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ABSTRACT 

The apparent mass effect is enhanced significantly when the motion of a body changes quickly, such as a 
flapping wing or an impulsively started plate. Previous method for calculating the apparent mass of a given 
body needs to adopt the assumption of ideal flow and know the potential of velocity field arising in the fluid 
due to the motion of the body. However, the assumption of ideal flow is contrary to real fluid field and it is 
hard to obtain the potential of velocity field in most cases. In this paper, a new method based on the vorticity 
moment theorem for calculating the apparent mass of the body of revolution in the axial direction due to axial 
acceleration is developed. This method has no assumption of ideal flow and establishes the relationship between 
the apparent mass and the vorticity loops adjacent to the surface of the body. Using this method, the value of 
the apparent mass can be easily figured out and the physical mechanism of the apparent mass can be revealed 
from the view of the vorticity loop. The comparisons between different bodies have shown the influences of 
the fineness ratio (the ratio of the length to the maximum diameter) and the trailing edge type on the apparent 
mass. 

Keywords: Apparent mass; Vorticity loop; Vorticity moment. 

NOMENCLATURE

Ai area enclosed by the vorticity loop i  
a acceleration vector 
a acceleration in the axial direction  
ci contribution of the vorticity loop i 
dt time interval 
dv terminal velocity 
F instantaneous aerodynamic force 
Fa apparent mass force 
Fa z apparent mass force in the axial direction 
kz apparent mass coefficient 
Li integral path enclosing the core of the 

vorticity loop i 
ni normal vector of the cross-section of the 

vorticity loop i 
mz  apparent mass in the axial direction 
mf mass of the fluid displace by the solid body  
r position vector 
RS region occupied by the solid body 
R∞ infinite unlimited space occupied jointly 

by the fluid and solid 

S surface of the solid body 
S∗ surface around the solid body 
Si perimeter of the vorticity loop i 
t physical time 
v velocity vector 
Vr r component of the velocity induced by 

the ordinary sub-belt 
Vz z component of the velocity induced by 

the ordinary sub-belt 

rV   r component of the velocity induced by 

the singular sub-belt 

zV   z component of the velocity induced by 

the singular sub-belt 

rV   r component of Cauchy principal value 

zV   z component of Cauchy principal value 

 
ω vorticity of the fluid 
Γi circulation of the vorticity loop i 

 

1. INTRODUCTION 

When a body accelerates in a fluid, it will be imposed 
by an additional inertial force, which could be 

attributed to an equivalent apparent mass of fluid. In 
1776, the notion of apparent mass was first 
introduced by Dubua (Birkhoff 1960), who 
experimentally investigated the oscillating 
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pendulum. In 1843, Stokes studied the motion of a 
sphere in an ideal infinite fluid and an exact 
analytical expression for the apparent mass of a 
sphere was obtained (Lamb 1932). In his article, the 
apparent mass was simply interpreted by the effect 
of the fluid pressure. Later, the apparent mass of an 
arbitrary body moving in different regimes was 
figured out by the effort of many researchers. In 
1986, Lighthill noted the apparent mass may 
represent a negligible addition to the normal mass of 
a solid body which immersed in a fluid and the 
apparent mass properties only depend on the shape 
and the direction of acceleration of the solid body 
(Lighthill 1986). However, in some cases, the 
apparent mass may play a very important role during 
the motion of the body. It is shown that the apparent 
mass has a great effect on the motion of an airship 
because it may be close to the actual mass of the 
airship itself (Li and Nahon 2007). Another 
interesting case is the unsteady motion of the wing in 
nature. With the apparent mass force associated with 
a high acceleration rate, a large lift peak can be 
obviously obtainable by very rapid accelerations of a 
model fruit fly wing (Sane and Dickinson 2002). 

