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ABSTRACT 

Numerical simulations of flow patterns at ultra-low Reynolds numbers over rigid and flexible airfoils are 
presented, and the influence of flexibility on main aerodynamic properties are discussed. Typical unsteady 
flights like heaving and flapping are, in terms of Reynolds and Strouhal numbers, reduced frequencies and FSI 
(Fluid Structure Interaction) factor, are valuated. It has been found that for some flexibility levels, the 
aerodynamic forces and propulsive efficiency are enhanced if compared with a rigid airfoil. The mathematical 
technical approach used to solve the laminar-incompressible flow equations coupled with structural algorithms, 
is described. 

Keywords: Aerodynamic wing sections; CFD; Fluid structure interaction; Unsteady flows; Low Reynolds; 
Flexible airfoil; Partitioned method; Finite element method. 

NOMENCLATURE 

c  chord 
c  convective velocity 

DC  drag coefficient 

LC  lift coefficient 

PC  power coefficient 

TC  thrust coefficient 

cx generic average coefficient  
e structural thickness  
E  young modulus 

hf heaving frequency  

αf pitching frequency  

αh heaving half-amplitude  

I  Inertial moment 
k reduced frequency, iteration  
L  lift 
M  Mach number 
P  input power 
p  fluid pressure 

eR Reynolds number  

U reference velocity  
St Strouhal number  
t  time 
T  thrust 

u  fluid velocity 

msu structural mesh velocity 

mfu fluid mesh velocity 

û  fractionary velocity 
w  transversal structural displacement  
w  interface displacement 

α angle of attack 
αa pitching half-amplitude  

*δ  flexibility 
δ  tip displacement 

t  time step 
η  propulsive efficiency 

s structural mass per unit length  

ρ f  fluid density 

ρs  structural density 

*ρ  density ratio 
  FSI intensity factor 
σ  stress tensor 

h test elemental function 

αχ  pitching phase 
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χh  heaving phase 

h  extended h functional space 

ψh  test elemental function 

ψh  test elemental function  

ω  relaxation Aitken factor  
  analysis domain

1. INTRODUCTION 

The importance of ultra-low Reynolds flows is based 
on technological applications like MAVs (Micro Air 
Vehicles). They are flying systems with maximum 
dimensions of 0.15[m] that can lead to revolutionary 
improvements in remote sensing and information 
gathering capabilities both in military as well in 
civilian applications Radmanesh et al. (2014). In 
many cases, an in depth-study of phenomena 
observed in flight is necessary to obtain maximum 
propulsion with the highest efficiency. 

Because of Reynolds number effects, aerodynamic 
characteristics such as lift, drag and thrust of flying 
vehicles change considerably between MAVs and 
conventional manned air vehicles. In fact, in the 
nature, birds or insects flap their wings interacting 
with the surrounding air to generate lift to stay aloft 
or producing thrust to fly forward. The main 
powered flights are: heaving and flapping (flights 
with free stream) and hovering (flight without free 
stream). 

Unsteady aerodynamic mechanisms such as the 
generation of a leading edge vortex (LEV), wing-
wake interaction, and three-dimensional flow 
features, such as tip vortex-vortex interactions, all 
significantly affect the aerodynamic force 
generation. Another remarkable mechanism that the 
biological flyers seem to be using is the wing 
flexibility. Studies have been performed to shed light 
on the interplay between the structural flexibility and 
the resulting aerodynamic forces. 

The most significant researches that can be named 
are: Guerrero (2008), carried out unsteady 
aerodynamic studies at ultra-low Reynolds in 2D and 
3D configurations built using the NACA 0012 wing 
section; Combes and Daniel (2005), have shown that 
a variety of insects exhibit anisotropy in their wing 
structures based on static response tests. 

Experimental and numerical studies of Kang and 
Shyy (2012) and Kang et al. (2011) have shown that 
the chord-wise flexibility affects the distribution of 
the resulting aerodynamic forces in lift and thrust 
directions. For example, if the plate shape undergoes 
deformation, then the camber of the plate may 
change leading to an effective geometry 
modification, which combined with the pitching 
angle the direction of the net force can be adjusted in 
favor of the thrust generation. 

Zhu (2007) showed numerically that the thrust and 
the propulsive efficiencies increased more for a 
plunging chord-wise flexible airfoil in water than 
immersed in air. Hence it is seen that the flexibility, 
including the density ratio can be utilized to control 
resulting aerodynamic forces. However the precise 
underlying physics of aeroelastic coupling for flap-

ping wings and its applicability to the MAV designs 
are yet to be understood. 

The aerodynamic force generation caused by 
structural flexibility, is definitely essential to change 
local behaviors in thrust and propulsive efficiency. 
Olivier (2010), Heathcote and Gursul (2005), 
Chandar and Damodaran (2009), Naderi et al. (2016) 
analyzed flexible and rigid airfoils undergoing 
sinusoidal flapping motion (or combined pitching 
and heaving) of flexible insect wings under realistic 
flight conditions such as forward flight and/or rapid 
maneuvering. 

