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ABSTRACT

Turbulent natural convection of air is studied, by the elliptic-relaxation model v — £, in atall vertical cavity
whose hot and cold walls are maintained at linear temperatures of slopesy, and y,, respectively. The average
temperatures of the active walls are located at mid-height of the cavity. Four situations are analyzed,
corresponding to y; =y, =y (casel), yy = -y, =y (casell), y, =0 and y, =y (case 1ll), y; =y and
y, = 0 (case1V). These boundary conditions may be more representative or used to control heat transfer for
certain systems. The effects of the slope (=1 < y < 1), the aspect ratio of the cavity (10 < A < 80) and the
average Rayleigh number (5 x 10* < Ra,, < 10°) on the streamlines, isotherms, contours of the turbulent
kinetic energy, hestlines, local and average Nusselt numbers are investigated. It is shown that the local and
average heat transfers of casesIII and IV can be deducted from those of casesI and II. The obtained dynamic
and thermal fields aswell aslocal and average heat transfers of the studied cases are quite different of those of
the classical case corresponding toy = 0. A simplified procedure for calculating the average Nusselt number
is also developed for each case.

Keywords: Turbulent natural convection; Tall vertical cavity; Linear temperature; v2 — f model; Heatlines;
Simplified calculation tool.

NOMENCLATURE
A aspect ratio y slope of linear temperature profile
g acceleration due to gravity
H height of the cavity, m ) Kronecker symbol
k turbulent kinetic energy AT temperature difference
k¢ thermal conductivity £ dissipation rate
L width of the cavity 0 dimensionless temperature
length scale of turbulence v kinematic viscosity
Nu Nusselt number p density
P pressure T time
P, turbulent kinetic energy production P stream function
Pr Prandtl number w specific dissipation rate
Ra Rayleigh number
t fluctuating temperature component Subscripts
T mean temperature 0 reference
time scale of turbulence 1 hot wall
u fluctuating velocity component 2 cold wall
U mean velocity c cold, convection
v2 wall-normal Reynolds stress h hot
X,y horizontal and vertical coordinates Lj directions
XY dimensionless coordinates L local
m mean
a thermal diffisuvity max maximum
B thermal expansion coefficient t turbulent
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1. INTRODUCTION

Several works have focused on turbulent natural
convection in differentially heated cavities with
uniform temperatures because of their importancein
many practical applications (building elements, solar
systems, electronic cooling). These works include
those of Manz (2003), Xaman et al. (2005) and El
Moutaouakil et al. (2015) who used the k — ¢ HRN
(high Reynolds number), k — & LRN (low Reynolds
number) and k — w SST (shear stress transport)
turbulence models, respectively. Overal, the
objective of these studies is to determine the flow
structure and the convective heat transfer in vertical
cavities filled with air and of an aspect ratioA = 4
to 80. Nusselt numbers calculated numerically by
Manz (2003) were compared with those estimated by
some widely used correlations (Yin et al. 1978;
ElSherbiny et al. 1982; Wright 1996; Zhao et al.
1997). While the results of Xaman et al. (2005) have
been exploited to develop, in laminar and turbulent
regimesfor each A (20, 40, and 80), simpleempirical
expressions giving the average Nusselt number as a
function of the Rayleigh number. However, the
correlations developed by El Moutaouakil et al.
(2015) in both flow regimes are more general since
they take into account the aspect ratio of the cavity
(10 < A < 80). It was observed that there are some
differences between the results of these studies
which are mainly due to the use of different
turbulence models.

Indeed, for aturbulent flow in agiven configuration,
the precision of the numerical results depends on the
used turbulence model. For this, several works have
been devoted to the development and testing of
turbulence models in order to identify the most
appropriate one to a given situation (Zhang et al.
2007; Billard 2011; Aksouh et al. 2011; Rajani et al.
2012; El Moutaouakil et al. 2014a; Omranian et al.
2014). For engineering problems, it is well known
that RANS (Reynolds averaged Navier—Stokes)
models based on the turbulent viscosity (eddy-
viscosity models) are among the easiest to
implement while being efficient (El Moutaouakil et
al. (2014aQ)). For tal cavities with differentially
heated vertical walls by uniform temperatures,
twenty eddy-viscosity models (EVM) with one-,
two- or three-equation closure were tested recently
by El Moutaouakil et al. (2014a). After comparing
the numerical results with those experimenta of
Betts and Bokhari (2000), it was concluded that the
elliptic-relaxation models have the best performance
because they produce accurate resultsin areasonable
computing time.

Despite their importance to control the heat transfer
or to get closer to real operating conditions of certain
systems, there are few studies on cavities subjected
to non-uniform temperatures. Published worksin the
literature concern mainly the laminar flows in
cavities with weak aspect ratios (A < 10) (Roy and
Basak 2005; Basak et al. 2006; Saeid and Y aacob
2006; Sathiyamoorthy et al. 2007; Deng and Chang
2008; Basak et al. 2011; Aswatha et al. 2011;
Aswatha et al. 2012; Anandalakshmi and Basak
2013) or with a high value of A (A =40) (El

Moutaouakil et al. (2014b)). Overall, the objective of
these works is to study the effect of non-uniform
boundary conditions and control parameters on the
flow and convective heat transfer characteristics in
the cavity.

