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ABSTRACT 

Two-dimensional space-time finite-element simulations are carried out to study the free vibrations of a rigid 
elliptic cylinder of aspect ratio 1.11 and low non-dimensional mass of unity. Undamped transverse-only as well 
as two-degrees-of-freedom oscillations are considered. The effect of damping is investigated on transverse-
only motion. For all three cases, results for cylinder response are presented for 50≤Re≤180. In the absence of 
damping, transverse oscillations are mostly periodic except for a very narrow region near the end of lock-in. In 
contrast, a damping of 0.044 removes quasi-periodicity as well as secondary hysteresis from flow and body 
motion. For undamped motion, inclusion of in-line oscillations excites high amplitude oscillations, widens the 
range of synchronization and delays phase shift between lift and cross-stream response. In each case, 
synchronization between cylinder oscillations and vortex-shedding is 1:1. In addition, drag-lift phase plots are 
symmetric about mean lift (= 0) line. Thus, symmetrical shedding of two equally strong alternate vortices per 
oscillation cycle forms 2S, CNW(2S) or C(2S) modes. For each case, the lower branch initiates at Re = 65 where 
the oscillation or shedding frequency is found to be locally maximum. 
 
Keywords: Elliptic cylinder; Free vibration; Damping; Quasi-periodic; Single and two-degrees-of-freedom. 

NOMENCLATURE 

AR aspect ratio of the ellipse U*      reduced speed 

B, D streamwise and transverse lengths of  ellipse x, y spatial coordinates w.r.t. Cartesian axes 

Cd, Cl drag and lift coefficients X, Y in-line and transverse displacements 

FN reduced natural frequency Subscripts 

Lu, Ld   distance of inlet and exit boundaries max maximum value 

m* mass ratio r.m.s. root mean square value 

Re Reynolds number  

St Strouhal number ρ  density of the fluid 

t  time σ stress tensor 

u velocity vector    damping coefficient 

 
 

1. INTRODUCTION 

The free or vortex-induced vibrations (VIV) of a 
flexibly mounted rigid structure is a vastly emerging 
research area belonging to fluid-structure 
interactions (FSI). Experimental and direct 
numerical simulations of the flow, rigid body 
equations are the two primary approaches for solving 

the FSI problems. The numerical treatment is 
traditionally performed by the partitioned or 
staggered and simultaneous or monolithic methods. 
In the former, the fluid and solid media are handled 
separately while coupling between them is 
maintained via the dynamic no-slip condition. In 
contrast, in the monolithic approach, the equations 
governing the motion of fluid and solid are solved  
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Fig. 1. Illustration of problem statement for an elastically mounted rigid ellipse undergoing 

two-degrees-of-freedom free vibrations using 5% blockage. The schematic corresponds to tU/D = 0. 
The reference frame as well as outer rectangular boundary are fixed f fixed for all times. The inset 

illustrates the symmetric elliptic cylinder configurations corresponding to AR < 1 and > 1. 
 

 

simultaneously. The current body of work relates to 
the partitioned formulation. Besides the oscillator 
cross-section, the non-dimensional oscillator 
parameters of interest in VIV include mass ratio or 
relative density (m*), coefficient of structural 
damping ( and reduced speed (U*) while the 
Reynolds number (Re) is the dimensionless 
controlling parameter of flow. Mass ratio of the 
oscillator is the ratio of oscillator mass per unit 
length (m) and mass of displaced fluid (md).  

1.1   Earlier Studies 

The elliptic cylinder is a canonical geometry that 
covers a wide range of shapes in the limits of a 
circle and flat plate. For symmetric elliptic 
cylinders (angle of incidence = 00 or 900), the ratio 
of lengths of cross-stream projection (D) to 
streamwise projection (B) defines its aspect ratio 
(AR = D/B). For zero incidence, the aspect ratio 
becomes smaller than one. In contrast, for 900 
incidence, the value of AR exceeds one. The inset 
of Fig. 1 illustrates the definition of AR for both the 
cases. While some studies on stationary elliptic 
cylinders concerning flow (Lugt and Haussling 
1974; Sivakumar et al. 2007; Sen et al. 2012) are 
available, not much is known on the flow around a 
translating elliptic cylinder. Jauvtis and Williamson 
(2004) experimentally demonstrated that the 
response of a circular cylinder (AR = 1) with 
transverse or Y-only and simultaneous in-line (X-) 
and transverse motion is virtually the same 
provided m*≥6 and significantly different 
otherwise. This study establishes the dominant role 
of X-motion at low m*. By employing the stabilized 
space-time finite-element formulation of Tezduyar 
et al. (1992 a, b), Sen (2010) studied two degrees-
of-freedom (2-DOF or X-Y) free vibrations of thick 
elliptic cylinders with longer axis aligned (AR = 
0.9) and normal (AR = 1.1) to the free-stream. For 