In the present work useful results to describe the 
behavior of various 2D rigid and elastic geometries 
at unsteady ultralow Reynolds flows, are presented. 
The geometric parameter thickness ratio, were 
changed and its effects evaluated. In addition, the 
flow features and the impact on main aerodynamic 
properties are assessed. The behavior of several 
unsteady flight dynamics like heaving and flap-ping 
were also analyzed and its aerodynamic properties 
determined in terms of Strouhal number, heaving and 
pitching amplitudes, flexibility, etc. The propulsion 
and lift mechanisms for flapping air-foils, depending 
of the topology of the wake, the deformation of the 
geometry and kinematic parameters are analyzed. 

2. METHODOLOGY 

Ranges of non-dimensional numbers found relevant 
to unsteady flights of biological “flappers”, are also 
considered valid for MAVs. A characteristic one for 
flapping motions is the Strouhal number 

2 / ,h aSt f h U where hf  is the heaving frequency 

and ha the half-amplitude of motion. Therefore, the 
Strouhal number expresses the ratio between the 
flapping wing velocity and the reference velocity U. 
The reduced frequency given by π /hk f c U  is 

another parameter that can be interpreted as a 
measure of unsteadiness comparing the wave length 
of the flow disturbance to the chord c. On the other 
hand, the fundamental aerodynamic parameters are 
computed by: 

2

( )
( )

1
ρ

2

L

f

L t
C t

U c
                                                    (1) 

where LC  is the lift coefficient. The thrust 

coefficient is 
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                                       (2) 

if .T D  The input power coefficient is 
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P t
C t

U c
                                                     (3) 

and thrust efficiency is 

η
TU ct

P cp
                                                              (4) 

represents the relation between the input energy and 
thrust gained energy. ct and cp  are the average 

thrust and power coefficients respectively, ( T and 
are the average thrust and average power inputs 
respectively).1 

The dimensionless parameters related to flexible 
flapping wing sections problems are, Olivier (2010): 
the flexibility, 

2 3
* ρ ( )
δ f h af h c

EI
                                                        (5) 

which relates the dynamic pressure with structural 
stiffness, and the FSI intensity factor defined by 

ρ

ρ
f a

s

h

e
                                                                     (6) 

which represent the relation between structural 
inertial forces and aerodynamic pressure. The 
density ratio is: 

* ρ
ρ

ρ
s

f
                                                                    (7) 

and the kinematics of the moving airfoils are given 
by the equations: 

( ) sin(2π χ )a h hfh t h t                                                (8) 

α αα( ) α sin(2π χ )at f t                                                 (9) 

where χh  and αχ  are the phases angles. The center 

of rotation is located at the leading edge (0% c) in all 
cases. 

2.1   Numerical Methods 

A 2D numerical code of fluid-structure interaction 
was developed in FORTRAN 90 language. The 
details are here presented. 

2.1.1   Fluid Module 

The two-dimensional time-dependent Navier-Stokes 
equations are solved using the finite element method, 
assuming incompressible-laminar, flow which is 
justified since the Mach number of a MAV flight is 

0.3M  and the Reynolds number 10000.eR  To 

represent the unsteady flow, the Navier-Stokes 
equations are solved in a fixed inertial reference 
frame incorporating a moving mesh with velocity 

mfu following the Arbitrary Lagrangian Eulerian 

(ALE) formulation, Donea and Huerta (2003). 
Conservation of mass and momentum in a Ω analysis 
domain with boundaries σ ,u  and 0( , )ft t time 

interval of analysis, are described by: 

. 0 u                                                                   (10) 

21
( . ) ν 0

ρ
e

f

p
t


       


u

c u u f                       (11) 

where u  is the two-dimensional flow velocity 
vector, ρ f  the constant density, ν the kinematic 

viscosity, p the pressure, fe the external forces and 

mf c u u is the convective velocity that represents 

the difference between fluid and mesh velocity. 

The boundary conditions are: 

σ

      

σ .  =       
c u

f

in

in

 



u u

n t
                                              (12) 

where σ f is the fluid stress tensor and n is the nor-

mal vector to the boundary, Fig. 1. The boundary 
conditions must be met for all 0( , ).ft t t Then the 

initial conditions are: 

0 0

0 0

     

     

in t

p p in t





u u
                                                             (13) 

 

 
Fig. 1. Boundary conditions in fluid problems. 

 

The equations previously presented can not be solved 
by a numerical standard form because 
incompressibility gives rise to a flow field 
restriction. There are several algorithms to deal with 
this difficulty and the Fractional Step method used 
here is one of them. The method meets the LBB 
condition through the use of same order of 
approximation for velocity and pressure. In the 
present work, linear triangular elements are used. For 
more details see Blasco et al. (1995) and Brezzi and 
Fortin (1991). To apply the Fractional Step algorithm 
the momentum Eq. (11) is divided in two parts. To 
simplify the analysis thus mesh velocity is 0,mf u  
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1 1 1δ
ˆ ( γ )

ρ
n n n n

f

t
p p      u u                            (15) 

In Eq. (14), the fractionary velocity û  is introduced 
and used in Eq. (15). If the divergence of Eq. (15) is 
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taken and the continuity equation is applied, results 

2 1 1ρ
ˆ( γ ) .

