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ABSTRACT 

An experimental investigation was carried out to study the turbulent flow over a flat plate in a subsonic wind 
tunnel. The enhanced level of turbulence was generated by five wicker grids with square meshes, and 
different parameters (diameter of the grid rod d = 0.3 to 3 mm and the grid mesh size M = 1 to 30 mm). The 
velocity of the flow was measured by means of a 1D hot-wire probe, suitable for measurements in a boundary 
layer. The main aim of the investigation was to explore the influence of the free stream turbulence length 
scale on the onset of laminar-turbulent bypass transition in a boundary layer on a flat plate. For this purpose, 
several transition correlations were presented, including intensity and length scales of turbulence, both at the 
leading edge of a plate and at the onset of transition. The paper ends with an attempt to create a correlation, 
which takes into account a simultaneous impact of turbulence intensity and turbulence scale on the boundary 
layer transition. To assess the isotropy of turbulence, the skewness factor of the flow velocity distribution was 
determined. Also several longitudinal scales of turbulence were determined and compared (integral scale, 
dissipation scale, Taylor microscale and Kolmogorov scale) for different grids and different velocities of the 
mean flow U = 4, 6, 10, 15, 20 m/s. 

Keywords: Turbulence scale; Turbulence intensity; Boundary layer; Transition; Grid; Isotropic turbulence. 

NOMENCLATURE 

a acceleration parameter 
Cf skin friction coefficient 
d diameter of a grid rod 
E(k) turbulence energy spectrum 
i plate angle of attack 
K(u) flatness factor 
LS the distance between the grid and the 

leading edge of a plate 
L integral length scale 
Lu dissipation length scale 
M mesh size 
R(τ) time correlation coefficient 
Re** momentum thickness Reynolds Number 
S(u) skewness factor 
Tu turbulence scale 
U velocity in x direction 
V(u) transverse variation 
x streamwise distance 

 slope of Y=f(X) function 
γ intermittency factor 
δ boundary layer thickness 
δ* displacement thickness 
δ** momentum thickness 
ε rate of dissipation of turbulence 

kinetic energy 
η Kolmogorov length scale 
λ Taylor length microscale 
ν kinematic viscosity 

Subscripts 
l laminar 
t turbulent; beginning of transition 
θ point, where intermittency factor γ 

is equal to (e-1)/e=0.6321 
0 leading edge of a plate

1. INTRODUCTION

Traditionally, the mainstream in the study of 
transition of a boundary layer has been the linear 
stability theory, in which the unstable modes are 
discussed by solving the linearized fourth-order 

tion, for different grids, mean flow velocities and 
Sommerfeld equation. When the freestream 
turbulence (FST) level is low, the theory is very 
useful to predict the eigen mode in a boundary layer 
at the early stage of the transition, such as the 
Tollmien-Schlichting (TS) waves. The secondary 
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three-dimensional instabilities become dominant in 
the downstream region where the amplitude of TS 
waves exceeds 1% of the freestream velocity. This 
type of transition is commonly referred as natural 
transition. If the FST level is high, the initial linear 
growth stage is bypassed and the transition occurs 
early (Noro et.al. 2013). Natural transition is the 
dominant mode for flows, where the freestream 
turbulence level is less than about 1%, whereas 
bypass transition is the dominant mode for higher 
levels of freestream turbulence, which occur within 
gas turbine engines (Morkovin 1969).  

It is possible to characterize the turbulence by its 
two main measures: intensity and scale, usually 
related to a velocity along an average stream line. 
The influence of turbulence intensity on transition 
is quite well known. The formulas describing the 
relation between the intensity and the onset 
Reynolds number are given for example by Mayle 
(1991), Hall and Gibbings (1972) or Abu-Ghannam 
and Shaw (1980). But there are still very few 
investigations relating to the influence of the 
turbulence scale on laminar–turbulent transition. 
Mayle (1991), in his review, suggested that the 
transition appears earlier when the mesh of the grid 
is smaller (what implies a smaller length scale). 
Also Jonas et al. (2000) suggested that the inception 
and the transition length depend on the turbulence 
scale. Their experimental results indicate that the 
onset of bypass transition moves downstream with 
decreasing length scale of turbulent disturbances at 
a fixed intensity of turbulent fluctuations in the 
leading edge plane – the laminar part of the 
boundary layer becomes longer. The transition 
region becomes shorter. Nevertheless, the transition 
process terminates earlier in flow with larger 
turbulence length scale than in flow with a smaller 
value of it. The turbulence intensity at the leading 
edge of the plate was maintained constant 
(Tu = 3%), whilst the values of the dissipation 
length scale were changing:  3.33;2.2Lu  mm. 

The outcome of the investigation was a following 
correlation: 

 
  535.0** /245Re Lut 

                                        
(1) 

Where Ret
**is the momentum thickness Reynolds 

number  /Re ****
tt U  at the onset of transition, 

U is the mean flow velocity, δt
** is the momentum 

thickness at the onset of transition and ν is the 
kinematic viscosity of the fluid. Definitions of 
turbulence intensity and scales are precisely 
described below. Unfortunately, the above 
correlation is not dimensionless.  

