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ABSTRACT 

The paper addresses the influence of non-uniform heat source/sink in flow of couple stress fluid by a 
stretching cylinder in a thermally stratified medium. Thermal radiation effect in heat transfer analysis is also 
accounted. Conservation laws of mass, linear momentum and energy leads to nonlinear situation. Use of 
adequate transformations coverts the partial differential equations into the ordinary differential equations. 
Series solutions of the resulting equations are obtained for the velocity and temperature. Convergence of the 
solutions is explicitly checked. Impacts of various sundry variable son the velocity, temperature, wall shear 
stress and Nusselt number are examined through graphical illustrations and numerical values. The effect of β 
and Re on velocity field is qualitatively similar. For larger values of curvature parameter γ velocity enhances. 
Influences of S and R on temperature on the temperature distribution are opposite. Heat transfer at the surface 
decays when A and B increase. 
 
Keywords: Couple stress fluid; Thermal radiation; Non-uniform heat source/sink and thermally stratified 
medium. 

 
1. INTRODUCTION 

The stretched flow in presence of heat transfer is 
quite prevalent in several engineering processes 
such as in extrusion, melt spinning, hot rolling, wire 
drawing, manufacture of plastic and rubber sheets, 
glass fiber production, paper production, food 
processing, manufacture of polymer sheets and in 
the movement of biological fluids. It is now 
recognized that fluids in such engineering 
applications are not viscous. Hence a new stage 
about non-Newtonian materials in the evolution of 
fluid dynamic theory is in progress during the past 
few decades. The flow behavior in shearing for such 
materials cannot be characterized by Newtons' law 
of viscosity. An intensive research effort, both 
theoretical and experimental, has been devoted in 
the past to problems of non-Newtonian fluids via 
different aspects. Different from the viscous fluids, 
the non-Newtonian liquids cannot be described by 
employing one constitutive relationship between the 
stress and rate of strain. This is because of diverse 
properties of non-Newtonian fluids in nature. Due 
to this fact several constitutive equations of 
Newtonian fluids exist. The additional rheological 

parameters in such constitutive equations lead to the 
complexities in the resulting differential equations. 
Generally the differential equations in non-
Newtonian fluids are more subtle, higher order and 
complicated than the Navier-Stokes equations. The 
corresponding differential systems involving non-
Newtonian fluids offer interesting challenges to the 
modelers, computer scientists and mathematicians 
from different quarters. One may mention few 
relevant recent studies on this topic by Khan et al. 
(2014).  

Although the flow and heat transfer due to a 
stretching cylinder is important in wire drawing, hot 
rolling and fiber production but very less emphasis 
is given in this direction. The steady laminar flow 
caused by a stretching cylinder immersed in an 
incompressible viscous fluid with prescribed 
surface heat flux is investigated by Bachok and 
Ishak (2010) The authors computed the numerical 
solution in this study. Hydromagnetic flow by a 
permeable cylinder with heat and mass transfer has 
been reported by Chamkha (2011). He considered 
the problem in the presence of heat 
generation/absorption, chemical reaction and 
uniform transverse magnetic field. Mukhopadhyay 
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(2012) presented mixed convection flow of viscous 
incompressible fluid and heat transfer towards a 
stretching cylinder embedded in porous medium. 
An unsteady mixed convection boundary layer flow 
over a permeable non-linearly stretching vertical 
cylinder has been considered by Patil et al. (2012). 
They considered combined effects of buoyancy 
force and thermal diffusion in the presence of 
surface mass transfer. Effect of uniform magnetic 
field on slip flow by a stretching cylinder is 
examined by Mukhopadhyay (2013). 

Moreover, the study of heat transfer in the 
presences of thermal stratification is of considerable 
importance in geological transport, geothermal 
system, power plant condensation systems and 
volcanic flows. Stratification of the medium may 
arise due to a temperature difference which gives 
rise to a density variation in the medium. This is 
known as thermal stratification and it usually arises 
due to thermal energy input into the medium from 
heated bodies and thermal sources. Thermal 
stratification is a characteristic of all fluid bodies 
surrounded by differentially heated side walls. 
Analysis for the axisymmetric laminar boundary 
layer mixed convection flow of an incompressible 
viscous fluid towards a stretching cylinder 
immersed in a thermally stratified medium has been 
given by Mukhopadhyay and Ishak (2012). MHD 
boundary layer flow and heat transfer by an 
exponentially stretching sheet embedded in a 
thermally stratified medium are studied by 
Mukhopadhyay (2013). Murthy et al. (2013) 
investigated the flow, heat and mass transfer in a 
thermally stratified nanofluid with convective 
boundary condition. Paolucci and Zikoski (2013) 
investigated the free convective flow along a heated 
vertical wall immersed in a thermally stratified 
environment. 