The most popular traditional way to find out the 
apparent mass of a solid body is the potential flow 
method. The method first assumes a body moves in 
an infinite ideal fluid, and then gets the total kinetic 
energy of the fluid when the whole velocity field is 
known, finally the apparent mass can be calculated 
out through the relation between the force and the 
kinetic energy (Lamb 1932). For some special 
bodies, such as ellipsoids, thin plates and Rankine 
bodies, the apparent masses can be obtained easily 
because the velocity fields around these bodies have 
analytic solutions. However, apart from these special 
bodies, the apparent masses of unconventional 
bodies are usually calculated by approximation for 
the difficulty of solving the velocity fields. Due to 
the limitation and complication of computation and 
the unrealistic assumption of the ideal flow, the 
potential flow method is not able to reveal the 
physical mechanism of the apparent mass. In fact, all 
the traditional methods need the assumption of the 
ideal flow. 

The vorticity moment theorem was developed by Wu 
(1981), which is able to relate the aerodynamic load 
to the moment of the vorticity of the whole system. 
Under the guidance of the theorem, Wang and Wu 
(2010) and Li and Lu (2012) studied the relationship 
between the aerodynamic force and the vortex ring 
shed from a flapping wing, Tian et al. (2016) 
investigated the effect of the wake vortices on the 
propulsion performance of a pitching airfoil, Li and 
Wu (2016) discussed the vortex force generation for 
a flat plate at arbitrarily large angle of attack. As 
mentioned in the vorticity-moment theorem (Wu 
1986), there is a layer of vorticity appears 
immediately adjacent to the surface of the solid body 
when it accelerates suddenly in the fluid from rest, 
and then the apparent mass and the apparent mass 
force could be easily obtained through the total first 
moment of all the vorticity in the layer. This 
definition does not involve the assumption of the 
ideal flow and points out the origin of the apparent 

mass force. However, few works had been done with 
the study of the apparent mass using the theorem. 

In this article, a new method based on the vorticity 
moment theorem will be derived for calculating the 
apparent mass of the revolution body. The new 
method simplifies the layer of vorticity adjacent to 
the surface of the solid body into a set of coaxial 
vorticity loops and then establishes the relationship 
between the apparent mass and the vorticity loops. In 
the following, the definitions of the apparent mass 
from the view of vorticity moment theorem will be 
stated in section 2. The derivation process of the new 
method will be presented in section 3. Section 4 
shows the procedure for calculating the circulation 
distribution of the vorticity loops. The validation of 
the new method and some discussion will be given 
in section 5. The main conclusions are enumerated in 
section 6. 

2. APPARENT MASS EXPRESSED BY 
VORTICITY MOMENT THEOREM 

The vorticity moment theorem was developed by Wu 
in 1981 (Wu 1981). It is a general aerodynamic 
theory for the calculation of force and moment. 
According to this theory, the instantaneous 
aerodynamic force F exerted on a body with a surface 
S moving in an incompressible stationary fluid can 
be expressed by 

.
2 sRR

t

d d
F r dS vdR

dt d

  


                   (1) 

where ρ is the density of fluid, v is the velocity 
vector, ω is the vorticity, r is the position vector, Rs 
is the region occupied by the solid body, R∞ is the 
infinite unlimited space occupied jointly by the fluid 
and the solid. 

Equation (1) relates the instantaneous aerodynamic 
force to the rate of the change of the total first 
moment of vorticity in R∞. As implied by Wu (1981), 
every vorticity field in the infinite unlimited space 
occupied jointly by solid and fluid is portrayable by 
a set of vorticity loops. So the aerodynamic force can 
be divided into different parts contributed from some 
special vorticity loops. 

If a solid body accelerating suddenly from rest in an 
infinite large and quiescent fluid during the time 
interval dt, there is a vorticity layer appears in the 
fluid immediately adjacent to the surface S of the 
solid body which satisfies the no-slip boundary 
condition on S. The time interval dt is too small to 
transport of the vorticity in the layer by diffusion and 
convection, so the layer is very thin and can be 
approximated by a sheet of vorticity on S∗, a surface 
surrounding the solid body. The vorticity is zero 
outside the sheet and the vorticity distribution ω of 
the sheet can be uniquely determined by the known 
velocity on S. 