Thus, for tall vertical cavities, only the study of El
Moutaouakil et al. (2014b) has treated in laminar
regime the case of a cavity with A = 40, whose
horizontal walls are adiabatic while those vertical are
subjected to linear temperature profiles. The average
temperatures of the hot and cold walls are located at
mid-height of the cavity and are used to calculate the
average Rayleigh number Ra,, . This work has
shown that the convective heat transfers as well as
the primary and secondary flow structures depend
strongly on the temperature profiles imposed on the
hot and cold walls.

For sufficiently highvaluesof Ra,,, thenatural flow
in tall vertical cavities becomes turbulent whatever
the slopes y; and y, of the linear temperature
profiles imposed on the hot and cold walls,
respectively. For this purpose, the present work is
dedicated to the study of turbulent natural convection
(5.10* < Ra,, < 10%) intal vertica cavities (10 <
A < 80) with different combinations of the slopes y;
and y, . Four situations are considered,
corresponding toy; =y, =y (casel), y; = -y, =
y (casell),y; = 0 andy, =y (caselll),y; =y and
y, =0 (caselV)with—-1 <y < 1.

To conduct this study, the three-equation turbulence
model v2 — f of Hanjalic et al. (2004) has been
implemented in a computer code that was developed
and adapted to the considered configurations (y =
—1,0 or 1). After the validation of the numerical
code, astudy is carried out on the effect of different
linear temperature profiles on the characteristics of
the turbulent natural flow and convective heat
transfer within tall vertical cavities. In order to better
visualize the convective heat transport, the concept
of heatlines developed by Kimura and Bejan (1983)
is used. This concept has been widely exploited
mainly in laminar regime (Costa 2003; Basak et al.
2009; Kaluri et al. 2010; Basak et al. 2011,
Ramakrishna et al. 2012; Basak and Chamkha 2012;
Basak et al. 2013, Jamai et al. 2014; Arani €t al.
2014). Finaly, to facilitate the calculation of the
average convective Nusselt number Nu, as a
function of the controlling parameters Ra,, and 4, a
simple procedure is developed for each of the
slopesy (y = —1, Oor 1) of every case considered
(casesItoIV).

2. MATHEMATICAL FORMULATION

The studied two-dimensional tall vertical cavity and
the considered thermal boundary conditions are
shown in Figs. 1a and 1b. The width L and height H
of the cavity arevaried sothat 10 < A = H/L < 80.
The horizontal walls are adiabatic while the
dimensionless temperatures 6;(Y) of thehot (i = 1)
and cold (i = 2) wallsvary linearly as a function of
the height Y with a slopey; = —1,00or 1 (6;(Y) =
T =T)/(Tp =T) =y;(Y/A=05)+ 6,
where T, =T,(H/2) and T, =T,(H/2)) . The
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Fig. 1. Studied cases: @) casesI and II, and b) casesIII and IV.

average temperature of each activewall islocated at
Y = A/2 and wheny; = 0, the temperature of the
wall i is uniform. The thermophysical properties of
air are assumed to be constant (Pr = 0.71) except for
the density in the buoyancy term for which the
Boussinesq approximation is adopted.

The situations considered in thiswork are the cases
(r1 =v2 =) (Fig. 18), Il (y; = =y, = y) (Fig. 1a),
I (y; = 6;2y) (Fig. 1b) and 1V (y; = 6;1y) (Fig. 1b).
For case 1, the slopes of the temperaturesd; (Y) and
0,(Y) areidentical, hence their average 6,,, (Y)varies
linearly with the height Y (6,,(Y) = 0.5(6,(Y) +
6,(Y))). By consfor casell, the slopes are equal but
opposite which leads to a local Rayleigh number
Ra(Y) which varies with Y (Ra(Y) =
9B(T () = T,(N)L /va = Rap (6,(Y) = 6,(Y))

with Ra,, = Ra(Y = A/2) = gB(T, — T.)L3/va).
For the last two cases1Il (y; = 0) and IV (y, = 0),
one of the two dopes is null, hence the quantities
0.,(Y) and Ra(Y) vary smultaneously.

For turbulent natural convection within the cavity,
the dimensionless governing egquations for
conservation of mass, momentum and energy are
given by:

Dp
e ®
%z _la_P+i[2v5.. —W]
Dt pox; Ox; v
= giB(T —To) @
DT
o0 |v oT __
a—[P—a—] ©

where Ty = (T, + T.)/2
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The Reynoldsstresses w,u; and turbulent heat fluxes
u,t are expressed as afunction of the mean dynamic
and thermal quantities as follows.

wy,
2
= §6l]k - thSij (4)
ut= _ﬁa_T (5)
J Pr, 0x;

The strain-rate tensor and the turbulent viscosity are
given by:

And

— k
vy = C,v2 max (E' 6\/%) 6)

To close the system of equations obtained (Egs. (1)
to (5)), theturbulencemode! v? — f of Hanjalicet al.
(2004) is used. For this model, the transport
equations of turbulent quantities are:

U au,)
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withg = %, L = C;max [%, Cy (V—3)4],
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k "3
2
T = max |:E,CT (E) :|,C51
k
=14(1+40012= (11)
2

the model constants are grouped in table 1.

Table 1. Constants of the turbulence model
v? — f (Hanjalic et al. (2004))

Cy C, (P Oy O¢
0.4 0.65 19 1 13
Iy? CL Cy Cr Cu
12 0.36 85 6 0.22

The boundary conditions for the mean dimensionless
guantities are as follows.