Re = 60-150, the cylinders of m* = 10 were allowed 
to execute undamped VIV. An increase of the 
transverse displacement with increasing AR was 
observed. Near the fundamental synchronization, 
the transverse response of a circular cylinder of 
mass ratio of the order of 10 is about (<) 0.6 times 
its diameter (Khalak and Williamson 1999 at high 
Re and Singh and Mittal 2005 at low Re; both in 
lower branch). The concept of branching of 
cylinder response was introduced by Khalak and 
Williamson (1996).  The maximum response of AR 
= 1.11 cylinder obtained at Re = 83 by Sen (2010) 
surpasses the upper limit; the response was found 
to be about 0.6158 times the length of longer axis 
(D). The study also showed that the maximum 
transverse response as well as range of lock-in of 
thick elliptic cylinders overshadows the ones from 
its circular and square counterparts using identical 
control parameters for flow and VIV. For 
2000<Re<8000, Franzini et al. (2009) 
experimentally investigated the transverse 
oscillations of elliptic cylinders of m* ≈ 2.5. A 
detailed numerical study on the effect of AR on 2-
DOF VIV of elliptic cylinders were performed by 
Navrose et al. (2014). The AR was varied from 0.7 
to 1.43 and the range of Re was 60 to 140. For the 
entire set of AR, six distinct regimes of resonance 
were identified. With rising Re or U*, the sequence 
of their appearance is – steady state, quasi-periodic 
(QP) initial branch, periodic initial branch, periodic 
lower branch, quasi-periodic lower branch and 
desynchronization. For cylinders of AR≥1.11, 
Navrose et al. (2014) noted in the periodic initial 
branch, a near wake merging of like sign vortices 
that differ from conventional C (2S) merging. They 
introduced the terminology 'CNW (2S) mode' to 
depict the near wake merging. For each AR, the 
peak transverse response was found at the periodic 
lower branch and the peak value continued to rise 
with increasing AR.   
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1.2   Objectives of the Current Work 
Recently, Sen and Mittal (2015, 2016) reported for a 
freely vibrating square cylinder with undamped X-Y-
motion, certain fundamental differences in the VIV 
characteristics for low (m* = 1) and high mass ratios 
(m* = 5, 10 and 20). The earlier studies on undamped 
VIV concerning circular (Prasanth and Mittal 2008) 
and elliptic (Navrose et al. 2014) cylinders of m* = 
10 suggest that a hysteresis-free regime exists near 
the onset of lock-in under certain conditions (e.g., 
low blockage or low m*). However, flow and body 
motion were hysteretic (secondary) near the closure 
of lock-in. The choice of m* = 1 in the present study 
is motivated by the conclusions of Jauvtis and 
Williamson (2004) and findings of Prasanth and 
Mittal (2008) and Navrose et al. (2014) for m* = 
10>6. A fundamental question regarding the 
hysteretic behaviour of oscillators having curved 
contours therefore relates to conditions that might 
suppress secondary hysteresis. The motivation 
behind the current work is derived from following 
queries: does a secondary hysteresis-free solution 
exist for oscillating cylinders with curved contours? 
How does the secondary hysteresis tally with  or 
DOF? Is it possible to have solutions completely 
devoid of hysteresis? To what extent does the X-
motion amplify the Y-displacement? Efforts are 
made here to address the aforesaid queries. To 
understand the role of X-motion on the undamped 
response of an elliptic cylinder, a low mass ratio of 
unity has been used. Results have also been 
presented for m* = 1 cylinder for damped ( = 0.044) 
VIV. For all three cases, Re varies from 50 to 180. 
The most interesting outcome of this work is the 
observation of almost or complete disappearance of 
secondary hysteresis for Y-only motion of the 
cylinder. 

2. METHODOLOGY 

2.1   Governing Equations 
In vector form, the dimensional Navier-Stokes 
equations of motion governing unsteady 
incompressible flow of a viscous fluid in a spatial 
domain ߗ௧ and temporal domain (0,T) are 

0u 
                                 (1) 

 /    u t u u      
                      (2) 

Here, u


 = (u,v) and   are the velocity vector and 
stress tensor, respectively. ρ is the density of the fluid 
and t represents time. Translation of the rigid body is 
governed by Newton's second law of motion. For an 
elastically mounted rigid oscillator executing 2-DOF 
translations, the system of dimensional equations 
comprising those for in-line and transverse motion 
are expressed by the following second order ordinary 
differential equations in time 
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where c and k are viscous damping and spring 
stiffness, respectively. Fx and Fy are vortex-induced 
drag and lift forces. Normalization of spatial and 
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dimensional natural frequency of the oscillator. The 
X-component of Eq. (3) for an oscillator of arbitrary 
shape may be simplified as 
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For an ellipse with axes D and B, 
4dm DB
  and

* 4m
m

DB
 . Thus, Eq. (4) reduces to 
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Further simplification leads to  

* 2 2..
* 2 *

2 *

4
4 4 ( )( ).

2
N N df D f D C D

X X X
U U m B

  


  
           (6) 

The reduced or non-dimensional natural frequency 
of the oscillator (ܨே) is obtained by normalizing fN 
by D and U to yield FN = fND/U. Therefore, the final 
non-dimensional form of the equation of in-line 
translation of a symmetric ellipse is  

*..
* 2 2 *

* *

2 2
4 4 ( )( ) ( ) .d d

N N

C CD
X F X F X AR

m B m
  

 
      (7) 

Equation (7) is valid for AR <1, = 1 and > 1. 
Similarly, the non-dimensional form of the equation 
of transverse translation is given by  

*..
* 2 2 *

*

2
4 4 ( ) .l

N N

C
Y F Y F Y AR

m
  


                                 (8) 

In Eqs. (7) and (8), X*(t*) and Y*(t*) are the 
instantaneous coordinates of the center of cylinder 
measured from the origin of the inertial frame of 

reference (Fig. 1). 
* 2 *..

*2

d X
X

dt
 and

*
*

*

dX
X

dt
 ,respectively denote the normalized 

acceleration and velocity of the body along the 

streamwise direction while 
* 2 *..

*2

d Y
Y

dt
  and 

*
*

*

dY
Y

dt
  

represent the same quantities for cross-flow motion. ܥௗሺݐ∗ሻ and ܥ௟ሺݐ∗ሻ, respectively are the instantaneous 
flow-induced drag and lift coefficients of the body 
per unit length. 

Equations (1) and (2) constitute an initial boundary 
value problem that is solved for fluid medium in a 
rectangular computational domain. Free-stream 
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inlet, stress-free or zero-traction exit, free slip on 
lateral boundaries and no-slip cylinder surface define 
the boundary conditions used for the problem. The 
no-slip condition for this moving boundary problem 
is time-dependent and hence needs reconstruction at 
each time step. A divergence-free velocity field is 
used as the initial condition to start the unsteady 
computations.  Absence of an explicit equation for 
pressure eliminates the requirements of initial and 
boundary conditions on pressure. Equations (7) and 
(8) which are uncoupled or independent, form an 
initial value problem. At the start of computation for 
the lowest Re, the cylinder is released from rest at the 
origin, i.e., X*(0) = 0, ܺ̇∗ = 0 and Y*(0) = 0,ܻ̇∗ = 0. 
However, for other Re values, X*(0) = X*

0, ܺ̇∗ = ܺ̇଴∗ 
and Y*(0) = Y*

0, ܻ̇∗ = ܻ̇଴∗ . Therefore, the initial 
conditions for flow and oscillator at the lowest Re 
correspond to release of the cylinder from rest at the 
origin in a fluid, the motion of which is started 
impulsively. 