According to the vorticity moment theorem, the 
apparent mass force Fa is linked to the rate of the 
change of the total first moment of vorticity in the 
sheet adjacent to the body surface and can be figured 
out using this equation (Wu 1986): 
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.
2 sa RS

t

d d
F r dS vdR

dt d

                       (2) 

The force Fa is a resistance to acceleration, so it is 
conveniently interpreted as an effect of apparent 
mass. Compared with the potential flow method, the 
definition by the vorticity moment theorem has no 
simplifying assumptions, especially the assumption 
of ideal flow. Moreover, the physical mechanism of 
the apparent mass can be well explained by the 
vorticity moment theorem. 

3. APPARENT MASS OF THE BODY 
OF REVOLUTION 

Apparent mass properties are tensorial which have 
36 values and only 21 values are independent 
(Korotkin 2007). In this section, a new method 
calculating for the apparent mass of the body of 
revolution in the axial direction due to axial 
acceleration will be derived using the vorticity 
moment theorem. 

Consider a body of revolution accelerating to a 
velocity of dv = 1 in the axial direction from rest. The 
acceleration of the body a is infinitely large and the 
time interval dt is infinitesimally small. The layer of 
vorticity adjacent to the surface of the body 
generated during the process is first divided into N 
vorticity belts. Then each belt is approximated to an 
axisymmetric vorticity loop located at the middle of 
the corresponding belt. The radius of the core of each 
loop is infinitesimally small. The vorticity belts and 
the vorticity loops are displayed in Fig. 1 and the 
cylindrical coordinate system is taken. 

 

 
Fig. 1. Illustration of vorticity belts and vorticity 

loops. 

 
Assume now the circulation of the vorticity loop i is 
Γi. Using Stokes’ theorem, the relationship between 
circulation and vorticity field of the loop i is: 

. . ,
iW i iLi

n dA v ds                                     (3) 

where Wi is the cross-section of the vorticity loop i, 
ni is the normal vector of section Wi and the integral 
path Li is an arbitrarily chosen loop enclosing the 
core of the vorticity loop i, as described in Fig. 2. 

Equation (2) can be rewritten here as: 

1

( ) ,
2 si

N

a RW
i

d d
F dA dI vdR

dt dt

  


           (4) 

 

 
Fig. 2. Description of vorticity loop i. 

 

where the integral path Si is the perimeter of the loop 
i. 

Using Eq. (3) and note that the last term in Eq.(4) is 
actually the product of the mass of the fluid displaced 
by the body and the acceleration of the body, 
equation (4) becomes: 

1

( ) ,
2 i

N

a i fL
i

d
F r dI m a

dt




                            (5) 

where mf is the actual mass of the fluid occupied by 
the body, a is the acceleration vector of the solid 
body. 

Thus the apparent mass force in the axial direction 
can be easily obtained by projecting Fa onto the ax-
ial direction: 

1

( ) ,
N

z i i f
i

d
Fa A m a

dt



                                     (6) 

where Ai is the area enclosed by the vorticity loop i, 
a is the acceleration in the axial direction. 

According to the definition of apparent mass in the 
axial direction: 

,z zFa m a                                                                (7) 

the apparent mass in the axial direction is given by: 

1

( )
N

i i f
i

z

d
A m a

dt
m

a




  





                                      (8) 

Note that dv=1, and 

,dv adt                                                                     (9) 

 0 .
1

( ) ( )
N

z i i t dt i i t f
i

m A A m  


               (10) 

Because there is no vorticity exists on the body 
surface before the acceleration, equation (10) be-
comes: 
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.
1

( )
N

z i i t dt f
i

m A m 


                                      (11) 

For brevity, the subscript ”t = dt” is dropped and Eq. 
(11) becomes: 

.
1

( )
N

z i i f
i

m A m


                                              (12) 