- For the vertical walls:
U;(0,Y) = U (L,Y) =0, 8(0,Y) =y, (% -
0.5) +1

And
0(1,Y) =y, (Y/A—-05) (12)
- For the horizontal walls:
Ui (X,0) = U (X, A)
=0,008/0Y)y—o = (00
/0Y)y=p =0 (13)
- For turbulent quantities, on all solid walls:
k=g=0, e=2v lim k/y?,
Yn—0
and
. - _ . 2 2
Jim f = —10v lim v2/(ky) (14)

¥, isthe distance to the nearest wall.

The dimensionless variables are expressed as
follows:

=
(15)

The local and average Nusselt numbers on the
vertical wallsare given by :

Nu'CL = - a@/an
And

U =tter) =T y =Xy =2 =g
h~1lc

1 ,A
NuC = Zfo NuCLdY (16)
where n denotes the normal direction of the
considered vertical wall.

The stream (i) and heat (/1) functions can be
expressed so that the Egs. (1) and (3) are
automatically satisfied (Kimura and Bejan 1983;
Costa 2003). For atwo-dimensional flow:

o[y or ]/8X;.; = sign(j — i)[(Ui*orUi*B)

—00/0X; +ut’] 17)
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The signum function Sign(j — i)isequal to 1if j >
i and -1 otherwise, and
p CpL/ k(AT u,(t — Tp).

kg —
utt =

Since the function IT is defined through its first
derivatives, we take 11(0,0) =0 as an arbitrary
reference of I1.

On solidwallsy = 0, while the boundary conditions
imposed on 1T are:

Verticad wallsi =1or 2:9I1/3X =y;/A.
Horizontal walls:

I1/dX =0 (18)
3. NUMERICAL PROCEDURE AND
VALIDATION

The governing equations of the problem under study
are discretized by the finite volume method and then
solved by using the SIMPLE agorithm (Patankar
(1980)). These equations are solved in transient
regime, until reaching the steady state, with a
dimensionless time step of 5x107° . The
convergence of computations is considered to be
achieved if at any node (i, j) of the grid, there are
between two successive iterations max;;|(¢]; —
P/l <107 for dl the variables
(U,6,P,k,&,v%, and f).

A non-uniform mesh was generated by using the
sinusoidal functions X (i) = 0.5(1 — cos(m(i — 1)/
(ny—1))) and Y() =0.54(1—cos(m(j—1)/
(ny, — 1))), where n, and n, are the number of
nodes (i, j) considered in the horizontal and vertical
directions, respectively. The effect of the mesh size
on the result is presented in table 2 for the extreme
case corresponding to Ra,,, = 10° and A = 80. As
shown in Table 2, for the considered situations, a
non-uniform grid of 60x160 is a good compromise
between the accuracy of the results and the
computing time. In fact, the maximum difference
with the results obtained for a mesh of 80x175 does
not exceed 0.94% (for P,,q, in case (I, y = 1)).
Note that the results corresponding to cases (II,y =
1) and (IV, y = —1 or 1) arenot presented in table 2
because they are identical to those of cases (II,y =
—1) and (Ill, y = —1 or 1), respectively.

The developed numerica code has been widely
tested by comparing its results with those of close
works of the literature on turbulent natura
convection (EI Moutaouakil et al. (2014d)). The
validations presented in this work are done with the
experimental results (Betts and Bokhari (2000)),
obtained on a differentially heated vertical cavity
with uniform temperatures (y = 0), A = 28.68 and
Ra,, =143 x10° . Figs. 2a and 2b show
comparisons on the average temperature of the air
and the local Nusselt number on the hot wall at
different heights of the cavity. As one can seg, in
general, there is a good agreement between the
numerical and experimental results. By integrating
Nugp, (V) calculated by the numerical code, we get
an average Nusselt number Nu.; whichisonly at 1%
of that provided by Betts and Bokhari (2000).
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Table 2 Effect of mesh sizefor Ra,,, = 10° and 4 = 80

Yrnax Kmax X 1075 Nug
Case | y | 50x145| 60x160 | 70x175| 50x145| 60x160 | 80x175| 50x145| 60x160 | 80x175
-1| 188.65 | 184.74 | 183.78 1.442 1.476 1.478 5.988 6.046 6.053
I 0| 17422 | 170.03 | 168.95 1.242 1.249 1.251 6.415 6.435 6.440
158.34 | 156.23 | 155.76 1.011 1.049 1.053 6.721 6.753 6.798
11 1| 217.73 | 221.65 | 223.73 1.932 2.071 2.087 6.825 6.938 6.944
-1 | 20543 | 202.23 | 201.84 1.723 1.745 1.748 6.276 6.355 6.359
t 1| 19245 | 189.32 | 188.67 1.501 1.528 1.531 6.682 6.705 6.709

0.84™ Betts and Bokhari
| (2000)
Present work
0.61
o
0.4 _ e
] Ramzl .43.10
- A=28.68
0.0 0.2 0.4 0.6 0.8 1.0
a) Y/A
251m Betts and Bokhari
(2000)
201 Present work
5] Ra =1.43.10°

0 ———
0.0 0.2 04 0.6 0.8 1.0
b) Y/A

Fig. 2. Validation of the numerical codefor y =

0,4=28.68, Ra,, =1.43 10% and Pr = 0.7:

a) average air temperature and b) local Nusselt
number on the hot wall.

