as one-eighth of the channel 
height. If the domain height increases, it does not 
change the results significantly. This has been 
checked but not included in the paper. The width 
(W) of the domain is one half of its length.  

 

 
Fig. 1. Schematic of three dimensional domain 

for a drop suspended in another immiscible fluid 
under the influence of an external uniform 

electric field. 
 

The drop is initially spherical and stable at the 
centre of the domain. The electric field (E∞) is 
formed by applying a potential difference ( 0 ) 
between the upper and the lower sides of the walls. 
The subscripts i and o refer to the drop and the 
ambient fluids respectively. σ is the electric 
conductivity, ε is electric permittivity, ρ is density 
and μ is viscosity. Also γ shows the interfacial 
tension. The boundary conditions of the domain are 
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wall-bounded in Z-direction and periodic in X and 
Y directions. 

2.2 Non-Dimensional Parameters 

The most important dimensionless parameters in 
Electrogydrodynamics are listed in Table 1. Like 
Fig. 1, the subscripts i and o refer to the drop and 
the ambient fluid respectively. 

 
Table 1 Non-dimensional parameters using in 

Electrohydrodynamics 

Parameter Definition 

Density Ratio i

0

ρ
r


  

Viscosity Ratio 
o

i


  

Electric Conductivity Ratio i

0
r





  

Electric Permittivity Ratio 
o

i
r





  

 Dimensionless Time 
h

et

t
   

Electric Capillary Number 
2

o
e

E a
Ca



  

Electric Reynolds Number 
2 2

2
Re o

el
E a




Ohnesorge Number 
0

0

Oh
a




  

 
In all the simulations presented here, 1r   . In 

definition of dimensionless time (τ), 0
et




  is 

charge relaxation time and 
3

h
at 
  is a 

characteristic hydrodynamic time. The electric 
permittivity of free space is 0 8.885 [pF/ m]  .  

The leaky dielectric model is valid when τ is small. 
Because there is a relation between Oh and Reel 

(
Re

e

el

Ca
Oh  ), one of them is set in EHD 

problems in addition to Cae. 

2.3 Governing Equations 

In microgravity multiphase flows, the buoyancy 
force is weak and surface tension is dominant. 
Therefore, other volume forces like electrostatic 
forces can cause fluid flow and deformation of the 
interface. The governing physics of EHD 
multiphase flows has been reviewed by several 

authors including Melcher et al. (1969) and Saville 
(1997) who discussed leaky dielectric model for 
fluids with low conductivity. In leaky dielectric 
model the time scale associated with the relaxation 
of electric charges is small compared to time scale 
associated with the hydrodynamics of the flow. 
Thus the electrostatic field can be assumed to be 
quasi-steady, and a steady state equation for the 
conservation of charge can be considered: 

.  0                                                             (1) 

The electric field (E) is found by using electric 
potential ( ) through Eq. (2): 

 E                                                                 (2) 

One of the important features of EHD is irrotational 
electric field and electric dynamic currents are so 
weak that Faraday’s law of Induction is negligible. 
Therefore, there is no effect of magnetic field. Free 
charges (q) are found by using Gauss’ law as below: 

 .q E                                                               (3) 

According to Melcher et al. (1969), electric force at 
the interface is due to jump of electric stresses. This 
volume force is as follows: 

1 1
( . ) ( ( . ) )

2 2ElF qE E E E E
 



   


          (4)   

This force will act only at the interface if ε (electric 
permittivity) and σ (electric conductivity) are 
constant in each phase. In this equation, the first 
term is due to presence of free charges and in fact is 
proportional to density of free charges. The second 
term is the effect of difference in electric 
permittivity ratio of both fluids and is known as 
polarization force density. The last term which is 
usually ignored is due to variation in material 
density. In the current work, this term is neglected 
because the density of both phases are the same. 
The flow field is obtained through Navier-Stokes 
equations: 

. . ( )

( )

T

El

u
u u P u u

t

n x x dA F

  

  


      


  

            (5) 

Here u is velocity, P is pressure, ρ, μ and γ are 
density, viscosity and surface tension respectively, 
κ is the curvature and n is a unit normal to the 
interface. 