Equation (12) shows that the apparent mass of the 
body of revolution in the axial direction could be 
represented by the product of the circulation and area 
of each vorticity loop. Here, a new non-dimensional 
coefficient c is defined to evaluate the contribution 
of each vorticity loop to the total apparent mass. The 
contribution of vorticity loop i can be expressed by: 

1

,

( )

i i
i N

i i
i

A
c

A






                                                 (13) 

The apparent mass coefficient kz is also used here to 
compare the apparent mass of different bodies and 
can be obtained by dividing mf into mz: 

1

( )

1,

N

i i
i

z

A

K
V




 


                                             (14) 

where V is the volume of the revolution body. 

4. CALCULATION OF THE 
VORTICITY LOOPS 

The surface singularity method (Smith and Pierce 
1958) is used to calculate the circulation of each 
vorticity loop in Eq. (12), (13) and (14). Different 
from Smith and Pierce (1958), the body of revolution 
is replaced by a set of coaxial vorticity loops, not the 
ring sources. 

Consider a body approximated by N vorticity loops 
in the cylindrical coordinate system, the two 
components of the velocity V induced by loop i with 
circulation Γi at a control point P(r,z,θ) as shown in 
Fig. 3 is given by Rayner (1979): 

0 0
3

2 2 2
0 0

( ) 4
( ),

4
[( ) ( ) ]

i
r

r z z
V H k

r r z z


 


  

(15) 

0
03

2 2 2
0 0

4
[ ( ) ( )],

4
[( ) ( ) ]

i
r

r
V r G k rH k

r r z z



 

    
 (16) 

Where 

2( ) ( )(1 ),G k E k K                                         (17) 

2

2 2

1 2
( ) [ ( ) 2 ( )],

1

k
H k E k K k

k k


 


                     (18) 

K(k) and E(k) are the complete elliptic integrals of 
the first and second kind respectively and the 

argument k is given by: 

2 0
2 2

0 0

4
.

( ) ( )

rr
k

r r z z


  
                                     (19) 

 

 
Fig. 3. Velocity induced by a vorticity loop. 

 
If k → 0, corresponding to points near the z axis or 
to points in the far field, the following expressions 
are used for functions G(k) and H(k): 

2 4

2

1 3 4 5
( ) (1 )

2 4 6 4

0.05

G k k k

for k

  


                               (20) 

2 2

2

1 5
( ) (1 )

2 4

0.01

H k k k

for k

 


                                         (21) 

The self-induced velocity, which means the point P 
coincides with the loop i, can not be calculated 
directly through Eqs. (15) and (16) due to the 
singular problem. Inspired by Smith and Pierce 
(1958), the vorticity belt will not be approximated by 
a sole loop, but was first divided into two portions. 
One is the singular sub-belt within the distance d of 
the control point located at the middle of the belt and 
another is the ordinary sub-belt which located far-
ther than d from the control point, which described 
in Fig. 4. Then each sub-belt will be approximated 
by a vorticity sub-loop. The velocity induced by the 
sub-loop corresponding to the ordinary sub-belt can 
be calculated directly through Eqs. (15) and (16). 
The velocity induced by the sub-loop corresponding 
to the singular sub-belt will be evaluated by 
expanding Eqs. (15) and (16) in terms of d/r0 and 
integrated from s = −d to s = +d as explained in Smith 
and Pierce (1958). So the contributions of the sub-
loop corresponding to the singular sub-belt to the 
induced velocity are: 

2 3

1
{sin cos

2
1

[ sin cos ( 2sin 9 61 )] },
48 8

i
rV S

s
S

n S

 


  

 



   

  

(22) 

2

2 2

3

1
( sin 1

2 8
1

{[ sin ( 6sin 72cos
144

1
23 121 ) (1 1 )]} ,

8 16 8

i
r

S
V n S

s

S S
n n S



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    


  

 
    

              (23) 
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Table 1 Apparent mass coefficients of the Rankine body and the sphere as a function of the number of 
loops N 

 N = 80 N = 100 N = 120 N = 200 
Analytical result 

(Milne-Thomson 1968)

Sphere 0.4871 0.4903 0.4990 0.4993 0.5 

Rankine body 0.2058 0.2061 0.2077 0.2079 0.2084 

 

 

 
Fig. 4. Illustration of ordinary and singular  

sub-belts. 
 