2.2 Space-Time Finite-Element Formulation 
Two widely used approaches for handling moving 
boundary problems numerically (e.g., FVM, FEM) 
are the (1) Arbitrary Lagrangian Eulerian (ALE) 
formulation (Hughes et al. 1981; Dettmer and Peric 
2006) and (2) Space-time formulation (Shakib, 1989; 
Shakib and Hughes, 1991; Tezduyar et al., 1992 a,b; 
Perrochet and Azerat, 1995; Guler et al., 1999). The 
ALE formulation takes into account the Lagrangian 
(mesh moves with fluid) as well as Eulerian (mesh 
fixed in space) methods simultaneously such that the 
mesh movement in ALE is independent of fluid 
motion. The mesh movement follows the movement 
of interface and entanglement of grid lines can be 
avoided. In the space-time method the variational 
formulation of the governing equations is extended 
over a space-time domain so that deformation of the 
spatial domain is determined automatically. To 
account for domain deformation, the shape or 
interpolation functions are considered to vary with 
space as well as time. While the spatial variation of 
shape function is continuous (e.g., piecewise 
bilinear), these are temporally discontinuous 
(piecewise constant or piecewise linear; see Eq. 
(11)). For a non-deforming domain, the trial solution 
for streamwise velocity component is represented in 
terms of time-independent shape functions Ni such 
that  

1

( , , ) ( , ) ( ).
PN

i i
i

u x y t N x y U t


                                    (9) 

For space-time formulation, Eq. (9) is modified (see 
Donea and Huerta 2003) as 
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where, Np and n stand for number of nodes per 
element and index for time level, respectively. The  
linear time interpolation functions ߰ଵሺݐሻ and ߰ଶሺݐሻ 
are defined as  
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The space-time domain is composed of several 
space-time slabs and time discontinuity enables one 
to locally solve for individual space-time slabs 
(Donea and Huerta 2003). The space-time finite-
element formulation of Tezduyar et al. (1992 a, b) in 
conjunction with GLS (Galerkin Least Squares) 
stabilization is used for the present computations.  
Equal order of bilinear interpolation is used for the 
primitive variables (velocity and pressure). The 
interpolation functions ( ௜ܰ , where i=1 − 4 ) are 
bilinear in space and as seen from Eq. (11), linear in 
time (߰ଵand߰ଶ ). With collocated arrangement of 
primitive variables, the number of (flow) unknowns 
per element in a space-time slab equals 4 (nodes per 
element) x 3 (nodal DOFs) x 2 (number of element 
layers in a slab) = 24. 

2.3   Problem Statement and Mesh 
The elastically mounted rigid elliptic cylinder resides 
in a rectangular computational domain such that the 
larger of its axes is oriented normal to the incoming 
stream (Fig. 1). Following the definition of AR 
presented in the inset of Fig. 1, this configuration of 
ellipse corresponds to AR>1. The present 
computations are performed for AR = 1.11. The value 
of mass ratio of the cylinder is 1. The Cartesian 
coordinate system is stationary (inertial frame of 
reference) and displacements X and Y are measured 
relative to the origin of this coordinate system. A 
blockage of 5% corresponding to width of the 
computational domain = 20D, is used. Also, Lu = 
10D and Ld = 25.5D are used. The Reynolds number 
is based on the cross-stream projection (D) of the 
cylinder and free-stream speed. A non-dimensional 
time step size of 0.0625D is used for all the 
computations.  

U* and FN are fundamental non-dimensional input 
parameters. The free-stream speed is normalized 
with fN and D such that U* = U/(fND). Following the 
definition of ܨே in 2.1, U* is the reciprocal of FN.  In 
the current numerical set-up, FN is coupled to Re. The 
stationary vortex-shedding frequency at Re = 100 is 
chosen as the reference natural frequency and FN at 
any other Re scales inversely with this reference FN. 
This constraint leads to the FN = 16.91/Re 
relationship where 0.1691 is the vortex-shedding 
frequency (Strouhal number (St)) of a stationary 
elliptic cylinder of AR = 1.11 at Re = 100. Therefore, 
the precise number 16.91 is the product of the 
reference FN and reference Re. This kind of set-up 
has been used earlier for a circle by Willden and 
Graham (2006), Prasanth and Mittal (2008), 
Bahmani and Akbari (2010) and for a square by Sen 
and Mittal (2011). In the present work, U* varies 
between 50/16.91 = 2.96 and 180/16.91 = 10.64, 
where 50 and 180 are the lower and upper bounds of 
Re. 

A block-structured non-uniform mesh consisting of 
7437 nodes and 7236 bilinear quadrilateral elements 
is used for domain discretization. The number of 
nodes on the cylinder surface equals 104. The 
computational mesh is shown in Fig. 2a where a 
cross (×) indicates the fixed (0,0) position of the 
inertial frame of reference. Five constituent blocks  
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Fig. 2. Structured, multi-block and non-uniform finite-element mesh employed for computing via a 
space-time method, free vibrations of a thick elliptic cylinder. The mesh consists of 7437 nodes and 

7236 bilinear quadrilateral elements. The mesh corresponds to its undeformed configuration. Figure 
(b) shows the central block as well as the origin of the reference frame (marked via ×). 

 

 
Fig. 3. Schematic presentation of the remeshing scheme in terms of Y-only motion of cylinder: 
(a) undeformed configuration of the domain at t* = 0 and (b) deformation of upper and lower 

blocks at t* = dt*. 
 

 

are used to generate the mesh - a central square block 
(Fig. 2b) and four surrounding rectangular blocks, 
one each along the left, right, upper and lower 
directions (Fig. 3a). The central block contains the 
cylinder and executes identical rigid body translation 
as performed by the cylinder. The implementation of 
space-time formulation requires reconstruction of 
the mesh at each time step based on updated 
coordinates of every node in the mesh (see Sub-
section 2.5) except for the four corners of the outer 
rectangular boundary of the domain.  

2.4   Fluid-Solid Coupling 

In VIV, the motion of the fluid and solid media is 
intrinsically coupled by the dynamic no-slip 

condition ( ,u X v Y   ) as well as vortex-induced 
forces (Cd and Cl), both at fluid-solid interface. The 
no-slip condition at the interface is updated based on 
the solution of Eqs. (7) and (8) for cylinder 
displacement. The displacement solutions are, in 
turn, functions of fluid loading that are computed 
from the flow obtained via solution of Eqs. (1) and 
(2). This interdependency defines the fluid-solid 
coupling. In the partitioned approach followed in the 
current study, within the same time slab, the global 
flow matrix (due to implicit time discretization) is 
solved by GMRES iterative solver while the space-
time discretized rigid body equations are solved by 
numerical integration after reducing them to a system 
of first order ordinary differential equations in time. 