4. RESULTSAND DISCUSSION

The flow structure and convective heat transfer
depend on local quantities 8,,,(Y) and Ra(Y), which
are functions of the controlling parameters Ra,,, A
and y. Note that the classical situation (y; =y, =
y = 0) is common to al the considered cases and it
istaken as areference.

The dynamic and thermal fields in a very tall cavity
(A = 80) aresimplewhilefor amoderate aspect ratio
(A = 10) they are more complex. For thisreason, the
results corresponding to A = 80 are often presented

851

before those of A = 10.
41. Casel (y1 =y, =y) : Effect of 6,,,(Y)

For case1 (y; =y, =y), Figs. 3ato 3d show the
effect of 8,,(Y) on the dynamic and thermal fields
for Ra,, = 10° and different values of 4 (4 = 10
and 80) and y (y =-1,0 and 1). While the
variations of the local Nusselt numbers aong the
active walls are represented in Figs. 4aand 4b.

Figures 3a and 3b show that Y4, and k4, increase
with A but decrease with y. However, their respective
POSitions Yy aNd Yiqy are dways located at mid-
height of the cavity. Overall, for a given combination
of the controlling parameters Ra,,,, A and y, the flow
structure is symmetrical with respect to the cavity
centre. For A =80 and al vaues of vy, the flow
structure consists of asingle cell rotating in clockwise
direction and it is paralel to the active walls in the
central part of the cavity. By cons for A = 10, the
flow structure is no longer simple and change
significantly with y. Thusfor y = —1, two small cells
rotating in counter-clockwise direction appear in the
top left and bottom right corners because in these
zones the air temperature is higher and lower than that
of the hot and cold walls, respectively (Fig. 3c).
Passing fromy = —1toy = 1, the values of Y4y
(kmax) decrease by approximately 60% (91%) for
A = 10 and 15% (29%) for A = 80. Thus, the profile
of 6,,(Y) has more influence on the flow when the
aspect ratio of the cavity islow.

The isolines of turbulent kinetic energy (iso-k) are
strongly influenced by the aspect ratio of the cavity,
especialy fory = 1. For A = 80 and al the values
of y, the intensity of the fluctuations is important in
the core region of the cavity. This is due to the
interaction between the vertical boundary layers in
the central part of the cavity. Along the horizontal
medianY = A/2, k(X,Y = 0.54) is maximum at
X = 0.5 then decreases rapidly to vanish at X =0
and 1(Eq. (14)). When A = 10, the maximum of
k(X,Y =0.54) is located &t X =05 if y<0,
while it is close to the active walls if y =1,
indicating that the turbulent boundary layers along
theactivewallsaredistinct. Thus,if A =10andy =
1, theflow is practically laminar in the central region
of the cavity due to the thermal stratification in this
zone (6,,(Y) is increasing). Indeed, when passing
fromA=10to A=80 or fromy=1to—1, the
intensification of the fluctuations observed in the
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central part of the cavity is due to the reduction of the 40
vertical thermal stratification in the cavity. Case I: A=80

4 Nucu
- NUCM

0.0 0.2 04 0.6 0.8 1.0
a). Y/A

40

Casel: A=10
NUCL_Z
- = Nu,,

y=-1,0 71

30

OTHILET

00 0.2 0.4 06 0.8 1.0

b) Y/A
Fig. 4. Local Nusselt number along the active
wallsfor case I with Ra,, = 10° and different
valuesof y: a) A =80 and b) A = 10.

For A=80 and y = 0, Fig. 3c shows that in the
central part of the cavity, theisothermsare practically
parallel to the active walls of a differentialy heated
cavity with uniform temperatures. Thisindicatesthat
the flow is one-dimensiona in this zone. Wheny #
0, theisotherms are always parallel to each other, but
showing a two-dimensional convective heat transfer
in the core region of the cavity. Thus, around the
middle of the cavity, the fluid temperature (X =
0.5,Y) has a decreasing linear profile, uniform or
increasing if y = —1, 0 or 1, respectively. However,
close to the adiabatic walls, the horizontal flow is
intense because there is a high thermal stratification
regardless of the value of y. This significant change
observed on the isotherms, when switching fromy =
0toy=-1or1, is due to the evolution of the
average temperature 6,,(Y) with the height of the
cavity.

X
I
e
o

For A =10, the isotherms always have a two-
dimensional aspect, even for y = 0 (Fig. 3c). This
is due to the effect of the horizontal walls which

BRSPIPIPY.

d) A =80 A=10 extends to the core region of the cavity. When
. . ) 6 0., (Y) is uniform or decreasing (y = 0 or —1), the

Fig. 3. Isdlinesfor casel with Ra,, = 10°, isotherms show that the convective heat transfers

¥ =-1,0,1 (&t toright), 4 =80and vary with Y and are especially important at the

A = 10: &) streamlines, b) iso-k, c) bottom and top parts of the hot and cold walls,
isotherms and d) heatlines. respectively. Note also that wheny = —1, the top

852
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(bottom) part of the hot (cold) wall has a
temperature lower (higher) than that of the
surrounding fluid (Fig. 3 ¢). For y = 1, except the
upper and lower parts of the active wals, the
isotherms show that the local convective heat
transfers are amost uniform and similar on the hot
and cold walls.