δ
fn n np p
t

    u                                      (16) 

Through this equation the pressure is calculated. In 
addition, γ is a numerical parameter such that its 
values of interest are 0 and 1 and gives the order of 
approximation. The θ parameter determine the kind 
of temporal approximation. The values of interest for 
θ are: θ = 1/2 corresponding to the second or-der 
scheme of Crank- Nicholson, θ = 1 to backward 
Euler method (implicit) and θ = 0 corresponding to 
forward Euler method (explicit). 

Then the Finite Element Method is used to discretize 
the govern equations and it provides an appropriate 
resolution procedure Lohner (2001). The resultant 
scheme is of first order (γ = 0) and the temporal 
discretization (θ = 0) results in Euler for-ward. The 
test functions (ψ , )h h h h   are used such as: 
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ˆ( ,ψ ) ( ,ψ ) ( , )

ρ
n n n
h h h h h h

f

t
p    u u                    (19) 

where sub index h means it is applied on one 
element. h  and h  are functional spaces 

associated to a partition of the domain   called 
finite element partition .h  The last equations 

system is semi-implicit because Eqs. (17) and (19) 
are explicit (lumped mass matrix) and Eq. (18) for 
the pressure computation is implicit 2. 

The discretization of convective terms yields 
numerical instabilities, therefore stabilization 
methods must be used. In this work the Orthogonal 
Subgrid Scale (OSS) algorithm is applied Codina 
(2000), Principe and Codina (2009). The expression 
for the convective stabilization term uSTB is: 

1τ ( . π , ψ )n n n n
u h h h h hSTB    u u u                               (20) 

where π is the convective term projection and it is 
defined in Eq. (25). This equation add to momentum 

Eq. (17) and it is evaluated in ,nt  therefore it 
remains explicit. 

The stabilization term of pressure pSTB to be added 

to the Eq. (18) is: 

2(τ ( ξ ), )n n
p h hSTB p                                         (21) 

where ξn
h  is the gradient pressure term projection 

and it is defined in Eq. (26). In addition, it is 

evaluated in ,nt therefore it remains explicit. 

To present the final complete stabilized scheme, the 
mesh movement through mu  is introduced. Then the 

final scheme of equations results, 

1

1

1 1
ˆ( ,ψ ) ( ,ψ ) ( . ,ψ )

δ δ

                  ν( , ψ ) ( ,ψ )

                 (τ ( . π ,), ψ )

n n n n
h h h h h h h

n n
h h e h

n n n n
h h h h h

t t
   

   

    

u u c u

u f

c u c

            (22) 

1

1

2

2

2

( , )

ρ
ˆ[( , ) ( , )]

δ τ

τ
                           + ( ξ , )

δ τ

n
h h

f n n n
h h h h h

n n
h h

p

t

t



 







  

   


 


u u u                     (23) 

1 1δ
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p    u u                    (24) 

(π ,ψ ) ( . ,ψ )n n n
h h h h h c u                                              (25) 

(ξ ,ψ ) ( ,ψ )n n
h h h hp                                                  (26) 

where ψh h and 1 2τ ,τ are stabilization 

coefficients. The system of equations of Eqs. (22), 
(24), (25), (26) are solved in explicit form with 
lumped mass matrix and the system resultant of Eq. 
(23) is solved in implicit form through of conjugate 
gradients with diagonal preconditioner. 

Finally the boundary conditions in viscous tensor and 
velocity are: 

• Imposed velocity:  cu u  

• No slip: 0u  

• No traction: .( . ) 0 n n  

In the present work, the algorithm of mesh 
movement is based in operations of smoothing. The 
algorithm smooths the mesh in successive iterations 
after the deformation imposed by the movement of 
the body with Eqs. (8) and (9). The nodes that are 
mobile with the kinematics imposed, will be those 
that are on the surface of the body and be exempt 
from entering the smoothing of the mesh. Then, the 
rest of the mesh is smoothed. The algorithm is 
divided in two parts, the first part consisting of a 
smoothing rearranges the farthest nodes proper 
position and the second part, consist of an optimized 
smoothing more robust, that calculates the metrics of 
the elements is capable of restoring highly distorted 
and inverted elements. More details in Canann et al. 
(1998). 

2.1.2   Structural Module 

The govern equation of the structural model is: 

2 2 2

2 2 2
( )s

w w
EI q x

x x t


   
       

                              (27) 

where w is the transverse displacement, s  is the 
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mass per unit length, E Young’s modulus, I inertial 
moment and q(x) a distributed transverse load. 