Where 

0
.

d
S

r
                                                                      (24) 

The distance d is taken as d = 0.08r0 if 0.08r0 < ∆/2 
and d = ∆s/2 if 0.08r0 > ∆s/2. 

Finally the contributions from Cauchy principal 
integral resulting from the limiting process of 
approaching the surface are 

sin .
2

i
rv

s


 


                                                      (25) 

cos .
2

i
zv

s


 


                                                         (26) 

Thus the self-induced velocity of vorticity loop i 
consists of the sum of the three parts: the numerical 
integration of the Eqs. (15) and (16) over the 
ordinary sub-loops, Eqs. (22) and (23) for the effect 
of the singular sub-loop and the Cauchy principal 
integral shown in Eqs. (25) and (26). 

According to the no-slip boundary condition, the 
tangential velocity at the control point induced by all 
the vorticity loops equals to the tangential velocity of 
the solid body. Using Eqs. (15) and (16),(22) and 
(23), (25) and (26), the circulation of each vorticity 
loop can be determined. 

5. VALIDATION AND DISCUSSION 

5.1   Validation of the New Method 

In order to validate the new method using the 
vorticity moment theorem, a sphere and a Rankine 
body displayed in Fig. 5 are tested first. The fineness 
ratio of the Rankine body is set to 2. Each body is 

approximated by 80, 100, 120, 200 loops 
respectively and the new method is used to figure out 
the apparent mass coefficient in the axial direction 
due to axial acceleration. As illustrated before, the 
apparent mass tensors for sphere and Rankine body 
can be analytically derived by the potential flow 
method. Table 1 lists the results obtained by the new 
method as a function of the number of loops N (the 
corresponding analytical results are also shown). The 
agreement between numerical and analytical values 
is very good. The corresponding error in the 
calculation is less than 1% for N = 120 and N = 200. 
So the new method gives an excellent way to 
calculate the apparent mass. 

5.2  Some Discussion about the Apparent 
Mass 

The new method not only tells us the apparent mass 
of the body but also provides us an efficient way to 
study the physical mechanism of the apparent mass 
from the view of vorticity. In the following, the 
influence of the fineness ratio and the trailing edge 
type on the apparent mass will be discussed using the 
new method. 

First, the sphere (fineness ratio is 1) and the Rankine 
body (fineness ratio is 2) displayed in Fig. 5 are 

 

 
Fig. 5. Profiles of the Rankine body and the 

sphere. 

 
compared for investigating the influence of the fine-
ness ratio, where each body is approximated by 120 
loops. The apparent mass coefficients of the both 
bodies can be found in Table 1. Fig. 6(a) shows the 
circulation of each loop of the sphere and the 
Rankine body. The circulations of the vorticity loops 
of the sphere are almost same except the loops 
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located at the two sides. To the Rankine body, the 
circulations of the vorticity loops located at the 
middle become smaller from the two sides. The 
circulations of the vorticity loops of the sphere are 
generally larger than that of the Rankine body. So a 
larger fineness ratio of the body causes smaller 
circulations of the vorticity loops. It is implied by the 
vorticity moment theorem that the apparent mass is 
determined by the product of the circulation and area 
of the vorticity loop. Using Eq. (12) and consider the 
areas of the loops of the sphere are also larger than 
that of the Rankine body, it is obviously that the 
sphere with a smaller fineness ratio has a larger 
apparent mass coefficient than that of the Rankine 
body. Fig. 6(b) shows the contribution of each loop 
of the two bodies to the apparent mass using Eq. (13). 
To the both bodies, the vorticity loops located at the 
middle of the body play a more important role than 
the loops located at the sides of the body in the 
generation of the apparent mass. This is because the 
vorticity loops located at the middle have much 
larger areas than the loops located at the two sides 
even if the circulations of the vorticity loops located 
at the middle of the both bodies are equal or smaller 
than the circulations of the loops at the two sides. So 
the efficient way to change the apparent mass 
coefficient of a body is to change the fineness ratio 
of the body, especially to change the maximal areas 
of the cross sections. 