Figure 3d shows, for a very tall cavity (A = 80)
and agiven v, that a heatline leaving the hot wall
reaches directly the cold wall at a height slightly
above that of the starting point. In addition, these
heatlines are quite well distributed along the active
walls, which indicates that the heat is supplied
(evacuated) by the hot (cold) wall in an almost
uniform manner, except near the adiabatic walls.
For A = 10, the heat recirculation cells occupy a
significant portion of the cavity but their intensities
decrease quickly with y due to the increase of the
thermal stratification. For y = —1, the heatlines
show that the heat given off by the hot wall is
mostly transported by the fluid to the upper part of
the cold wall while the rest of thisheat is provided
by natural convection to the upper end of the same
wall, because it is relatively cold. Indeed, some
heatlines start from a part of the hot wall and
terminate at its upper end, because the temperature
profile along the wall is decreasing. Note also for
y = —1 that the lower part of the cold wall heats
the surrounding air, without that this heat reaches
directly some parts of the active walls. When the
temperature of the active walls are uniform (y =
0), al the heat provided by the hot wall is
transported by the fluid to the cold wall. The
density of heatinesreaching the cold wall increases
with the height, which shows that heat is mainly
removed by the upper part of the cold wall.
When y = 1, the heatlines show that, despite the
fact that the hot wall temperatureisincreasing, the
heat removed by the cold wall comes mainly from
the lower part of the hot wall due to the thermal
saturation of the fluid.

Figures 4a and 4b, show that when A =10
andy =1 or A = 80 and all the values of y, the
local Nusselt  numbers  Nug,(Y) and
Nuc,(Y,y) = Nuc 1 (A—Y,y) ae virtudly
uniform on amost the all height of the activewalls.
This result was explained by the nearly uniform
distribution of heatlines on most of the height of
the active walls (Fig. 3d). However, at the top and
bottom ends of the active walls, the local Nusselt
numbers have significant gradients. As shown by
the heatlines, the values of Nug,;(Y) and
Nuc;,(Y) are high (low) at the bottom (top) and
top (bottom) of the hot and cold walls,
respectively. For the other situationsof caseI (A =
10 and y <0), Nucp(Y) and Nug,(Y) are
respectively decreasing and increasing throughout
the active walls. As previously explained by the
heatlines for A = 10, Nu¢,1(Y) and Nug,(Y)
are negative at the top and bottom of the hot and
cold walls, respectively.

42. Casell (y4 =-y,=v) : Effect of
Ra(Y)

Figures 5a to 5d, show for A =80 and 10, the
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streamlines, iso-k, isotherms and heatlines obtained
for case I with Ra,, = 10 andy = —1 or 1. The
isolines of the classical case (y = 0) aregiveninFig.
3. Figs. 5a to 5c, show that the isolines of the
quantities iy, 6 and k corresponding to y =1 are
deductible, by symmetry with respect to the
point X =Y /A = 0.5, from those obtained for y =
—1. This is due to the differences between the
temperatures of the active walls, which are aso
symmetrical with respect to the cavity centre.
However, the heatlines (Fig. 5¢) are not symmetrical
because they depend on the chosen origin for the heat
function.

Figures 5a and 5b show that when Ra(Y) is not
uniform, the flow is no longer symmetrical about
the center of the cavity and this for al values of
A, Ra,, and y =0 . However, since 0,(Y) is
constant ( 6,,(Y) = 0.5), the maximum values
Ymax ad k.. (highest values for A =80)
depend only on |y| # 0. By cons, for agiven Ra,,,
their positions Yymax and Yipe, are highly
influenced by A and the imposed profile of Ra(Y).
Thus, when Ra(Y) is decreasing (y = —1), the
POSitions Yiymax and Ymq, are located below Y =
0.54 and inversely if Ra(Y) isincreasing (y = 1).
For A = 80, these two positions are close to the
lower (y = —1) or upper (y = 1) horizontal walls.
For A = 10, the passive walls have more effect on
the fluid flow, resulting in positions Yy,;,., and
Yiemax, Which are more closer to the centre of the
cavity where Ra(Y) = Ra,,. Thus, for A = 10, the
values of P4, and k4, Obtained for case Il (y #
0) are similar to those found for the classical case
(y = 0 and Ra (Y) = Ra,,). By cons, for A = 80,
these quantities are much larger, which shows that
Ra (Y) has more influence on the dynamic and
fluctuating fields in a cavity with ahigh value of A.
Note that wheny = —1 (y = 1), the fluid is aimost
motionless at the top (bottom) of the cavity,
especially if A is high, while for A = 10, thereisa
single small counterclockwise convective cell in the
top left (bottom right) corner.

Concerning the isotherms (Fig. 5c), for y = —1
there is important temperature gradients in the
lower part of the cavity where Ra(Y =0) =
2Ra,,. In the upper part of the cavity, the fluid has
virtually a uniform dimensionless temperature
(around 0.6) for all values of A because Ra(Y —
A) = 0.

According to the density of isotherms, and as
expected, thelocal convectivetransfersare especialy
important on the lower parts of the hot and cold walls
because their temperatures are decreasing and
increasing with height, respectively. Fory =1, we
have opposite situations because the temperature of
the hot and cold walls increases and decreases with
height, respectively.