The instantaneous fluid loading at the moving 
interface is computed by summing up the 
elementwise contributions of surface traction from 
all elements located at the fluid-solid interface. The 

sectional force coefficients are thus computed from   

,
2 ( )int

1
( , ) ( . )

1

2
t

d l x y t

erface

C C n d
U D


 

                          (12) 

 where, ( )intt erface  denotes the FSI boundary of the 

domain ߗ௧ , i.e. internal boundary or fluid-solid 
interface and n is the unit normal to this boundary.  

For this moving boundary problem, feedback 
between the flow system and oscillator unit obeys the 
following steps in succession: solution of the 
instantaneous flow field in conjunction with initial 
and boundary conditions (Eqs. (1) and (2)) – 
computations for instantaneous fluid loading (Eq 
(12)) – solution of ODEs for rigid body motion (Eqs. 
(7) and (8)); computation of the displacement of 
cylinder center from fixed inertial frame of reference 
– determination of updated position of cylinder 
center – remeshing (computing of updated nodal 
coordinates) – update of the specified velocity 
boundary conditions on the cylinder – repetition of 
the above steps at each time step. 

2.5   Remeshing 

The rectangular boundary of the computational 
domain as well as the reference frame remain 
stationary at all time instants. The use of a block-
structured mesh over the computational domain aids 
in convenient remeshing at each time step. The 
remeshing scheme can be explained by considering 
the transverse-only motion (for example) of the 
cylinder as illustrated in Fig. 3. The first space-time 
slab is temporally bounded by the time interval  
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Table 1 Unsteady flow past a stationary circular cylinder at Re = 100: comparison of the computed 
integral parameters with those available in the literature 

Author Method Blockage ܥௗ̄ Clmax Clrms St 

Williamson (1989) Experiments - - - - 0.1648 

Lin and Wu (1994) Finite-volume 0.05 - 0.3467 0.2500 0.1619 

Liu et al. (1998) Finite-difference - 1.3500 - 0.2500 0.1640 

Singh and Mittal (2005) Finite-element 0.05 1.3500 - 0.2500 0.1660 

Posdziech and Grundmann (2007) Spectral-element 0.025 1.3504 0.3309 - 0.1667 

Jaiman et al. (2015) Finite-element 0.05 1.3704 0.3374 0.2383 0.1683 

Present Finite-element 0.05 1.3887 0.3556 0.2518 0.1667 

 
Table 2 Flow past a stationary elliptic cylinder of aspect ratio 0.1 at 450 incidence: comparison of 
various integral parameters obtained from the present and earlier numerical studies at Re = 200 

Author Method ܥௗ̄  Clrms St 

Lugt and Haussling (1974) Semi-analytical 1.4650 0.8925 0.2400 

Chou (1992) Finite-difference 1.3800 1.0900 0.2590 

Present Finite-element 1.3674 1.0473 0.2332 

 
 

[0,dt*]. Considering upward travel of the cylinder 
over the time interval, Figs. 3a and 3b, respectively 
show the spatial domains ߗ଴ and ߗdt at the limits of 
the interval. The absence of X-motion does not alter 
the size and shape of (does not deform) the left and 
right blocks. The instantaneous response (Y(t) in Fig. 
3b), shrinks the upper and expands the lower block 
to widths (S - Y) and (S + Y), respectively where S is 
the unreformed width. The four neighbour blocks are 
constructed by non-uniformly spaced Cartesian grid 
lines. Therefore, deformation of the upper and lower 
blocks by a certain degree causes upward/downward 
translation of the horizontal grid lines. The vertical 
grid lines do not travel while they shorten or 
elongate. The mesh generator employs the algebraic 
method and requires information on the size of 
individual blocks and number of nodes and elements 
therein. The motion preserves the total (or 
blockwise) number of nodes and elements in the 
mesh as well as connectivity of the elements. The 
mesh generator is, therefore, provided with the 
required data for each component block at each time 
step and hence generates a new mesh without 
producing much projection error. 

2.6   Validation and Convergence Tests 

Comparison of the predicted integral parameters 
(mean drag (̄ܥௗ ), maximum lift (Clmax), r.m.s. lift 
(Clrms) and St) with other results available from the 
literature for a stationary circular cylinder at Re = 
100 is presented in Table 1. The predicted integral 
parameters are in close agreement (maximum 
deviation of about 2.8% is seen for ̄ܥௗ) with those 
reported by the earlier efforts. A difference of 7.46% 
in predicted r.m.s. lift with those obtained by 
Posdziech and Grundmann (2007) is attributed to 
difference in blockage.  

Extensive validation of stationary elliptical cylinder 

results by us for steady flow can be found in Sen et 
al. (2012). Table 2 compares the predicted integral 
parameters for unsteady flow at Re = 200 past a thin 
elliptic cylinder (stationary) of AR = 0.1 at 450 
incidence with those reported by Lugt and Haussling 
(1974) and Chou (1992). The definitions of drag and 
lift employed by Lugt and Haussling (1974) (Eqs. 
(10) and (14), respectively of their paper), involve an 
amplification factor of 2. The results reported by 
Lugt and Haussling (1974) for AR = 0.1 and Re = 200 
in Figs. 12 and 15 of their paper are averaged to find 
the mean drag and lift. For each quantity, the last 
column of Figs. 12 and 15 are averaged leading to 

mean drag =
ଶ.97 ଶ⁄ ାଶ.89 ଶ⁄ଶ = 1.465 , mean lift 

=
ଵ.82 ଶ⁄ ାଵ.75 ଶ⁄ଶ = 0.8925and mean Strouhal number 

= 
଴.23ା଴.25ଶ = 0.24 . The current predictions for ̄ܥௗ 

and time-averaged lift ( ௟ܥ̄ ) coefficients compare 
favourably (maximum difference ≈ 4%) with those  

obtained by Chou (1992). However, a difference of 
≈ 11% is seen for St. Table 2 indicates that ̄ܥௗ and ̄ܥ௟ 
of an AR = 0.1 stationary elliptic cylinder at 450 
incidence is, respectively overpredicted and 
underpredicted by Lugt  and Haussling (1974) at Re 
= 200. For identical values of incidence angle and Re 
as above, Patel (1981) reported significant 
discrepancies with the results predicted by Lugt and 
Haussling (1974) for AR = 0.2. The value of ̄ܥ௟ 
reported by Lugt and Haussling (1974) is 
significantly smaller and ̄ܥௗ  significantly higher 
than the values obtained by Patel (1981) (see Fig. 15 
of Patel 1981). 