Areas arises at high temperatures and acquaintance 
of radiative heat transfer becomes very vital for 
design of relevant equipment. For production of 
plastic sheets, gas turbines, missiles, space vehicles 
aircraft, nuclear power plants, satellites and foils. 
Slip flow of electrically conducting fluid with 
thermal radiation has been analyzed by 
Mukhopadhyay (2015). Flow and heat transfer 
analysis of MHD fluid in the presence of a uniform 
magnetic field with thermal radiation are 
investigated by Chaudhary et al. (2015). Sahu and 
Mishra (2015) reported radiative flow of a dusty 
fluid past a vertical stretching surface. Numerical 
study of boundary layer flows with heat transfer has 
been presented by Gireesha et al. (2015). They also 
take the effects of thermal radiation, Darcy porous 
medium and non-uniform heat source/sink. 
Theoretical influence of buoyancy and thermal 
radiation on magnetohydrodynamic flow past a 
stretching porous sheet has been studies by Daniel 
and Daniel (2015). 

The main purpose of present attempt is to 
investigate the flow and heat transfer characteristics 
by a stretching cylinder immersed in a thermally 
stratified medium. Effects of thermal radiation and 
non-uniform heat generation are also considered. 
The flow equations are modeled for the constitutive 

relations of couple stress fluid. In fact the couple 
stress fluid shows the size dependent effect in the 
presence of couple stresses, body couples and non-
symmetric stress tensor. The consideration of 
couple stress fluids has relevance in a number of 
processes that occur in industry such as the 
extrusion of polymer liquids, cooling of metallic 
plate in a bath, colloidal solutions, solidification of 
liquid crystals etc. The resulting nonlinear flow 
problem is solved by Homotopy analysis method 
(HAM) (Liao, 2009; Hayat, 2014; Hayat, 2013, 
Maleki, 2014; Rostami, 2014; Sheikholeslami, 
2014; Farooq, 2015, Hayat, 2015). Results for 
velocity and temperature are graphically analyzed 
while the skin friction and local Nusselt number are 
examined through numerical values. 

2. FORMULATION 

We consider the steady two-dimensional flow of 
couple stress fluid embedded in a thermally 
stratified medium. Non-uniform heat source/sink 
and thermal radiation effects are present. The 
stretched cylinder is placed along the axisx  and

axisr   is taken normal to it. The boundary layer 
equations comprising the conservation laws of 
mass, linear momentum and energy can be written 
as follows:  
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in which   is the kinematic viscosity,   is the 

fluid density, T is the fluid temperature, pc  is the 

specific heat, 
316

3

T T
r rk

q
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
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
   is the radiative heat 

flux , k  is the mean absorption coefficient,  is 

the Stefan-Boltzman constant, k  is the thermal 
conductivity of the fluid and q  is the rate of 
internal heat generations/absorption coefficient. The 
dimensionless from of q   can be put in the form 
mentioned below [14] 

( ) ( ) ,w
kb

q A T T B T T


 
 
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where A  and B  are parameters of space and 
temperature dependent internal heat 
generation/absorption respectively. It is noted that 
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the case 0A   and 0B  corresponds to internal 

heat generation while 0A   and 0B  holds for 

internal heat absorption, wT is the temperature of 

sheet and T  is the constant temperature for away 

from the sheet. The subjected boundary conditions 
are 

( ),   0,     at  ,wu U x v T T r a                     (5) 

2

2
0,   0  0    as .

u u
u T T r

r r


 
    

 
             (6) 

In above equations 0( ) /U x U x l  is the stretching 

velocity, 0( ) /wT x T bx l  is the prescribed surface 

temperature and  0( ) /T x T cx l  is the variable 

ambient temperature. Further U0 is the reference 
velocity, 0T  is the reference temperature, l  is the 

characteristic length and b and c are the positive 
constants. Considering (Bachok and Ishak, 2010; 
Chamkha, 2011; Mukhopadhyay, 2012; Patil, et al. 
2012; Mukhopadhyay, 2013; Mukhopadhyay and 
Ishak, 2012). 

ݑ = ଴݈ܷݔ ݂ᇱ(ߟ),         ݒ = − ݎܽ ൬ʋܷ଴݈ ൰భమ  .(ߟ)݂
(ߟ)ߠ = ்ି ಮ்்ೢ ି బ் ߟ        , = ௥మି௔మଶ௔ ቀ௎బ௟ʋቁଵ/ଶ

                    (7) 

Equation (1) is identically satisfied and Eqs. 