Figure 5d shows that for A = 80,y = —1 and 1, the
heatlines have similar shapes. But since Ra(Y)
varies, their density decreases (y = —1) or increases
(y = 1) with Y, indicating that, in general, the local
heat transfer decreases or increases along the hot wall
fory = —1 or 1, respectively.
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D02 2

d) A=80 A=10

Fig. 5. Isolinesfor case Il with Ra,, = 10°,
y =—1, 1 (left, right), A=80and 4 = 10:
a) streamlines, b) iso-k, c) isotherms
and d) heatlines.
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For A =10 and y = —1, the heatlines are highly
inclined and dense near the vertical walls of the
cavity indicating that the convective heat transfer on
the active walls is important. Since 6,(Y) is
decreasing, it is noted again that the heat provided by
the hot wall comes mainly fromitslower part. A part
of this heat is recovered by its top end, which is
relatively colder, while therest is removed by almost
the entire cold wall. For y = 1, the heat exchanges
are mainly between the upper parts of the hot and
cold walls, since they correspond respectively to the
hottest and coldest portions of the active walls. By
switching from case to casell, the intensity of the
heat recirculation cellsin the coreregion of the cavity
becomes dlightly lower if y = —1 and higher if y =
1. This is due to the fact that if y = —1, the fluid
heats almost all the cold wall because 6,(Y) is
increasing with Y.

40

Case I1 - A=80

0.0 0.2 04 0.6 0.8 L0
a) Y/A

0.0 0.2 04 06 0.8 10
b) Y/A
Fig. 6. local Nusselt number along the active

wallsfor case Il with Ra,, = 10° and different
valuesof y: a) A =80 and b) A = 10.

Figures 6a and 6b show that, because of the variation
of the loca Rayleigh number, the profiles of
Nuc1(Y,y) and Nug,(Y,y) undergo significant
changes compared to the case I. As explained by the
heatlines, thelocal convective heat transfer decreases
rapidly aong the hot wall when y =-1 and
becomes virtually nil if A =80 or negative if A =
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10 at thetop end of the wall. However, unlike casel,
the local Nusselt number also decreases on the entire
upper half of the cold wall, because T, (V) increases
with Y. Conversely, wheny = 1, the local Nusselt
numbers increase practically along the two vertical
walls of the cavity. With y = 0, the local Nusselt
numbers along the active walls are always between
those calculated for y = —1 and y = 1. The analysis
of the results of case I, showed that for given values
of Ra,,, A, y andY, thelocal Nusselt numbersonthe
two active walls of the cavity are related by:

Nucp,(Y,y) = Nug (A=Y, —y) 19)

4.3. Cases III (Yl = 6!‘2)’ ) and IV (Yl
6;17) : Simultaneous Effect of Ra(Y) and

Om(Y)

Dueto the temperature profilesimposed on the active
walls, for agiven combination of Ra,,, A andy, the
dynamic and thermal fields of case IV can be
deducted from those of case Il by symmetry with
respect to the center of the cavity. This is well
illustrated in Figs. 7a and 7b which show that, for
Ra,, =10°,y =41 and A =80 or 10, the loca
Nusselt number on the hot (cold) wall of case IV can
be deduced from that on the cold (hot) wall of case
III, by a simple symmetry with respect to X =
Y/A = 0.5. Thisis aso valid for the classical case
(y = 0), which was presented and discussed before.
Thus, we havejust to apply thefollowing relationship
to deduce the local Nusselt number of case IV from
that of caseIll and vice versa:

Nugpy or2(IV,Y,¥) = Nugy or 1 (1A = Y, ) (20)

For each caselll or IV with a given combination of
the values of Ra,,, A and y, the dynamic and
thermal fields are no longer symmetrical with respect
to the center of the cavity, because Ra(Y) is not
uniform asin caseI. Also, these fields are no longer
symmetrical about the center of the cavity for two
opposite values of y, because 6,,(Y) isnot uniform
asin casell. Thus, in casesIIl and 1V, Ra(Y) and
0,,(Y) vary simultaneously, which gives dynamic
and thermal fields that depend significantly on y, for
given values of Ra,, and A. These observations
motivated us to look for a relationship between the
dynamic and thermal fields of casesIII and IV and
those of casesI and II which depend only on 6,,(Y)
and Ra(Y), respectively. Detailed analysis of these
fields for different values of Ra,,, A and y, has
shown that it is possible to approximate al the local
quantities of case (111, y) by averaging those of cases
(1, ¥) and (11,- ). Subsequently, the local quantities
of the case IV may be deducted from those of cases
[T by symmetry relative to the center of the cavity.