As noted in Shahinfar and Fransson (2011), in 
selected constant turbulence intensity at the leading 
edge Tu ≈ 2.6%, the transition occurs closer to the 
leading edge for increasing of the integral length 
scale, but for Tu ≈ 3.5%, the transition location 
moves downstream for an increase in length scale. 
Besides, the effect of length scale on the transition 
location is stronger at low level of turbulence.  

In the light of the problem that still arises from the 
need of understanding the phenomenon of transition 

it seems reasonable to investigate the influence of 
freestream turbulence on the transition, for different 
conditions; different turbulence levels and scales. 
Despite the quite large amount of experiments 
designed to study the phenomenon of transition, its 
detailed nature is not yet fully understood. 

2. REVIEW OF TURBULENCE SCALES 

Barrett and Hollingsworth (2001) describe few 
longitudinal scales of turbulence, although the 
authors report there are more than ten. One can 
distinguish the integral scales – which are 
associated with the largest eddies in the flow, 
dissipation scales, microscales and Kolmogorov 
scales. The longitudinal integral scale can be 
defined as follows: 

   dUL 



0

R                                                    (2) 

where 

   dTE 



0

R
                                                     

(3) 

is called the Eulerian integral time scale (Hinze 
1975) and R(τ) is a time correlation coefficient: 
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The Eq. (2) is based on Taylor’s hypothesis, which 
is valid, if the homogeneous field has a constant 
mean velocity and if u/U « 1 (where u-fluctuations 
of streamwise velocity). Another length scale (5) is 
related to the dissipation of turbulent kinetic energy, 
ε. It can be interpreted as an average dimension of 
eddies containing most of the energy, so-called 
‘energy scales’ (Barrett and Hollingsworth 2001). 
Assuming that the turbulence is isotropic, and 
knowing that the dissipation of energy causes the 
decrease of the streamwise fluctuating component 
u, one can get the length scale: 

  









x

u
UuLu

2
232 /                                       (5) 

where  2uu  is the streamwise velocity standard 
deviation. Knowing that for the isotropic turbulence 
the rate of dissipation of turbulence kinetic energy, 
ε, can be written as: 

x

u
U





2

2

3
                                                    

(6) 

(Ames and Moffat 1990), one can determine the 
scale Lu as follows: 



3

2

3 u
Lu




                                                         
(7) 

To distinguish the length scale Lu (5) or (7) from 
the integral scale L (2), we will call Lu the 
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dissipation length scale. The measure of the 
average dimension of the small eddies involved in 
fluid motion is the time microscale of turbulence: 
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which can be called the Eulerian dissipation time 
scale (Hinze 1975). Finally, between the time 
microscale  and the length microscale λ, the 

simple relation is received:   

EU                                                                 
(9) 

The scale λ is called the Taylor microscale 
(otherwise, Hinze (1975) names this one the 
dissipation scale). The characteristic turbulence 
scales are also associated with the particular ranges 
of the turbulence energy spectrum E(k). Special 
attention can be paid to the form of E(k) in the 
inertial subrange, for which the Kolmogorov 
spectrum law is fulfilled: 

  3532  kCkE k                                           (10) 

Where k is the longitudinal wave number and Ck is 
the Kolmogorov constant (for a one-dimensional 
spectrum). The universal equilibrium range of the 
energy spectrum, in which the function E(k) is 
under the influence of only two values, i.e. 
dissipation ε and the kinematic viscosity of the fluid 
ν, can be described by the following scale: 
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This is the measure of the smallest eddies in the 
flow and it is called the Kolmogorov length scale 
(kη is the wave number corresponding to this scale). 

3. ISOTROPY OF TURBULENCE 

In general, the turbulence intensity is defined as the 
ratio of standard deviation to the mean flow 
velocity, U. If the velocity field is described by the 
coordinate system xi where x1 is an axis oriented in 
the direction of the mean flow velocity (U = U1, 
U2 = U3 = 0), a ratio: 

U

u

U

u
TuTu

'1
2
1

1                                            (12) 

Defines the longitudinal turbulence intensity, while: 

U

u
Tu

'2
2   and 

U

u
Tu

'3
3                                    (13) 

are components of the transverse intensity. In case 
of isotropic turbulence the turbulence characteristics 
do not depend on the spatial orientation of the 

coordinate system ( 2
3

2
2

2
1 uuu  ).                                         

One of the methods to assess the isotropy of 
turbulence is to determine the skewness factor, S(u) 

or kurtosis (flatness factor), K(u) (14), in the flow 
velocity distribution (Mohamed and LaRue 1990, 
Ting 2013).  

2/3
23)( uuuS  ,  

2/4
24)( uuuK            (14) 

Turbulence is isotropic if S(u) = 0 and K(u) = 3, and 
hence, a PDF of the variable u has normal 
distribution. In the opinion of Batchelor (1953), the 
distribution can be considered as normal for the 
value of K(u) = 2.86. Jimenez (1998) gives the 
value of K(u) = 2.85. Citing Gad-el-Hak and 
Corrsin (1973), for a passive grid at moderate 
Reynolds numbers, with solidity below the unstable 
range, the wakes of the individual bars become 
turbulent close behind the grid, spread individually, 
and interact in some complicated way, eventually 
merging so that, at a large number of mesh lengths 
from the grid (e.g. x/M >30),the turbulence is nearly 
isotropic.  