Lugt and Haussling (1974) employed a semi-
analytical approach for handling the streamfunction-
vorticity equations. Their grid involved 75x60 nodes 
along the radial and circumferential directions. In 
addition, distance of the exit boundary from the 
center of the cylinder was eleven times the length of  
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Table 3 Mesh convergence test for undamped Y-only VIV of a rigid ellipse of m* = 1 at Re = 70 

Mesh Nodes Elements Ymax/D ܥௗ̄ Clrms St 

M1 7437 7236 0.5878 2.4539 0.5444 0.1866 

M2 14780 14504 0.5892 2.4497 0.5481 0.1882 

 
Table 4 Test for adequacy of time step size on undamped Y-only VIV of a rigid ellipse of m* = 1 at 

Re = 70 

dt* Ymax/D ܥௗ̄ Clrms St 

0.0625 0.5878 2.4539 0.5444 0.1866 

0.03125 0.6182 2.4471 0.5437 0.1871 
 

 
 

the cylinder. In contrast, approximately doubled 
mesh resolution and extended computational domain 
are used for the current set of finite-element 
computations (refer to Section 2.3). It therefore 
appears that a coarse mesh coupled with lesser nodes 
on the cylinder and shorter domain size employed by 
Lugt and Haussling (1974) contribute to 
overprediction of drag and underprediction of lift. 

Tests for mesh convergence, sufficiency of 
streamwise domain length components and 
adequacy of time step size can be found in Sen 
(2010) and Navrose et al. (2014) for m* = 10. For 
completeness of the current computations, a mesh 
convergence study has been performed that 
establishes the adequacy of the mesh M1 containing 
7437 nodes and 7236 bilinear quadrilateral elements 
to accurately predict the flow and VIV for m* = 1. To 
this end, the undamped Y-only VIV at Re = 70 is 
compared in Table 3 as computed using meshes M1 
and M2 of roughly 1:2 resolution ratio. Table 4 
ascertains the sufficiency of dt* = 0.0625 for the 
current computations. 

3. RESULTS 

Results for VIV of a thick elliptic cylinder of AR = 
1.11 and m* = 1 are presented for three different 
cases: (i) undamped transverse-only motion, (ii) 
damped transverse-only motion with 0.044 and 
(iii) undamped 2-DOF motion. Depending on the 
initial condition, solution multiplicity exists for 
problems involving moving boundaries. For VIV at 
low Re, these multiple solutions are generally 
captured close to the lock-in boundaries and often 
manifest in the form of hysteresis loops. To resolve 
the hysteresis or solution multiplicity in a numerical 
framework, progressive forward as well as backward 
computations are performed. Solutions at lower Re 
(or U*) are used for forward or 'increasing Re' 
computations whereas for backward or 'decreasing 
Re' computations, initial conditions are chosen from 
the higher Re (or U*) end. 

For oscillators having low m*, the response varies 
smoothly with Re in regions immediately next to the 
occurrence of resonance. It poses difficulty in 
identifying from the response curve, the exact Re 

marking the initial → lower branch transition.  
However, existence of a prominent kink denoting 
this trend change could be identified in the 
oscillation frequency. The Re corresponding to the 
kink has been used in the present study to locate the 
transition Re. 

3.1   Undamped Y-Only Motion Overview of 
the Cylinder Response Possible Explanation 
for Spike 

The response is composed of the initial excitation 
and lower branches followed by decoherence (Fig. 
4a). The constancy of slope of St or Y with Re (Fig. 
4e) beyond Re = 65 suggests that the lower branch 
initiates at Re = 65. The lock-in sets in at Re = 53 and 
continues up to Re = 156. Along the forward path, 
the cylinder motion is mostly periodic with single 
dominant frequency except for Re = 155 and 156 
where flow is QP. For QP flow, the fluid forces and 
body motion contain multiple frequencies (Figs. 4f 
and 4g). At the extremities of lock-in, a single 
dominant shedding frequency prevails and a third 
harmonic coexists in the intermediate regime. This 
single- and multiple frequency behaviour of flow is 
obvious from the periodic Cl-Y Lissajou plots in the 
insets of Fig. 4a. Primary hysteresis near the onset of 
resonance is absent. However, secondary hysteresis 
at the upper boundary exists only at a single Re of 
154. At this Re, a solitary spike appears for backward 
computations. The authors are not aware of the 
existence of such spikes in response or fluid loading 
results in the VIV literature on bluff cylinders. 
Existence of the spike has been confirmed further via 
computations of the Re = 154 (decreasing) flow 
using different initial conditions. 

Near the closure of lock-in, the flow is periodic up to 
Re = 157 (from higher-Re end) and quasi-periodic for 
Re = 154 - 156 (decreasing). Periodicity is recovered 
at Re = 153 (decreasing) and maintained thereafter. 
The Cl-Y Lissajou diagrams in Figs. 5a-5e 
demonstrate the periodicity → quasi-periodicity → 
periodicity transition. The spike at Re = 154 might be 
an outcome of periodic flow/body motion along 
forward path (Fig. 4f) and quasi-periodic flow/body 
motion along reverse path (Fig. 4g). The consistency 
of this finding is further established via lift (Fig. 5f)  
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Fig. 4. Y-only undamped VIV of a rigid elliptic cylinder of m* = 1 and AR = 1.11 for 50≤Re≤180 and 

5% blockage: (a) variation of maximum transverse response, Ymax/D with Re and U*, (b, c) power 
spectra of response and lift signals at Re = 154 (decreasing), respectively, (d) Cl-Y phase plot at Re = 

154 (decreasing), (e) close-up of Y-Re and St-Re curves near onset of lock-in, (f) periodic time-series of 
Y displacement at Re = 154 and (g) quasi-periodic time-series of Y displacement at Re = 154 

(decreasing). 

 

 
Fig. 5. Undamped Y-only motion of a thick elliptic cylinder: (a-e) Cl-Y phase plots for Re = 153 - 157 
along the path of decreasing Re, (f) Cl-Re curve showing the presence of a solitary spike at Re = 154 

(decreasing) and (g-h) instantaneous vorticity at Re = 153 (decreasing) and 155 (decreasing). 