Computations done by Kang et al. (2011) on a 
flexible airfoil at higher Reynolds number and for 
various motion frequencies have shown that a linear 
Euler-Bernoulli beam model is sufficient for 
undertaking analysis of the fluid-structure 
interaction. 

The Euler-Bernoulli beam model has been 
incorporated to solve Eq. (27) using a finite element 
(FE) representation. The structural damping is not 
considered in this study and two degree of freedom, 
i. e. displacement and bending, are allowed at each 
node. To obtain the solution using the FE Wright and 
Cooper (2007) is given by the following steps: 

• Determine the dynamic properties of each 
element looking like element stiffness and mass 
matrices. In order to write the strain energy and 
the kinetic energy terms for the element, the 
variation of displacement within the element will 
need to be expressed as a function of the nodal 
displacements. It is assumed that the variation of 
the transverse displacement along the beam 
elements can be expressed as a cubic polynomial. 

• Assemble all the elements to form global mass 
and stiffness matrices from which modes and 
responses may be determined. The assembly 
process satisfies exact compatibility of dis-
placements/rotations between elements. The 
advantages of the finite element method are that 
more elements may be used in regions where the 
displacement and/or stress is expected to vary 
more rapidly and that more complex geometries 
and problems may be handled. The general 
equation to solve is: where Mr is the global mass 
matrix, w is the displacements vector, Kr is the 
global stiffness matrix and R represents all the 
assembled external applied forces. The 
conformation of R is detailed in the next section. 

r rM w + k w = R                                                      (28) 

where rM is the global mass matrix, w  is the 

displacements vector, rk  is the global stiffness 

matrix and R  represents all the assembled external 
applied forces. The conformation of R  is detailed in 
the next section. 

Solve the general eq. (28) via Newmark time 
integration scheme. In the Newmark method it is 
supposed that the solution at time step nt  is known 

for the displacements nw  and its time derivatives 

nw and .nw  The semi-discrete equations of motion 

to be solved at time 1nt  are given by 

r n+1 r n+1M w + k w = R                                        (29)  

and the displacements n+1w and its time derivative 

are approximated according to 

(1 γ ) γne net t     n+1 n n n+1w w w w                 (30) 

2 2(1 β) βt t t
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      
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n n n n+1

w

w w w w



   
                (31) 

where t is the time step size, and γne  and β  are 

the parameters that determine the stability and 
accuracy of the scheme. The different values for the 
parameters γne and β  originate the Newmark 

family methods. Stability conditions for the 
Newmark method implicit schemes are given by 

1
         2β γ

2
γ1

        γ ,      β
2 2

                     

ne

ne
ne

n crit

Unconditional

Conditional

with f t

 

 

  

                      (32) 

where crit  is the stability condition and nf  is the 

natural frequency and must be satisfied for each 
mode in the system. In the present work the 

“damped” Newmark 
1

(γ )
2ne  scheme is used. This 

method helps to stabilization of fluid-structure 
interactions problems Degroote (2010) and Vazquez 
(2007). 

2.13    Coupling Strategy 

The fluid-structure interaction is based on a time-
domain partitioned solution process, in which the 
partial differential equations governing the fluid and 
the structure are solved independently and spatially 
coupled, through the relations between the fluid and 
the structure meshes, Degroote (2010). At each time 
step the fluid F and structural S solvers are called one 
after the other, until sufficient convergence on the 
displacements on the shared boundary surface are 
reached in an inner-iteration before advancing to the 
next time step. 

Since both fluid and structure have been modeled 
with continuous theory, the treatment of the fluid-
solid interface makes no exception. Only mass and 
momentum conservation equations are considered 
because no other physical principles are required to 
describe elastic solid and nearly incompressible 
flows. Therefore, the momentum and mass 
conservation at the FSI interface yields the following 
conditions, Olivier (2010): 

σ . σ .

ms mf

f s





u u

n n
                                                            (33) 

where n is the normal vector to the airfoil. The f 
subindex means fluid and s subindex, structural. The 
coupling conditions implies that velocities and 
normal loads, are equals in the intersection of the two 
mesh. Through the of virtual works principle of 

aerodynamic forces δ δT
a a aW  F U and virtual works 

principle of structural forces δ δ ,T
e e eW  F U the 

conservation of total energy can be enforced, 

δ δa eW W                                                               (34) 

The positions of aerodynamic nodes or structural 



D. Antonelli et al. / JAFM, Vol. 10, No. 2, pp. 749-762, 2017.  
 

754 

nodes can be written as reference position 0X  and a 

relative displacement U such as 0 .X = X + U There-

fore, if a H matrix relating the positions of the nodes 
of the structural mesh eX  with the nodes of 

aerodynamic mesh as ,a eX HX then through the 

Eq. (34) it holds that, 

T
e aF H F                                                             (35) 

In this way, imposition of the conservation of virtual 
work relates the transfer of kinematic variables from 
the structural mesh to the aerodynamic mesh, and of 
forces in the opposite direction, (more de-tails in 
Maza et al. (2012)). 