4. EXPERIMENTAL SETUPS 

The investigation was carried out in the subsonic 
wind tunnel of low level of turbulence, Tu ≈ 0.1 % 
and with velocity range up to 100 m/s. The sketch 
of the test section and the details of the leading edge 
are shown in Fig. 1. The origin of the x-axis is 
defined at the leading edge of the plate. The 
measurement chamber with octagonal cross-section 
has the following dimensions (width, height, length) 
600 x 460 x 1500 mm. The boundary layer was 
studied on the upper surface of the flat plate with 
the dimensions (length, width, thickness) 700 x 600 
x 14 mm. The plate is fixed to the sideway windows 
of the chamber in two axes, 200 mm over the 
bottom wall, at distances of x = 150 and 600 mm 
from the leading edge. The first axis is immovable 
while the second axis can be moved up from y = 0 
to 21 mm (so the leading edge moves towards 
negative values of the y–axis), which corresponds to 
the incidence angle from 0° to �2.45°. The 
measurement chamber is equipped with three 
windows (250 mm long, with gaps 200 mm 
between) on the upper wall. The first window is 
located before the plate and two others are located 
over the plate. The probe is mounted on the 
removable window (which can replace one of the 
three windows on the upper wall of the chamber) 
with longitudinal slot, so it can moves in the x-
direction. A micrometer screw gauge allows the 
movement along the y-axis. 

The enhanced level of turbulence was generated by 
five different wicker metal grids with square 
meshes (Fig. 2) of the following dimensions: 

1)  d = 0.3 mm, M = 1 mm, 

2)  d = 0.6 mm, M = 3 mm, 

3)  d = 1.6 mm, M = 4 mm,  

4)  d = 3.0 mm, M = 10 mm, 

5) d= 3.0mm, M = 30mm 

(named appropriately G1, G2, G3, G4 and G5), 
where d is a diameter of the grid rod and M is a grid 

E
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mesh size. To gain different values of the 
turbulence intensity at the leading edge, grids were 
placed at different distances upstream of the plate: 
Ls= 450, 410, 370 and 330 mm. Also five different 
incoming velocities were used:  U = 10, 15, 20 
m/s(for G1 and G2), U = 6, 10, 15, 20 m/s(for G3), 
U = 6, 10 m/s(for G4) and U = 4, 6 m/s (for G5). 
The values of U, Ls and also dimensions of the used 
grids were chosen dependently whether the laminar 
– turbulent transition occurs in the boundary layer 
on the plate, for possibly the widest range of 
turbulence intensity and scale. 

 

 
Fig. 1. Test section of wind tunnel:  a) plate (1),  
grid (2) at the distance Ls from the leading edge, 

b) shape of the leading edge, c) cross-section 
of the measurement chamber. 

 
 

 
a) 

 
b) 

Fig. 2. Sketch of a grid (a); grid mesh (b). 

 
The velocity and turbulence measurements were 
carried out by means of the Stream Line thermo 
anemometry system (DANTEC) with the software 
Stream-Ware 3.41.20 and the hot-wire probe 55P15 

of DANTEC suitable for measurements in boundary 
layer, with diameter 5 μm, sensitive length 1.25 mm 
and frequency bandwidth up to 250 kHz The 
sampling frequency of the velocity signal in the 
present experiment was f = 6 kHz; 40000 samples 
were taken, i.e. for about 6.67 s. The example of the 
turbulence energy spectrum of velocity fluctuations 
u above the boundary layer, for grid G3, mean 
streamwise velocity U = 10 m/s, LS = 450 mm and 
the distance from the leading edge x = 230 mm, is 
shown in Fig. 3. The solid line represents the 
Kolmogorov’s law (10) and determines the inertial 
subrange of the energy spectrum.   
 

 
Fig. 3. Turbulence kinetic energy spectrum. 

 
Before the every series of measurements the 
calibration of system was carried out. Resulting 
streamwise uncertainties in U were about ± 1 %. 
The example of calibration curve, for G3 and 
U = 10 m/s, together with error bars, is presented in 
Fig. 4. The velocity ranges from U = 0.7 to 
12.5 m/s; E [V] denotes the voltage drop on the 
probe wire. 
 

 
Fig. 4. The calibration curve. 

 

5. INVESTIGATION RESULTS 

5.1 Turbulence Intensity Behind Grids 

Study investigated the effect of the free stream 
turbulence length scale on the transition point. To get 
the values of turbulence intensity and turbulence 
scale along the test section the measurements of 
mean streamwise velocities and velocity fluctuations 
behind all grids were carried out first. The 
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measurements were done before and over the flat 
plate (the probe was set at least 50 mm over the plate 
surface where there is no plate effect). Distance 
between the subsequent measuring points was 30 
mm. Fig. 5 displays the decay power law, 

  ndxcTu  , given by Roach (1986), for grids 

G1 – G5. In accordance with the Roach’s 
experiments, a value of the experimental factor c is 
equal to 0.8 and n = 5/7 (the solid line in Fig. x). 
Baines and Peterson (1951) give the values: c = 1.12, 
n = 5/7 (the dashed line). The turbulence intensity of 
the flow was determined from the Eq. (12). 