 

 

which also shows a distinct spike at the same Re. 
Since Eq. (8) defines the Cl-Y coupling, the Y curve 
also reflects the key features of Cl. In the 
neighbourhood of this spike, for reverse 
computations, the wake mode may be 2S or C(2S) 
even for comparable response. This is apparent from 

Figs. 5g and 5h for showing 2S at Re = 153 
(decreasing) and C(2S) at Re = 155 (decreasing) 
where the flow is periodic and QP, respectively. From 
here it also follows that the mode is 2S at Re = 154 
and C(2S) at Re = 154 (decreasing) (Figs. 6c and 6d). 
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Fig. 6. Undamped Y-only VIV of a rigid elliptic cylinder of m* = 1 and AR = 1.11: instantaneous 

vorticity at Re = (a) 54 and (b) 54 (decreasing). For both cases, the flow is periodic, the wake mode is 
CNW(2S) and Ymax/D = 0.3074. For Re = 154 (Fig. c), the flow is periodic, wake mode is 2S and Ymax/D = 
0.2647. For Re = 154 (decreasing) (Fig. d), the flow is quasi-periodic, wake mode is C(2S) and Ymax/D = 

0.3733. 

 
1.1  Synchronization and Phase Shift  

As is well known, the oscillation and vortex-
shedding frequencies of a body collapse (1:1 
synchronization) as long as it executes pure VIV. In 
consistency with this, the cylinder exhibits 1:1 
synchronization for the range of Re considered. The 
normalized power spectra of transverse response 
(Fig. 4b) and lift (Fig. 4c) at Re = 154 (decreasing) 
exhibit multiple peaks (QP flow/body motion) such 
that the value of the frequency (St = 0.1429) 
corresponding to the dominant peak is identical (1:1 
synchronization) from both FFTs. The multiple non- 
overlapping curves in the Cl-Y Lissajou plot (Fig. 4d) 
confirms the QP nature of flow and body motion. 
The phase plot dominantly resides in the second and 
fourth quadrants implying that the transverse 
quantities are out of phase. The insets in Fig. 4a 
suggest that phase shift for undamped Y-only motion 
occurs between Re = 95 and 100. For m* = 10 and AR 
= 1.11, Navrose et al. (2014) found that phase shift 
between Cl and Y for 2-DOF undamped VIV takes 
place in the vicinity of Re = 100. Presence of three 
loops in certain Cl-Y phase portraits of Fig. 4a 
ensures the existence of a third harmonic in lift. 

Periodic, Quasi-Periodic Flows, Wake 
Modes  

To further explore the periodic and quasi-periodic 
regimes of flow, the Cd-Cl phase portraits at 
representative Re are shown in the insets of Fig. 6. 
The phase diagrams for Re = 54 (Fig. 6a), 54 
(decreasing) (Fig. 6b) and 154 (Fig. 6c) are closed, 
double-looped and contain a single crossover point 
located on zero lift axis. The figure eight kind of 
shape ensures periodicity of flow. The periodicity is 
characterized by oscillation frequency of Cd being 
twice the one of Cl. For Re = 154 (decreasing) (Fig. 

6d), the figure eight shape for subsequent cycles 
traverses between the extremities of fluid loading, 
the values of which vary with time. This is 
characteristic to QP flow. For the entire range of Re, 
the mean lift is zero (each crossover point resides on 
the zero lift axis) irrespective of flow being periodic 
or QP. Thus, the wake vortex mode must be one like 
2S, C(2S) or 2P that form out of symmetric shedding 
from upper and lower rear halves of the cylinder. A 
non-zero ̄ܥ௟  results from asymmetric pressure 
distribution between the upper and lower surfaces of 
the cylinder. This unbalanced pressure leads to non-
vanishing ̄ܥ௟  and hence, due to biased vortex-
shedding, an asymmetric wake mode of vortex-
formation, such as P+S, in the cylinder wake. It is 
possible to have unsymmetric wake mode even in 1:1 
synchronization. The 1:1 synchronization implies 
that the time period of shedding and oscillation 
cycles is same. Thus, in the context of current study, 
two vortices of equal strength are alternately released 
per shedding cycle and contribute to the wake vortex 
mode. Hence, the wake mode must be 2S or its 
variant C(2S) for large response or CNW(2S) for 
periodic initial branch. 

In Fig. 6 showing selected wake modes, the initial 
position of the cylinder or the origin of the coordinate 
system is marked by a cross (×) symbol. The wake 
mode at Re = 54 (increasing and decreasing) in the 
initial branch is CNW(2S) as apparent from Figs. 6a 
and 6b, respectively. Figure 6c shows the 2S mode at 
Re = 154 and Fig. 6d the C(2S) mode at Re = 154 
(decreasing). For the 2S mode, Ymax/D = 0.2647 and 
when the normalized response reaches 0.3733, the 
mode changes to C(2S). The higher value of 
transverse response for the latter implies larger time 
period of oscillation or vortex-shedding cycle. Thus, 
the shed vortices get sufficient time to interact  
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Fig. 7. Damped (= 0.044) Y-only VIV of a rigid elliptic cylinder of m* = 1 and AR = 1.11 for 
50≤Re≤180 and 5% blockage: (a) variation of maximum transverse response with Re and U*. 

At Re = 100, figs. (b, c) show power spectra of response and lift while (d, e) show Cl-Y and  
Cd-Cl phase plots. 

 
Table 5 Free vibrations of a rigid elliptic cylinder of m* = 1 and AR = 1.11: summary of the peak 
transverse response at the onset of lock-in and also over the entire range of Re considered. Also 

presented is a summary of hysteretic and non-hysteretic solutions 

 Y-only,    = 0 X-Y-motion ,   = 0.044 X-Y motion,    = 0 

Ymax/D Onset of lock-in Overall Onset of lock-in Overall Onset of lock-in Overall 

 0.1459 0.5878 0.1167 0.5417 0.1415 0.6704 

Re 53 70 55 75 53 80 

U* = Re/16.91 3.13 4.14 3.25 4.44 3.13 4.73 

Hysteresis  

Primary Absent Very weak Absent 

Secondary Very weak Absent Strong 

 

 

among themselves and vortices from behind catch up 
those already shed. This might be a possible 
explanation on formation of C(2S) mode for large 
amplitude oscillations. The 2P mode corresponds to 
1:2 type even sub-harmonic synchronization and 
hence any possibility of its presence for the current 
set of controlling parameters (Re = 50-180) may be 
ruled out. 