In the code, the coupling conditions are implemented 
following the method called surface tracking 
presented in Cebral and Lohner (1997). The surface 
tracking method suggests that at the be-ginning of 
the simulation the relative positions between the 
aerodynamic and structural nodes are determined 
(matrix H ). Then, these positions are preserved so 
that the relative distances between the two meshes 
does not vary throughout the simulation, and in the 
other hand, the aerodynamic loads be-come in nodal 
loads on the structure. The vector of all the 
assembled external applied forces R  is, 

T
e i a i   R F F H F F                                                 (36) 

where iF are the inertial forces due to the movement. 

The coupling between both solvers F and S is 
implemented through block Gauss-Seidel partitioned 
method. Starting from known values of fluid 
structure and mesh in time nt  a scheme of the 

coupling algorithm is presented in Fig. 2. The Aitken 
re-laxation parameter is computed with the following 
equation Vazquez (2007), Kuttler and Wall (2008), 

   
   

1 1 1
1 11 1

1
1 1 1 1

1 1

ω

Tn n n
k k kn n

k k Tn n n n
k k k k

e e e

e e e e

  
  


   

 


 

 

r r r

r r r r
       (37) 

Where 1 1 1
1

n n n
k k ke   

 r w w is defined as the 

residue. The convergence is performed through
1

0ε ,n
ke  r where 1n

ke r  is the residue norm and 

0ε a imposed tolerance. 

3. VERIFICATION OF NUMERICAL 
CODE 

3.1   Verification of Baseline Solvers 

As a verification case of the fluid solver, a rigid 
NACA 0012 airfoil in flapping motion is analyzed. 
The following parameters are considered: pitching 
and heaving frequencies α 0.225 ,hf f Hz 
reduced frequency 0.7096,k  maximum heaving 

half-amplitude 1,ah   phase angle χ π/2,a 

Strouhal number 0.45St  and the variable para-

meter is the pitching half-amplitude α .a  

 

 
Fig. 2. Chart of fluid-structure interaction 

coupling algorithm. 

 

In the Table 1 a comparison of maximum lift 
coefficient LmC  and average thrust coefficient ct is 
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presented. It can be concluded that the results 
obtained in this work compare well with those given 
by Pedro et al. (2003) and Guerrero (2008). 

 

Table 1 Comparison of average thrust coefficient 
ct and maximum lift coefficient LmC  in flapping 

motion for rigid NACA 0012 

 

 
As a case for validating the solid module, a vibrating 
cantilever beam model with prefixed displacement is 
analyzed. This problem were solved by Han et al. 
(1999) with four different theoretical models (Euler-
Bernoulli, Shear, Rayleigh and Timoshenko), 
through the method of eigenfunction expansion. 

The beam properties are: length 1 ,L m tubular 

section: internal radius 0.15 ,ir m external radius 

0.16 ,er m section 20.0097389 ,A m  

area inertial moment 40.0001171I m and density 
3ρ 7830 / .s kg m  Twenty finite unidimensional 

elements along the beam were used. The function of 
initial transversal displacement ( ,0)w x is: 

3 2 3( ,0) (1.667 5 )10w x x x                                 (38) 

where x is the coordinate along beam. 

The tip displacements of the beam due to different 
methods are presented in the Fig. 3. The agreement 
with the analytic results can be observed. 

 

 
Fig. 3. Comparison of tip displacement of beam 

with prefixed displacement. 
 
 

3.2   Verification of FSI Solver 

The present FSI solver is verified with a slender 
flexible structure fixed at the downstream end of a 
bluff body. The body generates vorticity which 
induces oscillations in flexible structure. This 
problem was proposed originally by Wall and Ramm 

(1998). The domain and boundary conditions are 
presented in Fig. 4. The material properties of the 

structure are the density 3ρ 0.1 /s Kg m and Young 

modulus 62.5 .E e The flow properties are the 

density 4ρ 1.18 / . ,f e Kg m s dynamic viscosity 

41.82 / .e Kg m s  and free stream velocity 

51.3 / .U m s The Reynolds number is 333eR 
with the side length of the square rigid body used like 
characteristic length 1 .bL m The density ratio is 

*ρ 84.74.  

 

 
Fig. 4. Problem FSI domain specifications (out of 

scale). 
 

The fluid-dynamic mesh domain has 24745 elements 
and the structural mesh has 40 unidimensional 
elements. The tolerance imposed is ε0 = 3−6. The 
Fig. 5, shows the periodic states obtained by different 
authors Wall and Ramm (1998), Kassiotis et al. 
(2011), Vazquez (2007) in comparison with the 
present work. In this work, the periodic state is 
assumed when the difference between maximums 
amplitudes is lower than 0.05. A close agreements 
are observed between the present computed results 
and the numerical values of the authors, mentioned 
above. 