 

 
Fig. 5. The decay power law. 

 
5.2 Isotropy and Homogeneity 
of Turbulence 

Many of the formulas listed in this article refer to 
the isotropic and homogeneous turbulence, so it was 
important to assess what kind of turbulence we have 
to do with in the experiment. First of all, isotropy of 
turbulence of the flow behind the grids was 
investigated. For reference case, skewness factor 
along the test section of the tunnel in case without 
the turbulence generator (grid) and without the flat 
plate was measured. The first measuring point 
position was 100 mm from the measurement 
chamber inlet (230 mm from the upper wall, i.e. in 
the middle of the chamber). Values of skewness for 
mean flow velocities U = 6, 10, 15 m/s are 
displayed in Fig. 6. The turbulence intensity Tu 
didn’t exceed, in this case, the value of 0.13 %. As 
one can see, S(u) for all three flow velocities ranges 
approximately from 0 to 0.06 throughout the 
measured region. 
 

 
Fig. 6. Skewness along the measurement 

chamber in case of no turbulence generator, for 
mean flow velocities U = 6, 10 and 15 m/s. 

According to the previous investigations (Grzelak, 
Wiercinski, 2015), turbulence of the flow behind 
grids was considered to be nearly isotropic from the 
distance x/M ≈ 60. The values of x/M, S(u), K(u) for 
grids G1 – G4 and for all flow velocities used in the 
experiment are displayed in Table 1. (For G1 the 
distance is x/M = 90, but it was the first point 
measured behind the grid, i.e. x = 90 mm). 
 
Table 1 Values of the distance x/M for grids G1 – 

G4, from which turbulence is considered to be 
isotropic 

Grid Uሾ݉/ݏሿ S(u) K(u) X/M 

G1 

10 0.050 3.00 90 

15 0.057 3.00 90 

20 -0.033 3.03 90 

G2 
 

10 0.036 2.90 60 

15 0.036 2.90 60 

20 0.057 2.88 70 

G3 

6 0.049 2.93 60 

10 0.059 2.94 66 

15 0.028 2.94 56 

20 -0.024 2.97 66 

G4 
6 0.047 2.91 61 

10 0.060 2.94 67 
 

The homogeneity of turbulence behind all grids 
used in the experiment was investigated. As a 
method to investigate the homogeneity of the flow 
behind the grid, one can use transverse variation of 
the difference of the root mean square of the 

downstream velocity, 
21

2u , and the centreline 

value normalized by the centreline value, 
21

2
0u

(Mohamed and LaRue 1990): 

  21
2
0

21
2
0

21
2

u

uu
uV


                                           (15) 

In the opinion of Gad-el-Hak and Corrsin (1973) 
homogeneous turbulence, V(u) ≈ 0, can be obtained 
for  x/M > 30, while Valente and Vassilicos (2011) 
claim that for regular grids  the turbulent flow 
should be considered as homogeneous in transverse 
planes even for  x/M > 25. Mohamed and LaRue 
(1990) obtained, for example, V(u) = 0.03 and S(u) 
≈ -0.03 to 0.03 from x/M> 40, what provides ones 
means, in their opinion, to assess the approach of 
the flow to an isotropic and homogeneous 
conditions. In present investigation, for grids G1 – 
G4,V(u) did not exceed the value of 0.07 in all 
measured area, oscillating around zero over the 
plate (V(u) ≤ 0.03), so we can assume that 
turbulence is approaching to homogeneous 
conditions for these grids. In case of G5 variation 
was still too high; V(u) ≈ 0.2 over the whole plate 
(the exact investigation results related to the 
transverse variation calculations one can find in the 
paper of Grzelak and Wiercinski (2015)).  
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Finally, it can be stated that turbulence of the flow 
over the plate is nearly isotropic and homogeneous 
for grids G1 – G4 (grid G5 produced anisotropic, 
inhomogeneous flow, which was due to the fact that 
the mesh of G5 was too large to allow the 
exploration of regions with sufficiently large values 
of x/M where homogeneity could be expected to be 
recovered). 

5.3 Scales of Turbulence 

To investigate the turbulence scale dependence on 
the transition inception, which was the main goal of 
the experiment, determining the length scale behind 
the grid was first needed. To determine the 
dissipation scale Lu and Kolmogorov scale η, 
knowledge of the rate of turbulence kinetic energy 
dissipation ε was required. Therefore the turbulence 
energy spectrum E(k) was determined by means of 
Fourier transform in Matlab.  