3.2   Damped Y-Only Motion 

The effect of structural damping ( = 0.044) on the 
transverse response can be realized from the 
displacement curve presented in Fig. 7a. The 
introduction of damping is found to eliminate non-
periodicity and a grossly periodic flow (Cl-Y insets 
of Fig. 7a and Figs. 7d) with single oscillation 
frequency prevails over the entire regime of Re or U*. 
While no appreciable impact is apparent on the range 
of synchronization, the peak value of response 

indeed decays; a fall from 0.5878D at Re = 70 with  
= 0 to 0.5417D at Re = 75 with  = 0.044 is observed 
(Table 5). The Re marking onset of lower branch, 
however, remains fixed at 65 as seen from the inset 
for St. The most interesting observation, however, 
relates to the hysteresis behaviour. The presence of 
damping eliminates quasi-periodicity as well as 
secondary hysteresis in the body response. This is 
perhaps the first reporting of a non-hysteretic 
response close to the upper extremity of lock-in for a 
vibrating body having smooth contours. However, 
solutions along forward and backward calculations 
diverge at Re = 55 leading to very weak primary 
hysteresis. The regimes of hysteresis at the junctions 
of initial-lower branch and lower branch-
decoherence involve periodicity or quasi-periodicity 
in flow (Fig. 4 of Navrose et al. 2014). We therefore 
conclude that the existence of hysteresis does not 
depend on the periodicity/quasi-periodicity of flow  
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Fig. 8. VIV of a rigid elliptic cylinder of m* = 1 and AR = 1.11 for 50≤Re≤180 and 5% blockage: 

variation of maximum transverse response with Re and U* for X-Y-motion. 

 

Fig. 9. Simultaneous undamped VIV with X-Y-motion of a rigid ellipse of m* = 1 and AR = 1.11 for 
50≤Re≤180 and 5% blockage: (a) time trace of X at Re = 166 and (b) variation of Xmax/D with Re 

and U*. 
 
 
or damped /undamped nature of VIV. Interestingly 
the Cl-Y phase diagrams are essentially single looped 
even in the presence of the third harmonic of St (Fig. 
7d for Re = 100). 

3.3   Undamped X-Y-Motion  

Overview of the Cylinder Response 
Similar to the Y-only cases discussed in 3.1 and 3.2, 
the response is composed of initial and lower 
branches followed by a regime of decoherence. The 
flow is mostly periodic. Fig. 8a plots the transverse 
response with Re and U*. Among the three cases 
considered, the magnitude of response and range of 
lock-in is maximum when the cylinder vibrates with 
an additional in-line DOF. The maximum value of Y-
response, 0.6703D, attained at Re = 80, is quite 
higher than the one (≈ 0.6D) reported by Prasanth 
(2009) near the fundamental synchronization of an 
undamped circular cylinder of comparable m* and 
identical flow conditions. Hysteresis is strong 
towards the upper limit of resonance whereas it 

completely disappears at low Re. Decoherence sets 
in at Re = 169. The instantaneous vorticity at 
representative Re of 167 and 168 are shown in the 
insets of Fig. 8. The mode is 2S for both cases. 

The in-line motion results from drag on the cylinder. 
Since drag is positive throughout, the in-line motion 
is executed only over x>0 region of the domain. 

Similar to ௗܥ̄ , the magnitude of time-mean X-
response is always positive. Fig. 9a showing the time 
trace of X-response at a representative Re of 166 
illustrates this. Fig. 9b depicts the relationship 
between the maximum X-response and Re (or U*). 
The X-response in general, is found to increase with 
Re. Three kinks marking the onset of lock-in, onset 
of QP and start of decoherence are identified in Xmax 
curve. Since X is measured from the fixed origin and 
mean X ≠ 0, the Xmax is not a real indicator of in-line 
displacement of the cylinder. In contrast, r.m.s. of the 
response is independent of the location of 
measurement reference and hence, the r.m.s. of in- 
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Fig. 10. Simultaneous undamped VIV with X-Y-motion of a rigid elliptic cylinder of m* = 1 and AR = 
1.11 for 50≤Re≤180 and 5% blockage: (a) root mean square of X- response plotted against Re and U* 

and trajectory of the cylinder center for Re = (b) 59, (c) 165, (d) 166, (e) 168 and (f) 169. 

 

 

line response (Xrms) is a better indicator of 
streamwise response. Fig. 10a plots the r.m.s. of X-
response. A sharp spike is identified at Re = 168. A 
change of slope of X (or of Y in Fig. 8) at Re = 166 
marks the onset of QP regime. This continues till Re 
= 168. In this regime, the oscillation amplitude 
increases in either direction. The decoherence 
initiates at Re = 169 and marks recovery of 
periodicity. We conclude that the spike in Xrms 
denotes the terminal point of lower branch. At this 
point, Ymax does not undergo any sharp variation (Fig. 
8). It therefore appears that Xrms can more effectively 
indicate the end of synchronization when QP is 
associated with a spike. 

Flow Periodicity and Wake Modes 

For Re = 59, 165, 166, 168 and 169 covering the 
resonance branches, trajectory of the center of the 
cylinder is shown in Figs. 10b-10f via X-Y phase 
plots. It is found that the flow/body motion is 
periodic for the initial and vast majority of lower 
branch. For Re = 166 and 168, the flow is quasi-
periodic (Figs. 10d and 10e). However, Y-response 
for the same set of Re along the reverse path is 
insignificant and trajectories of figure eight shape 
ensure periodic flow/body motion (inset of Fig. 10a). 
An interesting observation from X-Y phase plots in 
Fig. 10b-10f is that unlike the mean in-line response, 
transverse response is zero for each phase plot. This 
happens when the mean lift disappears. For such 
cases, vortex-shedding is symmetric, i.e., 2S or 
C(2S). 

Coupling Between X- and Y-Motion 

Mathematically, the X- and Y-motion are decoupled. 
This is obvious from the rigid body Eqs. (7) and (8). 
The current computations for small mass ratio of 
unity demonstrate that X-response is significant and 

it enhances the Y-response (compare Figs. 4a and 8a 
and also see Jauvtis and Williamson 2004). 

3.4   Comparison of Response 

At the onset of lock-in, the values of peak transverse 
response for all three cases of VIV are listed in Table 
5. Irrespective of the DOFs of the cylinder, 
synchronization for undamped VIV initiates 
invariably at Re = 53 or U* = 3.13. The values of 
response are also comparable. For damped VIV, 
lock-in gets delayed with associated decay in the 
value of Ymax. Table 5 also compares the magnitudes 
of peak transverse response. Addition of damping 
and X-motion increases the value of Re or U* 

associated with the maximum value of Ymax. A 
summary of the hysteresis behaviour at the lock-in 
boundaries presented in Table 5 indicates that no 
solution is fully hysteresis-free. As opposed to fully 
periodic flow/body motion for damped Y-only VIV, 
a narrow regime of quasi-periodicity towards the 
closure of lock-in exists for undamped VIV. Quasi-
periodicity for Y-only VIV exists along the forward 
and backward paths whereas for X-Y-motion, it is 
seen only along 'increasing Re'. For all three cases, 
initial to lower branch transition occurs at Re = 65. 
The St is found to attain its local maximum at this 
transition Re. 