This approach provides an excellent agreement
between the local quantities at any point of a cavity
with large value of A (A = 80), whereas if A is low
(A = 10), differences are observed especialy near
the adiabatic walls. However, if one is particularly
interested in thelocal heat transfer, it can be seen that
theisotherms (Fig. 8) of case (111, ¥) for Ra,, = 10°,
obtained directly or by combining the results of cases
(1, y) and (II,-y) are generally in good agreement,
evenfor A = 10 at thelevel of activewalls. Thus, for
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a given combination of Ra,,, A and y, the local
Nusselt numbers along the activewalls of case III are
deducted from those on the vertical walls of casesl
and II from:

Nucpg or (1LY, y) = O-S(Nucu or2(LY,¥) +
Nucp or2(ILY, _V)) = O-S(NuCLZ or1(LA—

Y,¥) + Nugizor1(ILA Y, V)) (21)
32 NUCH A=10
24_ - Nu(:,:;g Ramzloal
Case IV r=-1_J
164
8_
0
NUCL A=80 |
| /
164
Case IV Case III /
]
O - Yt v
0.0 0.2 04 0.6 0.8 1.0
O L] L L] L] L 1
0.0 0.2 0.4 0.6 0.8 1.0

Y/A

Fig. 7. Local Nusselt number along the active
wallsfor casesIIl and IV with Ra,, = 10%, A =
80andA=10:ay=—-1and (b)y =1.

b)

For Ra,, = 10° andy = —1 or 1, the local Nusselt
numbers of case III and those calculated from Eq.
(21) are compared in Figs. 9aand 9b for A = 80 and
10, respectively. As shown, Eg. (21) is fairly
accurate especialy in the central part of the cavity
where the effects of the horizonta walls are
negligible. Therefore, Eq. (21) is even more precise
than the aspect ratio of the cavity is high. Indeed, the
highest average deviation is 4.15% and it has been
recorded on the hot wall when Ra,,, = 10%, A = 10
and y = 1.
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—

A=280
Fig. 8. Comparison of isotherms of case (111, y)
(——) and those deduced from cases (I, y) and

(IL-y) (- - -) for Ra,, = 10%,y = —1, 1 (left,
right), A=80and A = 10.

30 Case Il : A=80

seeee Eq. (21)

30
20
Nu,,
10
0 oms Y= -1
0.0 0.2 04 0.6 0.8 1.0
b) Y/A

Fig. 9. Comparison of local Nusselt number s of
caselll calculated directly and by Eq. (21) for
Ra,, =10%y=—-1and1: (a) A =80, and
(b) A = 10.

To caculate the local Nusselt numbers along the
active walls of case 1V, it sufficesto apply Eqg. (20).
4.4. Average Heat Transfer

Average heat transfers are analyzed, as a function of
Ra,, and 4, for each case and the considered values of
y . The evolutions of average Nusselt numbers
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Nuc(1,¥) and Nuc(1l,y)as a function of Ra,, (5 X
10* < Ra,, < 10°) are presented for A = 10 and 80
in Figs. 10a and 10b. On alogarithmic scale, obtained
profiles are straight lines with a slope of about 1/3,
except for case (I, y = 1) with A = 10, for which itis
about 0.26 because the flow islaminar over alarge part
of the cavity. For case I, the average Nusselt number
depends on |y| because two opposite slopes lead to
dynamic and thermd fields that are symmetrical with
respect to the center X = Y/A = 0.5.

g, Case |
A=10

61—-—4=80

51 =-1,0, 1

10°

a)

1 O N Ce

o

Nu

w

10°
b)
Fig. 10. Evolution of the average Nusselt number

asafunction of Ra,, for variousvaluesof 4 and
y: () casel, and (b) casell.

For casesI and II, Figs. 10a and 10b show that
according to the temperature profiles of T;(Y) and
T, (Y), the heat transfer can be significantly enhanced
(case (I,y > 0) and case (II,|y| # 0)) or reduced
(case (I, y < 0)) compared to the classical case (y =
0). The maximum increase found for case (I,y = 1)
(case (1L |yl = 1)) is about 15.8 % (10.9%) and
5.3% (9.6%) for A = 10 and A = 80, respectively.
Therefore, linear temperature profiles have an effect
on the average heat transfer that is inversely
proportional to the aspect ratio of the cavity.
However, for a given value of A, mean Nusselt
numbers of casel if Aislow (4 = 10) are more
important than those of case I if A ishigh (A = 80).
This has been previoudly explained by the fact that
the effects of the parameters 6,,(Y) and Ra(Y) are
more important for A = 10 and 80, respectively.
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Table 3. Coefficients: (a) a;j (Eq. (23)) and (b) « and B (Eg. (24))

a)
i/j 1 2 3 4
Classicalcase | 1 | 0.12512 | 22.12195 | 0.94432 | -0.00005
(yr=20) 2 | 157514 | 556569 | -0.30674 | -0.00045
Case(Ly=-1) | 1 | 0.86371 | 6.62434 | 0.85892 | 0.00056
2 | -0.96743 | 10.11186 | 0.16079 | -0.00074
Case(Ly=1) | 1 | -2.0582 | 4.21272 | 1.23149 | -0.00093
2 | 363708 | 815091 | -1.38671 | -0.00062
Case(Il, [yl =1) | 1 | 012223 | 31.1107 | 0.95851 | 0.00003
2 | 251899 | 570512 | -0.47969 | -0.00024
b)
y=0 | Case(l,y=-1)| Case(l,y =1) | Case(ll, ly| = 1)
a | 0.095308 0.05429 0.19706 0.124406
B | 0.31352 0.34897 0.25982 0.29838

In Fig. 11, average Nusselt numbers Nu-(1I1,y) =
Nu-(1V,y) caculated numericaly and from the
integration of Eqg. (21), are compared for different
values of y and A. Firgt, note the excellent precision
of Eq. (21) that provides average Nusselt numbers
with a maximum deviation of 1.8% compared with
those computed directly by the simulation code. For
given values of Ra,, and A, the average Nusselt
number of caselll or 1V is between that of cases]
and 1. Compared to the classical case (y = 0), the
heat transfers can be improved in casesIII or IV only
if the cold or hot temperaturesareincreasing (y = 1),
respectively. Thisis due to the effects of 8,,(Y) and
Ra(Y), which simultaneously contribute to the
increase of the average Nusselt numbers at the level
of the active walls. However, for y = -1, the
opposite occurs because 6,,(Y) and Ra(Y) have
opposing effects. Indeed, when the temperature
decreases with Y, 6,,(Y) reduces the Nusselt
numbers (see case I) while Ra(Y) increasesthe heat
transferswheny # 0 (see case II).