In Fig. 9 different kinds of turbulence length scales 
are presented, for the selected grid G3, the velocity 
of the flow U = 10 m/s and the grid distance Ls= 
450 mm from the leading edge of the plate. The 
integral scale L, associated with the largest eddies in 
the flow has of course the largest dimension, next 
we have a bit smaller dissipation scale Lu, Taylor 
microscale λ and finally the Kolmogorov scale η as 
the measure of the smallest eddies. The results of 
Jonas (2000), for dissipation scale Lu, was provided 
for comparison. The solid line in Fig. 9 corresponds 
to the typical variation of the integral scale (see 
Laws and Livesey 1978): 

  2/1
0 )( MxxAL L  ,  M / d5                    (16) 

Where AL= 2 or  AL= 0.1 (Kurian and Fransson 
2009); x0 is a virtual origin of turbulence. For the 
present grid G3: M/d = 2.5 and x0 = 8.7 mm. The 
dashed line in Fig. 7 corresponds to the variation of 
the Taylor microscale given by Hinze (1975): 

  2/1
0 )(20 Uxx                                   (17) 

 

 
Fig. 7. Scales of turbulence behind the grid G3, 
for U = 10 m/s; + L – integral scale (2),  Lu – 

dissipation scale (7), λ – Taylor microscale (9), 
□ η – Kolmogorov scale (11). 

 
5.4 Velocity Profiles in the Boundary Layer 

Next, the velocity profiles in the boundary layer on 
a flat plate were measured. Distance between the 

measuring points in the x direction was 20 mm. The 
origin of the x-axis was the leading edge. In each of 
the points the boundary layer profile was measured. 
Each profile consisted of about 40 points; the first 
one at 25 mm and the last one about 0.1 mm above 
the plate surface. The distance from the hot-wire to 
the plate, Y0, was measured by means of the method 
called ‘hydraulic zero’ (Epik 1998). If the wire was 
very close to the surface, thermo anemometric 
response was like velocity started to increase. Then 
the measurements were stopped. For the further 
procedure it was assumed that the last measured 
point was Y = 0 mm from the wall. To find a real 
Y0, the velocity profile U = f(Y) was examined (Fig. 
8). Because U|wall= 0, a tangent to the profile, 
U = (dU/dY)Y+B, was conducted through the last 
few points of the profile (points for which the 
velocity seemed to increase, were rejected). The 
intersection of the tangent and the abscissa gives, as 
the absolute value |Y0|, the searched distance from 
the hot-wire to the plate surface. 
 

 
Fig. 8. Velocity profile in a boundary layer, for 

G3, U = 10 m/s, LS = 450 mm. 
 

The measured boundary layer thickness, defined as 
U (δ) = 0.99 U∞, was from about 1.3 to 3 mm for 
laminar boundary layer and from about 9 to 14 mm 
for turbulent boundary layer. The examples of the 
boundary profiles, for grid G3, U = 10 m/s, LS = 
450 mm, are presented in Figs. 9 and 10, in 
comparison with other well-known profiles: the 
Blasius profile for laminar boundary layer (Fig. 9) 
and the law of the wall for turbulent boundary layer 
(Fig. 10). In both cases, three different distances, x, 
from the leading edge are taking into account. First 
one is x = 110 mm, where the boundary layer is still 
laminar (shape factor H = δ*/δ** = 2.25). Next 
profile, for x = 370 mm, lays in the transition region 
(H=1.91; the onset of transition is estimated to xt = 
313 mm). The last profile, x = 650 mm, corresponds 
to the turbulent boundary layer (H = 1.42).  

To avoid separation at the leading edge the 
incidence angle of the plate i = –1.63° was set 
(boundary layer with favourable pressure gradient). 
Therefore a velocity gradient along the plate was 
measured. A value of the acceleration parameter: 

dx

dU

U
a 2


                                                          (18) 

Where U is the mean flow velocity and ν is the 
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kinematic viscosity, was approximately equal to 
a ≈ 2.7·10-7. This showed that compared with the 
critical acceleration parameter needed to accomplish 
relaminarizationin boundary layers (acrit 3.5×10−6, 
see e.g. Sreenivasan1982), the applied pressure 
gradient is quite moderate. In terms of velocity 
increase it is from about 2 to 4%.The effect of 
favourable pressure gradient on boundary layer 
receptivity and on turbulence characteristics one can 
find e.g. in Xu et al. (2016), Johnson and Pinarbasi 
(2014), Kurian and Fransson (2009). According to 
the experiment of the last authors, who reached the 
acceleration parameter maximally equal to 2.5·10-7, 
an important result is the observed reduction in 
turbulence length scales (20-30%) for large mesh 
widths (M = 36 mm), which was absent for small 
mesh widths (M = 4.2 mm). 

 

 
Fig. 9. Blasius profile for the laminar boundary 
layer; boundary profiles for G3, U = 10 m/s and 

three distances x from the leading edge. 
 

 
Fig. 10. The law of the wall for turbulent 

boundary layer; boundary profiles for G3, 
U = 10 m/s and three distances x from the 

leading edge. 