 

 

 
Fig. 6. (a) Circulation and (b) contribution of 

each vorticity loop of the Rankine body and the 
sphere. 

Then the Rankine body is compared with a droplet 
type body displayed in Fig. 7 for investigating the 
influence of the trailing edge type, where the fine-
ness ratio of the droplet type body is set to 2. The 
only different between the two bodies is that the 
Rankine body is rounded on the trailing edge 
while the droplet type body is sharply tapered at 
the trailing edge. The droplet type body is 
approximated by 120 vorticity loops and the 
apparent mass coefficient of the body in the axial 
direction is 0.2264 calculated by the new method, 
which is larger than that of the Rankine body. 
Additional, it is important to remind that, for the 
droplet body whose closed form of velocity 
potential function does not exists, the apparent 
mass can not be derived directly using potential 
flow method. 

 

 
Fig. 7. Profiles of the Rankine body and the 

droplet type body. 

 
Fig. 8(a) shows the circulation of each vorticity 
loop of the Rankine body and the droplet type 
body. The circulation of vorticity loops located at 
the foreparts of the both bodies are almost same 
which means the vorticity distribution of the 
vorticity loops located at the forepart won’t be 
affected by the change of the trailing edge type. 
Compared with the Rankine body, although the 
sharped trailing edge decreases the circulation of 
the vorticity loops located at the latter part, it 
increases the circulation of the loops located at the 
middle part. The area of the vorticity loop located 
at the middle part is much larger than the loop 
located at the latter part, so the total apparent mass 
of the droplet body is larger than that of the 
Rankine body. Fig. 8(b) shows the contribution of 
each loop of the both bodies. The contribution of 
the vorticity loops located at the forepart of the 
droplet type body are larger than that of the 
Rankine body, whereas the contribution of the 
vorticity loops located at the latter part of the 
droplet type body are smaller than that of the 
Rankine body. 

The above discussion based on the new method has 
revealed some physical mechanism of the apparent 
mass which can not be obtained by the potential flow 
method. 
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Fig. 8. (a) Circulation and (b) contribution of 

each vorticity loop of the Rankine body and the 
droplet type body. 

 

6. CONCLUSION 

In this paper, a new method based on vorticity 
moment theorem for calculating the apparent mass of 
the revolution body in the axial direction due to axial 
acceleration is presented. Compared with the 
traditional methods, the new method does not adopt 
the concept of the ideal flow which is not realistic in 
real flow field. Using the new method, the apparent 
mass of an arbitrary body of revolution in the axial 
direction can be easily figured out and the physical 
mechanism of the apparent mass can be revealed 
from the view of the vorticity loops adjacent to the 
surface of the body. The apparent mass coefficients 
of a sphere and a Rankine body were calculated out 
by the new method and shown a good agreement 
with the results obtained by the potential flow 
method. 

With the help of the new method, two features of the 
apparent mass have been explained. First, a smaller 
fineness ratio corresponding to larger areas of 
vorticity loops induces a larger circulation 
distribution, so a larger apparent mass coefficient can 
be obtained. Second, the vorticity distribution of the 
vorticity loops located at the forepart won’t be 
affected by the change of the trailing edge type, the 
change of the total apparent mass comes from the 
change of the circulation and area of loops located at 
the trailing edge itself. These characteristics are very 
useful when it is need to change the apparent mass of 
airship or aircraft. 
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