( )x x  , is a delta function that is zero 

everywhere except at the interface. The gravity is 
ignored in this problem. The continuity equation 
with assumption of incompressible fluids is: 

. 0u                                                                  (6) 

The numerical method is a modified version of 
finite difference/front-tracking method developed 
by Unverdi et al. (1992). A second order projection 
method is used to solve the Navier-Stokes 
equations. The momentum equation is discretized 
on a staggered grid using central differences for 
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both the convective and viscous terms. The 
equations are integrated in time by a second order 
predictor-corrector scheme. Combining the 
continuity and momentum equations leads to a 
pressure equation that is solved by a multigrid 
method. The equation for conservation of charge 
(Eq. (1)) is also discretized with standard central 
differences and is solved by the same multigrid 
scheme. The electric potential is stored at pressure 
nodes. The electrostatic forces are stored at the 
boundary of the cells, the location where the 
velocities are stored. The electrostatic forces are 
directly added in the predictor step in the projection 
method. In general, solving the Navier-Stokes 
equations is not an easy task when an interface 
exists at the phase boundary. The front-tracking 
method is capable of handling these types of flows 
due to its accuracy and its ability to consider the 
discontinuity across the interface. For a detailed 
discussion about the numerical method, the reader 
is referred to the work by Tryggvason et al. (2001). 

2.4 Deformation and Induced Flows 

As it was mentioned earlier, due to applying electric 
field, the drop will deform into both oblate and 
prolate shapes depending on the electrical 
properties of the fluid. Taylor suggested a linear 
theory known as Taylor theory to predict the EHD 
drop deformation (D) as follows (Taylor 1964): 

 
 2

2

9 3 2 3
 1 2

16 5 12
e

r r r r

r

Ca
D

   


       
(7) 

Also the drop deformation is obtained from: 

L B
D

L B





                                                           (8) 

Where L is the drop length parallel to electric field 
and B is the drop length perpendicular to electric 
field. In both equations, positive deformation (D > 
0) shows prolate and negative deformation (D < 0) 
shows oblate shape. 

 

 
Fig. 2. Deformation types regarding the sign of D 

and direction of the electric field. 

  
Next, the induced flow types are considered. For 
this purpose, a discrimination function that is 
proposed by Taylor (1966) to determine the type of 
deformation and induced flows, is introduced. This 
function is defined for spherical drops as: 

2 3 2 3
( 1) 2   1

5 1
r

r r
r

  
 

   
       

   
               (9) 

where Φ > 0 represents prolate shape and Φ < 0 
shows oblate shape. According to Rhodes et al. 
(1989) solution, for two-dimensional drops and 

1  , the discrimination function becomes: 

2
2Φ  1 3d r r r                                              (10) 

Figure 3 illustrates Eq. (10) in terms of electric 
conductivity versus electric permittivity. The bold 
line represents 2 0d  . For locations below this 

line ( 2 0d  ) the drop will deform into oblate 

shape and above the line ( 2 0d  ) the drop has 

prolate shape. The dashed line ( r r  ) determines 

the type of the induced flows. Below this ( r r  ) 

the flow is from the pole to the equator and above it 
( r r  ) the flow is from the equator to the poles. 

 

 
Fig. 3. Map of drop behavior as a function of 

conductivity ratio and permittivity ratio based 
on the leaky dielectric model. Solid line is 

discrimination function (Eq. (10)) and symbols 
are case studies of present work. 

 

3. RESULTS AND DISCUSSION 

3.1 Validation 

To examine the validity of the method (front- 
tracking coupled with electrostatic effects), the 
deformation obtained by Torza et al. (1971) using 
experiments (system 16, class C) are compared with 
the current work. In these cases, the drop and the 
ambient fluids are silicon and oxidized castor oils 
respectively. Three capillary numbers are 
considered (0.137, 0.380 and 0.745). The 
mechanical and electrical properties of these fluids 
are listed in Table 2. 