 2 6 become (1 + ᇱᇱᇱ݂(ߛߟ2 + ᇱᇱ݂ߛ2 − ݂ᇱଶ + ݂݂ᇱ′ −8ߛܴ݁ߚଶ݂ᇱᇱᇱ + 1)ߛ8 + 1) ݒ݂݅(ߛߟ2 +  ଶ݂௩(ߛߟ2
(8) 
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Where 

β=η ̃/〖μa〗^2, dimensionaless couple stress 
parameter 

R=(4〖〖σ^* T〗^3〗_∞)/(kk^* ),Radiation 
parameter 

S=c/b,                      Stratification parameter 

γ=√(lʋ/(a^2 U_0 ),)     Curvature parameter 

Pr=〖μc〗_p/k,                Prandtl number 

Re=(U_0 a^2)/ʋ,              Reynold number 

The wall shear stress is defined by 
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Nusselt number xNu is given by 

, 
( )

w
x

w

xq
Nu

k T T



 

316
1

3
w

r a

T T
q k

rk k

 





           
 

1/2 4
or Re (1 ) (0).

3x xNu R                            (12) 

3. SOLUTIONS 

Initial guesses and auxiliary linear operators for the 
velocity and temperature fields are 

0 0( ) 1 ,   ( ) (1 ) ,f e S e                         (13) 
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where iC ( 1 5)i    are the constants. 

The zeroth order deformation problems are 
represented by the following equations 
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For 0p   and 1p  we have the following 
equations 

0 0
ˆ ˆ( ;0) ( ),   ( ,0) ( ),f f         

ˆ ˆ( ;1) ( ),    ( ,1) ( ).f f                                 (23) 

When p  varies from 0  to 1then ( , )f p and

( , )p  approach from 0 0( ), ( )f     to ( )f   and 

( ).  The series of the velocity and temperature 
fields through Taylor's expansion are chosen 
convergent for 1p   and thus 

0
1

0

( ) ( ) ( ),   

1 ( ; )
 ( ) ,

!

m
m

m

m m
p

f f f

f p
f

m

  










  






                (24) 

0
1

0

( ) ( ) ( ),  

1 ( ; )
 ( ) .

!

m
m

m

m m
p

p

m

     

  








  






                            (25) 

The resulting problems at thm order can be 
presented in the following forms  
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߯௠ = ቄ0                  ݉ ൑ 11                  ݉ ൐ 1. 
The general solutions ( , )m mf   comprising the 

special solutions ( , )m mf   are 
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4 5( ) ( ) .m m C e C e                                (33) 

4. CONVERGENCE OF THE 
SOLUTIONS 

Convergence of series solutions depends upon the 
non-zero auxiliary parameter  . The auxiliary 
parameter   in Eqs. (24  and 25)  can be regarded 
as an iteration factor that is widely used in 
numerical computations. It is well known that a 
properly chosen iteration factor can ensure the 
convergence of iteration. As pointed by Liao 
(2009), the valid region of  is a horizontal line 
segment parallel to horizontal axis. Figs. 3 and 4 
witness that the admissible values of f and  are

1.1 0.3f     and  1.1 0.2   
respectively. 

 

 
Fig. 1. Residual error for velocity field. 
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Fig. 2. Residual error for temperature fields. 

These series solutions converge for the whole 
region of   when f   0.7 and 0.8   . Table

1 depicts the convergence of series solutions. It is 

confirmed here that 20th -order approximations are 
enough for the convergence of velocity and 
temperature profiles. Fig. 1 and 2 show the residual 
error for velocity and temperature field respectively. 
 

 

 
Fig. 3. Ћf curve for velocity field. 

 

 
Fig. 4. ћθ curve for temperature field. 

 

 
Fig. 5. Influence of β on velocity field. 

 

 
Fig. 6. Influence of Re on velocity field. 

 

5. DISCUSSION 

Study of different pertinent parameters on 
physical quantities of interest is presented in this 
section. Hence for this purpose we plot Figs. (5-
15) for the velocity ( )f   and temperature fields 

( )  . Fig. 5 shows the influence of couple stress 

parameter   on the velocity field. It is clearly 
seen from this Fig. that the velocity field is 
decreasing function of . In fact couple stress 
parameter depends upon the couple stress 
viscosity  and this couple stress viscosity acts 
as a retarding agent which makes the fluid more 
denser resulting into a decrease in the velocity of 
the fluid. Fig. 6 illustrates the effect of Reynolds 
number on ( )f  . As Reynolds number is the 
ratio of the inertia force due to wall stretching to 
the viscous force. Therefore for larger values of 
Reynolds number the velocity decreases to zero 
as  increases and flow decays very slowly to 

the ambient. Variation of the velocity field ( )f   
for different values of curvature parameter   is 
displayed in Fig.7. Curvature parameter   

increases the velocity in the region 1 6  . 
Fig.8 depicts the effect of couple stress parameter 
 on the temperature field ( )  . Temperature 
profile and thermal boundary layer thickness are 
enhanced for larger values of  . Influence of 
Reynolds number on the temperature field is 
displayed in Fig. 9. 