 

 
Fig. 5. Comparison of tip displacement of flexible 

structure fixed at bluff body. 
 
 

To complete the analysis, in Table 2 a comparison 
between response frequencies fsf and maximum tip 

displacements δ with respective errors are listed 3. 
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Fig. 6. Average thrust coefficient ct and propulsive efficiency η for rigid airfoils in heaving motion 

(NACA 0004, 0006 and 0012). 
 

  

  
Fig. 7. Velocity contours for rigid NACA 0004 (a, b, c, d) and NACA 0012 (e, f, g, h) in heaving motion 

(St = 0.3). 

 
 

4. NUMERICAL RESULTS 

The fundamental parameter of unsteady analysis is 
the Strouhal number, defined as 2 / .h aSt f f U
Taylor et al. (2003) and Triantafyllou et al. (1993) 
performed a study of wing frequencies and 
amplitudes, and cruise speeds across a range of birds, 
in-sects, fishes and cetaceans, to determine Strouhal 
numbers in “cruising” flight. They found that 75% of 
the 42 species considered, fall within a narrow range 
of 0.19 0.41St  Guerrero (2008). There-fore, a 
similar range of Strouhal numbers in this work has 
been selected. The Reynolds number based on the 
airfoil chord was chosen to be equal to 1100.eR 
Which is a representative number of flight regime of 
insects, small birds and MAVs. 

4.1   Heaving Motion of Rigid Airfoils 

The first analysis is a heaving motion with kinematic 
described by Eq. (8). The analysis is applied to 
NACAs four digits (0004, 0006 and 0012) 
symmetrical rigid airfoils. The kinematics 
parameters are: heaving frequency 1hf Hz and a 

variable Strouhal (0.1 0.5)St  number 
throughout the heaving half-amplitude 
0.1 0.5ah  and 1100.eR  The average thrust 

coefficient ct and propulsive efficiency η= /ct cp in 
terms of the Strouhal number are presented in Fig. 6. 
Note that the numerical results obtained by Guerrero 
(2008) are added. It can be seen in Fig. 6 that thrust 
and propulsive efficiency increase with airfoil 
thickness and with the .St  The maximum efficiency 
is in 0.3St  in all geometries, and then decrease 
due to an increase in average input power coefficient 

.cp  

Comparisons between velocity contours of NACA 
0004 and NACA 0012 airfoils at different times Fig. 
7, helps to understand the simulation results shown 
in Fig. 6. Times in Figs. 7 (a) and (e) is 0.45 ,t s  

(b) and (f) 0.86 ,t s  (c) and (g) 1.29t s  and (d) 

and (h) 1.64 .t s The formation of leading edge 
vortex (LEV) and its convection toward the wake, 
can be detected. With NACA 0004 the LEV remains 
longer time at the leading edge than it does with 
NACA 0012. Therefore, the low pressure created 
there, delays convection of the vortex toward the 
wake and so, affecting the propulsive and its 
efficiency. 

4.2   Flapping Motion of Rigid Airfoils 

The second analysis is the flapping motion. The 
name flapping is applicable to a combined motion of 
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heaving and pitching, consequently the kinematics 
relations given by sinusoidal Eqs. (8) and (9) are 
simultaneously applied. 

In Fig. 8 are shown average thrust coefficients ct  
and propulsive efficiencies η applicable to NACA 
symmetric rigid airfoils 0004 and 0012, as function 

of the pitching angle half-amplitude 5 <α 25a
   

with 0.3St   (maximum efficiency obtained in 

heaving motion and α 0.3, 0.5h af f h m   ). The 

thrust and efficiency are positives in all cases and 
greater than obtained in heaving motion of rigid air-
foils. The ct in NACA 0012 is higher than in NACA 

0004 where α 15a
  and lower when α >15 .a



However NACA 0012 is somewhat more efficient 
than NACA 0004 because average input power cp is 

significantly less in all range of α .a  

 

 

 
Fig. 8. Average thrust coefficient ct and 

propulsive efficiency η as function of αa  

in flapping motion of rigid airfoils 
 (NACA 0004 and 0012). 

 
In Fig. 9 average thrust coefficients ct and 
propulsive efficiencies η applicable to NACA 
symmetric rigid airfoils 0004 and 0012, as function 
of the heaving half-amplitude 0.025 0.5ah   

(0.05 1)St  are presented. The rest of parameters 

are α α1,  15hf f a     (in “cruising” flight of 

small birds, insects was found a range of half-

amplitude of pitching 5 α 20a
   ) and 

αχ π / 2. The ct  coefficient is increased with the 

heaving amplitude and the difference between the 
two airfoils is little. The efficiency shows a tendency 
to increase on values between 
0.05 0.2( 0.3)ah St    and then decreases for 

larger amplitudes. In this case, the thin airfoil is more 
efficient than thicker airfoil in that region. The 
pitching amplitude improves the convection of the 
leading edge vortexes. The con-sequence is an 
increase of ct and η. 