The surface tension of silicon oil is 0.016 (N/m). 
Fig. 4 shows a comparison of the drop 
deformation obtained by numerical simulations 
(left) and experiments (right). The capillary 
number increases from bottom to top. The relative 
errors between numerical and experimental results 
are 3.5, 1.6 and 5.0 percent for three capillary 
numbers respectively. 
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Table 2 Mechanical and electrical properties of 
silicon and castor oils used in Torza et al. (1971) 

experiments (sys 16-class C) 

Properties Silicon Oil 
Oxidized 
Castor Oil 

Density[kg/m3] 980 980 

Viscosity[kg/m.s] 5.4 6.5 

Electric Conductivity 
[pS/m] 

33 1000 

Electric Permittivity 
[pF/m] 

2.779 6.3 

 
 

 
Fig. 4. Comparison of the numerical simulation 
in the present work (left) and the experimental 

results of Torza et al. (1971) (right). 

 
3.2 Drop Deformation 

Deformation of a single drop suspended in another 
immiscible fluid under uniform electric field (Fig. 
1) is investigated in details. According to Eq. 7, the 
drop deformation is related to electric capillary 
number (Cae), viscosity ratio (λ), electric 
conductivity and electric permittivity ratio (σr and 
εr). 

The effect of these parameters on the drop 
deformation (except λ that is unity throughout the 
paper) is studied in a relatively wide range. 

3.2.1 Grid Study 

First, a grid resolution test is performed. Four grid 
resolutions are examined (64*32*64, 96*48*96, 
128*64*128, 160*80*160). The flow conditions 
are: 0.5eCa  , 2.0r  , 2.5r   and the domain 

is the same as that is presented in Fig. 1. Fig. 5 

shows the deformation versus time for four grid 
resolutions. It is clear that the grid resolution 
96*48*96 is reasonably accurate, and the 
computational time to get steady state condition is 
also reasonable. This grid resolution is chosen for 
the rest of computations. 

 

 
Fig. 5. Drop deformation versus time at different 
grid resolutions (Cae = 0.5, σr = 2.5 and εr = 2.0). 

 
3.2.2  Effect of Electric Capillary Number 

The effect of electric capillary number on drop 
deformation is presented in Fig. 6. This figure 
represents the drop deformation for various 
capillary numbers. 
 

 
Fig. 6. Effect of electric capillary number on 

drop deformation and comparison with Taylor 
theory (σr = 2.5 and εr = 2.0). 

 

Other parameters are 2.0r   and 2.5r  . A 

comparison is also made with Taylor theory. 
Agreement is good for low electric capillary 
numbers ( 1.5eCa  ) .However, the results deviate 

from Taylor theory at large electric capillary 
numbers. This is due to the fact that Taylor theory 
is a linear theory and is valid only for small 
deformations. As the electric capillary number 
increases, the results deviate from theory 
significantly. 
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3.2.3 Effect of Electric Conductivity Ratio 

The effect of electric conductivity ratio on drop 
deformation is depicted in Fig. 7. The drop 
deformation is plotted versus the conductivity ratio 
and compared with Taylor theory. Here the electric 
capillary number is 0.1eCa  and permittivity ratio 

is 2.0r  . The drop deformation increases with 

conductivity ratio. This can be due to migration of 
more charges to the interface as the conductivity 
increases. This trend has also been reported by Hua 
et al. (2008), Herrera et al. (2011) and Yang et al. 
(2013). Here deviation from Taylor theory for large 
deformations ( 0.05D  ) is also visible. 

 

 
Fig. 7. Effect of electric conductivity ratio on 

drop deformation and comparison with Taylor 
theory (Cae = 0.1 and εr = 2.0). 

 
3.2.4  Effect of Electric Permittivity Ratio 

The effect of electric permittivity ratio on drop 
deformation is illustrated in Fig. 8. It is also 
compared with Taylor theory. It can be seen that at 
low permittivity ratios the drop has a prolate shape. 
However, it changes to oblate shape at large 
permittivity ratios. The results are nearly 
compatible with Taylor theory. Again discrepancy 
between Taylor theory and simulations at large 
deformations ( 0.05D  ) is visible. As it was 

mentioned earlier this matter is due to the fact that 
linear theory is valid for small deformation. The 
Ohnesorge number is taken as 0.289Oh   in 
simulations presented in Figs. 6, 7 and 8. 
 
The results presented in Fig. 6 through 8, cannot be 
compared to results by Hua et al. (2008) (an 
axisymmetric simulation) although they had similar 
trends. There is a mistake in the formula that they 
used to calculate drop deformation (a factor of 1/2 
is missing). Also the same mistake is repeated when 
calculating the drop deformation from numerical 
simulations. 
 