In consistency with the findings of Jauvtis and 
Williamson (2004), the undamped VIV results of m* 
= 1 cylinder with Y-only and X-Y-motion differ 
significantly. An enhancement of maximum Y-
response by 14% results from inclusion of X-motion 
to Y-only motion (see columns 2 and 6 of Table 5). 
Besides this, the range of lock-in widens. This is 
quite obvious from Fig. 11. With Y-only motion, the 
range of lock-in stretches from Re = 53 to Re = 156. 
Addition of in-line DOF retains the lower limit to 53  
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Table 6 Summary of the transitions in low Re VIV of a rigid elliptic cylinder of m* = 1 and AR = 1.11 

VIV cases 
QP near 
onset of 
lock-in 

QP near end of 
lock-in 

Number 
of kinks 

Description of kinks 

Y-only, 

 = 0 
Absent 

Weak, for 
increasing and 
decreasing Re 

3 
First kink at Re = 53 marking onset of lock-in, 

Second kink at Re = 156 for end of lock-in, 
Third kink at Re = 158 near decoherence 

Y-only, 

 = 0.044 
Absent Absent 2 

First kink at Re = 55 marking onset of lock-in, 
Second kink at Re = 154 for end of lock-in 

X-Y, 

 = 0 
Absent 

Weak, only for 
increasing Re 

3 

First kink at Re = 53 marking onset of lock-in, 
Second kink at Re = 166 for onset of quasi-periodicity, 

Third kink at Re = 169 for beginning of decoherence and 
recovery of periodicity 

 

 

while shifts the upper limit further to 168. Finally, 
extent of secondary hysteresis with X-Y-motion 
overwhelmingly exceeds its counterpart from Y-only 
motion. 

 

 
Fig. 11. VIV of a rigid elliptic cylinder of m* = 1 
and AR = 1.11 for 50≤Re≤180 and 5% blockage: 

comparison of maximum transverse response 
for all three cases. 

 

3.5   Multiple Frequencies in Lift 
For all the three cases, the periodicity of transverse 
response is associated with a single dominant 
frequency (St). However, depending on Re (or U*), 
the periodicity of lift involves either a single 
frequency (St) or a pair of frequencies including St 
and its third harmonic (also see Willden and Graham 
2006 and Prasanth and Mittal 2008). The mono-
frequency lift is observed close to the limits of lock-
in whereas in the intermediate regime, the lift signal 
becomes periodic with two frequencies. Therefore, 
near the lock-in boundaries, the Cl-Y phase portraits 
are single looped whereas three loops in general, can 
be identified in the rest of the periodic lower branch.  
However, an exception to the three loop profile with 
presence of St and 3St is found for damped VIV.  

The orientation of Cl-Y phase plots provides an 
estimate of the phase angle between Cl (cause) and Y 
(effect). A phase plot located in the first and third 
quardrants implies an approximate in phase 
relationship between Cl and Y. A phase plot when 
resides in the second and fourth quadrants suggests a 
phase shift of about 1800. An exact in or out of phase 

relationship requires the phase portrait to reduce to  

Cl = ±Y/D line in phase plane. Figs. 4a and 7a suggest 
that the phase jump between Cl and Y for undamped 
and damped Y-only motion occurs for 95<Re<100. 
The inclusion of in-line motion delays the phase 
jump to 100<Re<110.  

3.6   Identification of Transitions  

A transition in VIV is reflected via trend change or 
presence of kinks in characteristic curves. For a 
freely vibrating square cylinder, Sen and Mittal 
(2016) showed that the number of transitions vary 
with m*. Table 6 lists the number of kinks in Y-
response and the associated Re marking their 
appearance. The onset of lock-in for low m*, such as 
1, does not necessarily mark the beginning of lower 
branch. The smoothness of the response curve for 
such low m* poses difficulty in identifying the initial 
to lower branch transition. The actual number of 
kinks is determined from St-Re curve. This number 
exceeds the one obtained from Y-Re curve by one 
(for initial to lower transition). 

4. CONCLUSIONS 

Irrespective of the degree-of-freedom, an 1:1 
synchronization between the transverse oscillation 
and vortex-shedding is observed for the entire range 
of Re. This suggests that the wake vortex mode must 
be a symmetric one with two vortices contributing to 
wake mode. The mode is 2S for low and C(2S) for 
high amplitude oscillations. It is CNW(2S) in the 
periodic initial branch. The resistance due to 
structural damping lowers the overall displacement, 
shortens the range of lock-in while removing the 
quasi-periodicity and secondary hysteresis. 
Introduction of damping and additional in-line 
motion alters the upper limit of lock-in. The onset of 
lock-in, however, displays no appreciable sensitivity 
to these alterations. In general, the resonance begins 
in the neighbourhood of Re = 53. This study possibly 
for the first time, presents a unique response curve 
devoid of secondary hysteresis in bodies with 
smooth contours. This happens for damped Y-only 
motion. We conclude that presence of damping 
eliminates the non-periodic components that appear 
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at the lock-in boundaries. The time traces of response 
become pure sinusoids, i.e. periodic associated with 
single frequency. Addition of damping or 
translational DOF retains the basic branching 
behaviour of response; the response in each case is 
composed of initial and lower branches only. As 
opposed to high m*, the onset of lock-in for low m* 
does not necessarily coincide with the beginning of 
lower branch. A kink in oscillation frequency next to 
lock-in marks the transition from initial to lower 
branch. VIV of a low m* ellipse  with Y-only and X-
Y-motion differs considerably. The spike in Xrms  
signifies the upper limit of lower branch. For an 
undamped square cylinder, Sen and Mittal (2015, 
2016) obtained complete hysteresis-free solutions 
for m* = 1. In contrast, undamped VIV results of a 
circle by Prasanth and Mittal (2008) and Prasanth 
(2009) suggest that secondary hysteresis is always 
present. Further studies are needed to capture fully 
hysteresis-free solutions (if they exist) in a freely 
vibrating body with curved contours. 
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