 
5.5 Method of Determining the 
Transition Inception 

Having determined the length scale of turbulence, 
the momentum thickness Reynolds number of the 
onset of the transition, Ret

**, needs to be calculated, 
to find the correlation function. The values of the 
local skin friction coefficient, Cf, were used to 
observe the region of transition and to determine the 
intermittency factor by means of Eq. (19), derived 

from the model of Dhawan and Narasimha (1958). 

flfl

flf

CC

CC




                                                    (19) 

Cfl and Cft are local skin friction coefficients in 
laminar and turbulent regions of the flow, 
respectively. They were determined by means of the 
Blasius solution for the laminar and turbulent 
boundary layer (Blasius 1913): Cfl=0.664(Rex)-0.5, 
Cft=0.0595(Rex)-0.2. The intermittency factor was 
first defined by Townsend (1948) as the fractional 
time spent by a fixed probe in the turbulent fluid. 
Next, another formula for intermittency factor, γ 
(20), was used to set the characteristics of the 
laminar-turbulent transition. To describe γ in the 
transition region the cumulative distribution 
function of three-parametric Weibull probability 
distribution was used (Dhawan and Narasimha 
1958, Emmons 1951): 





 











****

****

ReRe

ReRe
exp1

t

t                                 (20) 

The description of the Weibull distribution and its 
application in different engineering fields can be 
found in Lipson and Sheth (1973) or Wadsworth 
(1989). In the Eq. (20) α is the shape parameter, 
Ret

** – the point where transition begins, Reθ** – 
(characteristic length) the point where intermittency 
factor is equal to (e − 1)/e = 0.632, where e is a base 
of the natural logarithm. Taking twice the logarithm 
of Eq. (20) and substituting Eq. (19) for γ,it is 
possible to determine the Ret

** obtaining the linear 
relationship (Lipson and Sheth 1973): 

Y = αX+C                                                             (21) 

where: 
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flftflf CCCC
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lnln

               

(22) 

 **** ReReln tC    

A shape parameter α is a slope of the function 
Y = αX+C. This method was validated for the 
experimental data presented in the paper of 
Wiercinki (1997). 

The value of Ret
** was initially estimated from Fig. 

11, which displays γ, determined from the Eq. (19), 
in the function of Re**. The presented case relates to 
the grid G2, U = 15 m/s and LS = 330 mm. Reθ** 
(marked as  in Fig. x) was estimated by means of 
the linear regression made of two points 
surrounding the value of γ = 0.632. Next, the 
guessed values of Ret

** were tested. A graph of the 
function (21) for four different exemplary values of 
Ret

** = 235, 248, 261, 274 is presented in Fig. 5. It 
is apparent from the picture that the best linearity of 
the relationship (21) was reached for Ret

** = 248, so 
this value was estimated as the beginning of the 
transition. 
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Fig. 11. Intermittency factor, determined from 

the Eq. (19), in the function of  Re**. 
 

 
Fig. 12. Function (21). 

 

 
Fig. 13. Momentum thickness Reynolds number 

at the onset of transition as a function of 
turbulence intensity for different grids, flow 
velocities and grid distances; lines represent 

formulas (23), (24) and (25). 

 

5.6 Correlations of the Transition 

The freestream turbulence intensity at the leading 
edge for grids G1 – G4 was from Tu = 0.4 % to 
3.4 % and for grid G5 exceeded the value of 4 %, 
moreover the turbulence was not isotropic at the 
measured points in case of grid G5. Fig. 13 shows 
dependence between the turbulence intensity at the 
plate leading edge, Tu, and the momentum 
thickness Reynolds number of the onset of 
transition, Ret

**, in comparison with some known 
correlations: Hourmouziadis (1989): 

65.0** 460Re  Tut
                                              (23) 

Mayle (1991): 

8/5** 400Re  Tut
                                                 (24) 

And Abu-Ghannam and Shaw (1980): 

 Tut  91.6exp163Re **                                 (25) 

One can see, that for Tu< 2 % (it refers to grids G1, 
G2 and partly G3) the transition inception appears 
earlier than it follows from the mentioned 
correlations.  

To create the first correlation with turbulence length 
scale, the dissipation scale Lu values at the leading 
edge of the plate were used. The results of present 
investigations seem to confirm the results of Jonas 
(2000), but only if we make correlation for all grids 
together (Fig. 14a; dashed line represents the Eq. 
(1)). But when we look at every grid separately, the 
result seems not to be that obvious. Because of the 
result points dispersion the investigations need to be 
verified, but according to the present ones the 
momentum thickness Reynolds number Ret

** 
increases (which means the transition appears later) 
when Lu increases, for grids G2 and G3. If the 
values of the Reynolds number Ret

** start to become 
smaller than 200 (as we have for the grid G5), the 
transition appears earlier when the values of the 
length scale Lu are larger. 

The turbulence scale at the Eq. (1) can be changed 
in the non – dimensional formula using one of the 
grid parameters. Wire diameter, d, has been 
chosen:  

m

t d

Lu
k 






**Re

                                                   

(26) 

Figure 14b shows the results for Ret
** as a function 

of  Lu/d, for grids of different dimensions. For G1 – 
G4: coefficient of the Eq. (26) is k = 158, exponent 
m = 0.455. When the value of Lu/d increases, the 
transition appears later for the grids G1 – G4 and 
earlier for the grid G5, but we keep in mind that in 
the last case the turbulence is anisotropic. Besides, 
the values for the grid G4 seem to belong to both 
correlations. It is interesting to note that the 
minimum value of transition Reynolds number 
presented in Figs. 14a and 14b is in a good 
agreement with the classical solution obtained from 
the theory of hydrodynamic stability: Ret

** = 161. 

Because in case of the grid G5 turbulence was 
neither isotropic nor homogeneous at the measured 
points over the plate, it seems reasonable to neglect 
the results for this grid in the following part of the 
article.  