3.3 Induced Flows 

As it mentioned earlier, in leaky dielectric model, 
there are two different flow patterns for a drop 
suspended in another immiscible fluid under 

influence of external uniform electric field. One is 
from the poles to the equator and the other is from 
the equator to the poles. This depends on electric 
conductivity and permittivity ratios of the drop and 
the ambient fluid. To examine these flow patterns, 
four simulations in different regions of the Fig. 3 
are performed. These points are shown in the Fig. 3 
with numbers 1, 2, 3 and 4. In these simulations, the 
electric Reynolds number in addition to electric 
capillary number are used as dimensionless 
parameters to characterise the problem. Electric 
Reynolds number is set to Re 0.1el   for all 

simulations and electric capillary number is set to 
0.25eCa   for cases 1, 2 and 3 and 1.0eCa   for 

case 4. For case 1, 5r   and 0.5r  . Therefore, 

Ф2d (Eq. (10)) becomes negative ( 2 13.25d   ) 

and as a result, the drop becomes oblate. 

 

 
Fig. 8 Effect of electric permittivity ratio on drop 
deformation and comparison with Taylor theory 

(Cae = 0.1 and σr = 2.5). 
 
 

 
Fig. 9. Electric potential contours (left) and 

streamlines (right) inside and outside of the drop 
for case 1. (Cae = 0.25, σr = 2.5 and εr = 5.0). 

 
Also because the electric conductivity ratio is lower 
than electric permittivity ratio ( r r  ), the flow 

pattern is from the pole to the equator. Fig. 9 
represents electric potential distribution (left) in the 
whole domain in addition to streamlines (right) 
inside and outside of the drop. The streamlines 
around the drop at steady state are presented in Fig. 
10. 

The streamlines (Figs. 9 and 10) are obtained in a 
plane at middle of the domain ( 2Y W ). The 

correct flow pattern is visible for case 1 in figures 9 
and 10. Therefore, the flow pattern also validates 
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the present numerical method. For case 2, 15r   

and 10r  . Furthermore, Ф2d is positive in Eq. 

(10) ( 2 66d  ) and the drop has a prolate shape. 

Fig. 11 illustrates both electric potential distribution 
(left) and streamlines (right) inside and outside of 
the drop. 

 

 

Fig. 10. 3-D deformed drop and outside 
streamlines for case 1. (Cae = 0.25, σr = 2.5 

and εr = 5.0). 

 

 
Fig. 11. Electric potential contours (left) and 

streamlines (right) inside and outside of the drop 
for case 2. (Cae = 0.25, σr = 10 and εr = 15). 

 
Also Fig. 12 depicts 3D deformed drop and 
streamlines around it for case 2. It is clear that the 
flow patterns inside and outside of the drop for this 
case is similar to case 1 because the electric 
conductivity ratio is lower than electric permittivity 
ratio ( r r  ), for both cases. Again the 

streamlines are presented in a plane at the middle of 
the domain ( 2Y W ). Case 3 in Fig. 3 has 

0.5r   and 20r  . Accordingly, Ф2d is 420, 

and the drop has a prolate shape. 
 
But in contrast to cases 1 and 2, for this case the 
electric conductivity ratio is higher than electric 
permittivity ratio ( r r  ). As a result, the flow 

pattern is in contrast to the case 1 and 2 (the flow is 
from equator to poles). 
 
Figure 13 shows the electric potential distribution 
(left) and streamlines inside and outside of the drop 
(right). 

 

Fig. 12. 3-D deformed drop and outside 
streamlines for case 2. (Cae = 0.25, σr = 10 

and εr = 15). 
 

 

Fig. 13. Electric potential contours (left) and 
streamlines (right) inside and outside of the drop 

for case 3. (Cae = 0.25, σr = 20 and εr = 0.5). 

 

 
Fig. 14. 3-D deformed drop and outside 

streamlines for case 3. (Cae = 0.25, σr = 20 
and εr = 0.5). 