 

 

 
Fig. 9. Average thrust coefficient ct and 

propulsive efficiency η as function of ah in 

flapping motion of rigid airfoils (NACA 0004 
and 0012). 

 
 

Table 2 Comparison for FSI problem 

 
 

 

4.3   Heaving Motion of Flexible Airfoils 

An analysis of the influence of flexibility *δ  (Eq. 
(5)) and fluid-structure interaction intensity factor 
  in two symmetric airfoils NACA 0012 and 
NACA 0004 in heaving motion, is performed. The 
same sinusoidal kinematic and parameters of rigid 
air-foils are used. The Strouhal number is fixed to 

0.3St   (maximum efficiency obtained in rigid air-

foils) and the Reynolds number 1100.eR   The 

variable parameters through Young modulus E are 
6 * 38.707 δ 8,707e e   and through structural 

density ρ ,s  0.217 1.783.    The tolerance of 

Aitken relaxation imposed in all cases is 6
0ε 10 .  

The average traction coefficient ct  and the 
efficiency η are presented in Figs. 10 (NACA 0012) 
and 11 (NACA 0004). It can be seen the same 
behavior in both airfoils, although little higher values 
for NACA 0004. When the structural flexibility is 
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lower than * 3δ 1 ,e the coefficients are almost 
equals to the rigid airfoils (the deformation is very 

small). When the flexibility * 3δ 1e  ct increases 
to a maximum value, due to that the de-formation of 
the airfoil improves the convection of the leading 
edge vortexes and increases the intensity of the 
trailing edge vortexes in both airfoils. That can be 
observed in a region of flexibility be-tween 

3 * 21 <δ 1 .e e  Then to * 2δ 1 ,e  ct decreases due 
to that high deformation worsens the vortexes 
convection. If the FSI intensity factor   is 

diminished (structural density ρs  is increased), ct

is increased. Note that efficiency η is dependent of 

,cp  that it presents a high decrease with *δ .  

 

 

 
Fig. 10. Average thrust coefficient ct and 

propulsive efficiency η in heaving motion for 
flexible NACA 0012. 

 

As in the analysis of rigid airfoils, a comparison at 
different times of velocity contours between 
flexible NACA 0004 and NACA 0012 (Fig. 12) in 
de-formed positions helps to understand the results 
of the simulations. The case selected is

* 3δ 2,64e and 0,26168.  Times in Fig. 12 are 
the same used with rigid airfoils. These are (a) and 
(e) is 0.45 ,t s  (b) and (f) 0.86 ,t s  (c) and (g) 

1.29 ,t s and (d) and (h) 1.64 .t s  In both airfoils 
the leading edge vortexes are convected faster than 
rigid airfoils. A low pressure region is generated in 
the lower surface during the upstroke and in the up- 
per surface during the downstroke. In addition, the 
flexion of airfoil increases the low pressure and 
improves the convection of LEV toward the trailing 
edge and its coupling with the wake. The 
consequence is an increase of ct and η like the 

results are showing. 

 

 
Fig. 11. Average thrust coefficient ct and 

propulsive efficiency η in heaving motion for 
flexible NACA 0004. 

 
4.4   Flapping Motion of Flexible Airfoils 

4.4.1   Sinusoidal kinematic 

The next analysis applies to flapping motion on 
flexible airfoils. The main is determine the influence 
of the flexibility and FSI factor. The kinematics are 
sinusoidal and the parameters of motion are 0.3St 

( 0.15),ah  1100,eR   α 1,hf f   α 10 ,a
  

αχ π / 2.  The variable parameters through Young 

modulus E are 6 * 38.707 δ 8,707e e    and 

through structural density ρ ,s 0.217 1.783.  
The tolerance of Aitken re-laxation imposed in all 

cases is 6
0ε 10 . It is observed in Figs. 13 and 14 

that in both airfoils, ct has increased with respect the 
value obtained in heaving motion due to input of 
pitching amplitude. Then, the maximum ct from 
flapping are limited to the interval of flexibility 

3 * 21 <δ 1 ,e e   and this interval is the same for 

maximum ct  produced in heaving motion. The 
flexibility helps to improve the obtained propulsion, 
but not in the magnitude like does in heaving motion. 

Note that greater ct values are for minimum   or 

higher ρs  values. If the efficiency η is compared 

with the results obtained in flexible airfoils in 
heaving motion, the difference found between 
maximums values of ct are not of big magnitude, it 
can be concluded that in certain cases the structural 
flexibility can replace rotations mechanism in 
MAVs, saving some weight of construction. 
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Fig. 12. Velocity contours for flexible NACA 0004 (a, b, c, d) and NACA 0012 (e, f, g, h) in heaving. 

 

 

 

 
Fig. 13. Average thrust coefficient ct and 

propulsive efficiency η in flapping motion for 
flexible NACA 0012. 