The next correlations, presented below, refer to free 
stream turbulence intensity, Tut, and free stream 
turbulence dissipation length scale, Lut, at the onset 
of transition. (Having determined the point of the 
beginning of transition and profiles of intensity and 
scale behind grids, values of Tut and Lut were 
found). Fig. 15 presents Ret

** as a function of Tut. 
Again, for grids G1, G2, where Tut< 1%, we can’t 
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find any good correlation function for Tut and Ret. 
The next Fig. 16 displays Ret

** as a function of the 
dissipation length scale Lut at the onset of 
transition. For small levels of free stream 
turbulence, i.e. Tut< 1.5 % (which was obtained for 
grids G1, G2 and almost for all used velocities and 
grid distance Ls in case of G3 (U = 6, 10 m/s for all 
grid distances and U = 15 m/s for Ls = 450, 410, 
370 mm), the dissipation scale increases with the 
decreasing of Ret

**. For the further increasing of the 
level of turbulence, i.e. for G3 (U = 15 m/s, Ls = 
330 mm and U = 20 m/s, Ls = 370, 330 mm) and for 
G4 (U = 6 and 10 m/s, all grid distances) the 
influence of the turbulence scale on the beginning 
of transition isn’t significant. Fig. 17 displays the 
relation between turbulence scale and intensity at 
the onset of transition. With the increasing of Tut, 
Lut also increases, but only to the level of 
turbulence Tut≈ 1.5 %, then Lut slowly starts to 
reach a constant value. 

 

 
(a) 

(b)  

Fig. 14. Momentum thickness Reynolds number 
at the onset of transition as a function of Lu, 

(Fig.14a) and Lu /d (Fig.14b) for different grids, 
flow velocities and grid distances; dashed line 

in Fig.14a represents the Eq. (1). 

 
The correlation Ret

** = f (Lut) can be made non – 
dimensional by means of the momentum thickness 
of the boundary layer, δ**: 

 mttt Luk **** /Re                                             (27) 

Figure 18 presents Ret
** as a function of Lut 

divided by the momentum thickness at the onset of 
transition, δt

** (δt
** was found from the formula 

Ret
** = U δt

**/ ν, where U – streamwise velocity, ν – 
kinematic viscosity). One can observe a similar 
trend as for previous correlation (Fig. 16). For small 

levels of turbulence, Tut< 1.5 % (G1, G2, G3), 
dissipation scale divided by δt

** increases with 
slight decreasing of Ret

**. For Tut> 1.5 % (G4 and 
G3: U = 15 m/s, Ls = 330 mm and U = 20 m/s, Ls = 
370, 330 mm) further decreasing of Ret

**seems not 
to depend on changes in the ratio Lut/ δt

**, which 
tends to the constant value. 

 

 
Fig. 15. Momentum thickness Reynolds number 

at the onset of transition as a function of 
turbulence intensity Tut, at the onset of 

transition, for different grids, mean flow 
velocities and grid distances. 

 

 
Fig. 16. Momentum thickness Reynolds number 
as a function of turbulence scale Lut, at the onset 

of transition, for different grids, mean flow 
velocities and grid distances. 

 

 
Fig. 17. Dissipation length scale Lut as a function 

of turbulence intensity Tut, at the onset of 
transition, for different grids, mean flow 

velocities and grid distances. 
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Fig. 18. Momentum thickness Reynolds number 
as a function of the ratio Lut/δt

**at the onset of 
transition, for different grids, mean flow 

velocities and grid distances. 

 

 
Fig. 19. Momentum thickness Reynolds number 

as a function of the Taylor Reynolds number 
at the onset of transition, for different grids, 

mean flow velocities and grid distances. 

 

 
Fig. 20. Momentum thickness Reynolds number 

as a function of turbulence intensity, Tut, 
and ratio Lut/δt

**at the onset of transition. 

 
The next correlation is related with another 
turbulence length scale: Taylor microscale λ. The 
information about λ is sufficient to parameterize by-
pass transition with free-stream turbulence intensity 
and scale, since it leads over dissipation rate 

22 /15  u  (where u’ is the streamwise 
velocity standard deviation) and turbulent kinetic 
energy to other scales and permits to link, over the 
transport equations, with the turbulent stresses. 
Fig.19 displays the onset Reynolds number Ret

** 
as a function of Taylor Reynolds number 





u

t


Re at the onset of transition. This time all 

data presented in Fig. 19 (for grids G1 – G4) are 
divided into two ranges: for  %5.1;26.0tTu and,

 %6.2;5.1tTu  which correspond to values of 

the turbulence level at the leading edge: 
 %2;4.0tTu ,  %4.3;2tTu , respectively. As 

previous, the first range concerns with grids G1, G2 
and G3 (U = 6, 10 m/s for all grid distances and U = 
15 for Ls= 450, 410, 370 mm), the second range 
concerns with grid G3 (U = 15 m/s, Ls = 330 mm 
and U = 20 m/s, Ls = 370, 330 mm) and G4 (U = 6 
and 10 m/s, all grid distances). When Tut < 1.5 % 
the onset of transition approaches the plate leading 
edge with the increasing of Reλt. After exceeding 
the level of 1.5%, the onset Taylor Reynolds 
number starts to tend to the constant value. 