 
Figure 14 illustrates the 3D deformed drop with 
streamlines around it. Streamlines in Fig. 13 and 14 
are obtained in a plane at the middle of the domain 
( 2Y W ). It is clear from these Figures, that the 

streamlines are as expected as flow patterns 
according to the Fig. 3. 

The last case examined here is the case 4 in the Fig. 
3. Since the drop deformation in this region is small 
a capillary number  1.0eCa   is used. Other 
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parameters are also set as: 0.05r  and 0.01r  . 

Here Ф2d becomes positive (0.086). Therefore, the 
drop becomes prolate. But because the electric 
conductivity ratio is lower than electric permittivity 
ratio, the flow patterns are similar to cases 1 and 2. 
Fig. 15 illustrates the electric potential distribution 
(left) and streamlines inside and outside of the drop 
(right). 

 

 

Fig. 15. Electric potential contours (left) and 
streamlines (right) inside and outside of the drop 

for case 4. (Cae = 1.0, σr = 0.01 and εr = 0.05). 
 
It should be noted that, generally the curved 
distribution of electric potential lines around the 
drop is due to electric conductivity difference 
between the drop and the ambient fluid. This is 
visible in Figs. 9, 11, 13 and 15. However, the 
curvature of electric potential lines for case 4 is 
different because in this case the conductivity of the 
ambient fluid is higher than the conductivity of the 
drop. Fig. 16 represents the streamlines for case 4 
around the 3D deformed drop. 

 

 
Fig. 16. 3-D deformed drop and outside 

streamlines for case 4. (Cae = 1.0, σr = 0.01 
and εr = 0.05). 

 
To quantify the strength of the induced flows in 
these cases (cases 1 through 4 in Fig. 3), magnitude 
of vorticity vector (|ω|, enstrophy) for each case in 
addition to absolute drop deformation (|D|) are 
presented in Table 3. 
  
It is obvious that for cases 2 and 4 (prolate drops 
with streamlines similar to oblate drops) both drop 
deformation and vorticity are less than case 1 and 3. 
Thus, one can concludes that for prolate drops with 

r r  (cases 2 and 4), drop deformation is smaller 

in comparison to other prolate and oblate drops 
(cases 1 and 3). This is due to weaker induced flows 
caused by the electric field for drops 2 and 4. 

To show superiority of fully three dimensional 
simulations presented in this study against 
axisymmetric case, the interaction of two drops is 
also simulated. The drops are initially located in a 
line with an angle of 45 degrees with respect to Z-
direction. Fig. 17, depicts initial (up-left) and final 
(up-right) configuration of drops in addition to 
streamlines around them. 

 

Table 3 Absolute values of deformation and 
vorticity of cases 1-4 in Fig 3 

Case study 
Absolute 

Deformation 
(|D|) 

Vorticity 
magnitude (|ω|) 

[1/s] 

Case 1 0.376 0.183 

Case 2 0.046 0.033 

Case 3 0.189 0.182 

Case 4 0.082 0.003 
 

 

 

 
Fig. 17. Initial (up-left) and final (up-right) 
configuration of two drops in addition to 

evolution of drops relative to each other (down). 
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The evolution of drops with respect to each other 
are also presented in Fig 17 by comparing their 
horizontal and vertical distance.  The domain and 
drops size are exactly similar to Fig. 1. Here, non-
dimensional parameters are: 0.1eCa  , 0.2Oh  , 

8r   and 6r  . 

4. CONCLUSION 

In this paper, coupling of electrostatic effects with 
hydrodynamics was done in three dimensions to 
investigate drop deformation in an electric field. 
The deformation of a single drop suspended in 
another immiscible fluid under influence of external 
uniform electric field is studied through numerical 
simulations. The electric force, was added to the 
flow equations to investigate its effects on the drop 
deformation and the induced flows. A front-
tracking/finite difference method was used and was 
validated based on the existing experimental and 
theoretical results. The method efficiently predicts 
both the drop deformation and the induced 
electrohydrodynamic flows inside and outside of 
the drop. It should be pointed out that, in this paper 
the effects of hydrodynamics are absent and is left 
for future work. Therefore, only electrostatic forces 
are presented and the drop deforms due to these 
forces. Since the real physics is captured in three 
dimensional simulations, the method can be applied 
to various problems to show their real behaviour. 
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