Case IlIl or IV
e ee e Eq- (21)

y=-1, 0,

10° 10°
Ra_
Fig. 11. Comparison of average Nusselt numbers
of casesIII or VI calculated directly and from
Eq. (21) for variousvalues of Ra,,,, A and y.
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45. Simplified Calculation Procedure for
Nu; = f(Ra,, A)

The computation of average convective heat transfers
from the eguations of conservation in turbulent
regime is complex and laborious. So, for each
situation, we tried to develop a simplified procedure,
fairly genera and accurate, which alows to
determine Nu, = f(Ra,,, A). This procedure is to
establish only for cases I and I, because the
integration of Egs. (20) and (21) allows to determine
the mean Nusselt numbers of casesIII and IV if those
of casesI and II areknown. Tothisend, for each y of
cases I and 11, we generated by the numerical code a
large number of Nu. = f(Ra,,, A) by varying Ra,,
and A from 5 x 10* to 10° and from 10 to 80,
respectively.

The analysis of the numerical results alowed to
establish a precise simplified computing procedure
which gives Nu; = f(Ra,,, A) as a function of
Nuc(Rapy,, A =10):

Nuc(Rapy, A) = fi(A)Nuc(Ray, A = 10)
+ f2(4) (22)

where f;(4) (i = 1 or 2) are two functions that take
into account the effect of the aspect ratio A. After
severa tests, the following empirical expressions
have been adopted:

fi(A) = ape™% + a3 + a;, A (23)

the coefficientsa;; (i = 1,2 and j = 1to4) of Eq.
(23) aregivenin table 3a.
For cases (I,y) and (1, y), It was found that the

average Nusselt number for A =10 can be
calculated accurately from the empirical relationship:
Nuc(Ra,, A = 10) = aRa,,” (24)

the coefficients ¢ and S of Eq. (24) are given in
table 3b.

For casesI and I1, Egs. (22) to (24) alow estimating
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the average Nusselt numbers calculated by detailed
simulation with a maximum difference less than 3%,
while the average deviation does not exceed 1.8%.

For each combination of values of y, Ra,,, and A, the
mean Nusselt numbers of cases III and IV can be
estimated with a good accuracy from:

Nuc(1Ly) = Nuc(IV,y) = 0.5(Nuc(Ly) +
Nu‘C (Hr _)/))

where Nuc(l,y) and Nuc(ll,—y) ae to be
calculated from Eq. (22).

For casesIIl and IV, Eq. (25) alow estimating the
average Nusselt numbers calculated by detailed
simulation with a maximum difference less than
4.5%, while the average deviation does not exceed
1.9%.

These minor differences, show that the developed
simplified procedure is accurate for all cases treated
and each y (y =—1,0 or —1), despite the wide
ranges of Ra,, (5% 10* <Ra,, <10°) and 4
(10 < A < 80).

(25)

5. CONCLUSION

The effects of the dopey (y = —1,0 and 1), the
average Rayleigh number Ra,, (5 x 10* < Ra,, <
10°) and the aspect ratio of the cavity A (10 < A <
80) on the streamlines, isotherms, contours of the
turbulent kinetic energy, heatlines, local and average
Nusselt numbers have been presented and analyzed.
Based on the numerical results found, the following
conclusions can be drawn:

- For a given combination of the controlling
parameters Ra,,,, A and y, the dynamic and thermal
fields in caseI are centrosymmetric, while in case
I, these are the fields corresponding to the
combinations (Ra,, A,y # 0) and (Ray,, A, —y #
0) which are symmetrical with respect to the center
of the cavity. The dynamic and thermal fields
obtained in cases III and IV may be deducted by
combining those of cases1 and II.

The heatlines show that for a very tall cavity (4 =
80), in casel the heat is supplied (evacuated) by
the hot (cold) wall in an amost uniform manner,
except near the adiabatic walls. However, for the
other situations and depending on the considered
case (I to IV, y, A), the heat provided (removed) is
more important on a given part of the hot (cold)
wall and heat recirculation cells occupy a
significant portion of cavitieswith moderate values
of A (A = 10).

Compared to the classical situation (y = 0), there
is improvement of the average heat transfer for
cases (I,y = 1) and (11, |[y| = 1), while there is a
reduction for case (I, y = —1).

For casesIII and IV, the average heat transfers are
improved, with respect to the classical situation, if
the temperature of the cold or hot wall is
increasing. If these temperatures are decreasing,
the heat transfer is quite lower.

Finally, for afast and accurate estimation of the heat
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transfer through the cavity, a simplified calculation
procedure that givesthe average Nusselt number asa
function of Ra,, and A is exposed for each value of
y and case considered in this work.
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