Finally, two last Figs. (20, 21) present simultaneous 
impact of turbulence intensity and turbulence scale 
on the boundary layer transition. Taking into 
account the turbulence intensity, Tut, at the onset of 
transition and the turbulence scale, Lut, divided by 
the momentum thickness at the onset of transition, 
δt

**, we can write the Eq. (28), which is – to some 
extent – generalization of the correlation given by 
the Eq. (27). 

 

 
Fig. 21. Momentum thickness Reynolds number 

as a function of turbulence intensity, Tut, 
and Taylor Reynolds number, Reλt, at the onset 

of transition. 
 

2

1

**
**Re

m

t

tm
tt

Lu
kTu 











                                    

 (28) 

Taking logarithm of the above formula, we get an 
equation of a plane: 











**21
** logloglogRelog

t

t
tt

Lu
mTumk


     

(29) 

which is displayed in Fig. 20.The searched 
constants at the above formula were found by 
means of the three-dimensional regression 
procedure: k = 271, m1 = – 0.206, m2 = – 0.015. 
Analogously, a correlation related to the Taylor 
Reynolds number at the onset of transition can be 
written: 

21 ReRe ** m
t

m
tt kTu 

                                          
(30) 
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The Eq. (30) is displayed in Fig. 21 and the 
searched constants are: k = 201, m1 = – 0.287, m2 = 
0.088. Looking at above two formulas (28), (29) 
and the exponentsm1, m2 it can be stated that 
turbulence intensity is the primary factor affecting 
transition while turbulence length scale has only 
a secondary affect.  

6. CONCLUSION 

To investigate the phenomena of turbulent flow, 
five wicker grids with square meshes and different 
parameters were used to generate turbulence. The 
turbulence intensity at the leading edge of the plate 
was from Tu = 0.4 % to 4 %. Several longitudinal 
scales of turbulence were determined, i.e. integral 
scale L, dissipation scale Lu, Taylor microscale λ 
and Kolmogorov scale η. To assess the isotropy of 
turbulence, the skewness factor of the flow velocity 
distribution was determined. For grids G1 to G4, 
i.e. for (d = 0.3 mm, M = 1 mm, Tu = 0.4 %) to (d = 
3 mm, M = 10 mm, Tu = 3.4 %) the isotropic 
homogeneous turbulence throughout the measured 
chamber was obtained.  

The influence of the turbulence scale on the 
laminar–turbulent bypass transition location on a 
flat plate was investigated. In this case the 
dissipation scale Lu at the leading edge was taken 
into account. For this purpose, the momentum 
thickness Reynolds number Ret

**, at which 
transition onset appears, was calculated. Present 
investigations seem to confirm the results 
indicating that the boundary layer laminar–turbulent 
inception moves downstream with the decreasing of 
turbulence scale, but only if we make correlation 
for all grids together. When we take into account a 
single grid, especially G2 (d = 0.6 mm, M = 3 mm) 
and G3 (d = 1.6 mm, M = 4 mm), the results are not 
so obvious or even seem to be quite opposite.  

Dividing the turbulence scale by the grid wire 
diameter, non–dimensional formula was 
developed (26). The investigation indicates that the 
reducing of turbulence scale (divided by the grid 
wire diameter d) provides an earlier inception, i.e. 
the lower momentum thickness Reynolds number 
for grids G1 – G4.  

The next presented correlations, refer to free stream 
turbulence intensity, Tut, and free stream turbulence 
dissipation length scale, Lut, at the onset of 
transition. It was observed that for small levels of 
free stream turbulence (Tut< 1.5 %) the dissipation 
scale Lut increases with the decreasing of Ret

**. For 
Tut> 1.5 %, the influence of the turbulence scale on 
the beginning of transition isn’t significant. Similar 
conclusion was obtained for Lut divided by the 
momentum thickness at the onset of transition, δt

** 
(27). For Tut< 1.5 % the ratio Lut/δt

** increases with 
slight decreasing of Ret

**; for higher level of 
turbulence, Lut/δt

** tends to the constant value. The 
onset Reynolds number Ret

** as a function of 
Taylor Reynolds number Reλ= u’λ /ν (where λ is 
Taylor microscale) at the onset of transition was 
presented. It was observed that for the intensity 
range  %5.1;26.0tTu , which corresponds to 

values of the turbulence level at the leading edge, 
 %,2;4.0Tu the onset of transition approaches 

the plate leading edge with the increasing of Reλt. 
For  %6.2;5.1tTu  %4.3;2Tu at the leading 

edge) the onset Taylor Reynolds number starts to 
tend to the constant value.  

Finally, simultaneous impact of turbulence intensity 
and turbulence scale at the onset of transition on the 
boundary layer transition inception was presented 
(Figs. 20, 21), showing that turbulence intensity is 
the primary factor affecting transition and 
turbulence length scale has a secondary affect.  
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