 

4.4.2   Alternative Kinematic 

A third analysis of flexible airfoils in flapping 
motion with an alternative kinematic is performed. 
This kinematics is characterized by Eqs. (39): 

1
1

1
α α1

( ) sin (0.8sin(2π ))
sin (0.8)

α( ) tanh (3sin(2π χ ))
sin (0.8)

a
h

a

h
h t f t

h
t f t









 
           (39) 

The model takes the wing kinematic used in the 
Robofly model of Dickinson et al. (2004). Based on 
observation of true insect flights, it was accepted that 
the wing maintains a constant velocity and angle of 

attack during most of the stroke, with a relatively 
strong linear and angular acceleration during stroke 
reversal. This results with typical “saw-tooth” 
displacement and “trapezoidal” angle of at-tack 
pattern of the Robofly kinematic model, are 
illustrated in Fig. 15. The parameters of kinematic 

 

 

 
Fig. 14. Average thrust coefficient ct and 

propulsive efficiency η in flapping motion for 
flexible NACA 0004. 

 
 

are the same used in sinusoidal kinematic, 

0.3( 0.15),aSt h   α 1,hf f   α 10a
 and 

αχ π / 2.  

In the Figs. 16 and 17 the average thrust ,ct
propulsive efficiency η and power coefficient cp are 
presented. In both airfoils an increase in the thrust 
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respect to the sinusoidal kinematic is detected. The 

maximum values are between 4 * 31 <δ 1 .e e   The 
greater ct values (minimum Σ) are given by the 
NACA 0004 airfoil. In the alternative kinematic, the 
angle of attack remains in its position of maximum 
amplitude for longer time, because of its 
“trapezoidal” pattern (Fig. 15). This implies that 
vortexes generated at the trailing edge (TEV) are 
more intense, as a results high speed there is in the 
wake. Therefore, in the leading edge exist a high 
suction during more time in comparison with 
sinusoidal kinematic which allows better convection 
of generated (LEV). Since both edges in NACA 0004 
are sharper than in NACA 0012, the convection is 
even more intense. 

 

 
Fig. 15. Alternative kinematic. 

 

 

 

 
Fig. 16. ,  ct cp  and η coefficients in alternative 

flapping kinematic (NACA 0004). 

 

 

 
Fig. 17. ,  ct cp and η coefficients in alternative 

flapping kinematic (NACA 0012). 

 
The propulsive efficiency presents a different 
behavior respect to the sinusoidal kinematics and the 

maximums values are between 4 * 31 <δ 5 .e e  The 
values of η depend of average power coefficient cp  

5. CONCLUSIONS 

In heaving motion studies, rigid and flexible 
symmetrical wing sections are considered. Average 
thrust coefficients and propulsive efficiencies for 
selected motion frequencies are numerically 
simulated, and the results plotted in terms of a 
Strouhal number determined using the heaving 
amplitude and different thickness of NACA 
symmetric air-foils was studied. As a help to better 
understand the simulation results, velocity contour 
pictures al-lowing comparison between wing 
sections at pre-scribed identical times, are built and 
shown. Based on these pictures, generation and 
displacement of vortexes as the wing section 
executes the heaving motion are described, and 
justifications about why an airfoil has better 
performances than other one when executing such 
motion, are given. In rigid airfoils, it was found that 
the thicker airfoils have better performance than 
thinner airfoils. Then, studies related to the influence 
of flexibility and FSI intensity factor on thrust 
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coefficients and propulsive efficiencies in heaving 
motions, are made. From comparisons with rigid data 
it is concluded that for some flexibility values, 
improvements are feasible. 

Combinations of pitching and heaving motions 
(flapping) for rigid and flexible wing sections, have 
also been simulated. The maximum pitch angle and 
vertical displacement amplitudes are taken as 
plotting variables. In the rigid airfoils analysis it is 
found that for given pitch angles a maximum 
propulsion value exist and increase the thickness 
improves the performances. Other analysis has 
shown a increase in propulsion when the heaving 
amplitude is increased. With flexible airfoils, a 
comparison between two flapping kinematics is 
performed. In both kinematics, the influence of 
flexibility and FSI intensity factor on propulsion and 
its efficiency are studied. The alternative kinematics 
shows a improvement of the performance respect of 
the sinusoidal kinematics. Between the sinusoidal 
kinematic and heaving motion, a similar behavior is 
found. Therefore, the possibility exist of somehow 
using wing flexibility (passive pitching) to replace 
pitching motion hardware in MAV applications and 
so, the weight can be reduced. 

The Finite Element software here used can in run 
time, build moving grids needed to perform 
numerical simulations of unsteady motions like 
heaving and flapping with rigid as well as with 
flexible 2D wing sections. For dealing with flexible 
wing sections, an appropriate structural module and 
algorithms to compute fluid-structure interactions 
(FSI), are implemented. In addition, and to handle 
complex geometries, more elements are created in 
regions where it is expected that displacements 
and/or strains vary rapidly. 
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