 

 
Fig. 7. Influence of γ on velocity field. 
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Fig. 8. Influence of β on temperature field. 

 
Fig. 9. Influence of Re on temperature field. 

 

Table 1  Convergence of series solutions for 
different order of approximations when 0.6, 

S  Re  0.1,  Pr 1.0, 0.2,R 
0.1,A B   0.7f    and 0.8.    

Order of 
approximations −݂′′(0) (0)′ߠ 

1 1.0438 1.1224 

5 1.0684 1.1304 

10 1.0683 1.1306 

15 1.0681 1.1307 

20 1.0680 1.1308 

25 1.0680 1.1308 

30 1.0680 1.1309 

35 1.0680 1.1309 

40 1.0680 1.1309 

45 1.0680 1.1309 

 
It is noticed that enhancement in Reynolds number 
leads to increase in temperature and thermal 
boundary layer thickness. Fig. 10 shows the 
influence of curvature parameter on ( )  . 

Temperature rises significantly after some larger 
distance from the wall when  increases. Fig. 11 

plots the influence of S on the temperature field
( )  . It is observed that the temperature in the 

boundary layer decreases for larger values of 
stratification parameter. Physically this is due to the 
fact that buoyancy factor reduces within the 
boundary layer when we increase stratification 
parameter S . Also ambient thermal stratification 
causes a significant decrease in the temperature. 
The effect of thermal radiation parameter R  on the 

temperature field is shown in Fig12. Temperature 
profile is increasing function of R . Increase in the 
thermal radiation parameter enhances the thermal 
boundary layer thickness. Fig.13 plots for the 
temperature field for different values of A . By 
analyzing the graphs it reveals that smaller values 
of A decrease the temperature field. Fig. 14 shows 
the effect of temperature dependent heat source/sink 
parameter B on ( )  . Temperature profile is 

decreasing function of B when 0.B  Here more 
energy is absorbed and in result the temperature 
significantly drops within the boundary layer. It is 
evident from Fig. 15 that the temperature field 
increases when A  and  B  are positive (in case of 
internal heat generation). This is due to the fact that 
for larger values of A and B the thermal boundary 
generates the energy and this causes an increases in 
the temperature. 

 

 
Fig. 10. Influence of γ on temperature field. 

 

 
Fig. 11. Influence of S on temperature field. 

 
Table 2  shows the numerical values of wall shear 
stress. This table indicates that the surface exerts 
drag force on the fluid. Enhancement in couple 
stress parameter ( ) , curvature parameter ( ) and 

Reynolds number (Re) lead to increase the 

magnitude of wall shear stress. Table 3 illustrates 
the effect of different physical parameter of interest 
on the Nusselt number. The fluid parameter ( )  

and stratification parameter ( )S  decrease the value 
of Nusselt number. Furthermore the Nusselt number 
for negative values of A  and B (i.e. internal heat 
absorption) increases when compared with the 
positive values of A  and B  (i.e. internal heat 
generation). Also see Fig. (16-19) 
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Fig. 12. Influence of R on temperature field. 

 

 
Fig. 13. Influence of A on temperature field. 

 

 
Fig. 14. Influence of B on temperature field. 

 

 
Fig. 15. Influence of A and B on temperature 

field. 

 
Fig. 16. Influence of S on Nusselt number. 

 

 
Fig. 17. Influence of R on Nusselt number. 

 

 
Fig. 18. Influence of A on Nusselt number. 

 

 
Fig. 19. Influence of B on Nusselt number. 
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Table 2 Values of wall shear stress for different 
parameters 

β γ Re −݂′′(0) 

0.0   1.0366 

0.4   1.0571 

0.8   1.0796 

0.6 0.0  1.0337 

 0.1  1.0680 

 0.15  1.0849 

 0.1 0.0 1.0366 

  0.12 1.0748 

  0.13 1.0784 

 

Table 3 Values of Nusselt number for different 
emerging parameters 

β γ Re R Pr S A B ܴ݁௫ଵ/ଶܰݑ௫ 

0.0 0.1 0.1 0.1 1.0 0.1 -0.1 -0.1 1.2230 

0.4        1.2159 

0.7        1.2101 

0.6 0.0       1.1609 

 0.1       1.2121 

 0.12       1.2221 

  0.0      1.2229 

  0.1      1.2121 

  0.13      1.2083 

   0.0     1.1058 

   0.2     1.2119 

   0.4     1.3030 

    1.2    1.3328 

    1.5    1.5004 

    1.7    1.6046 

     0.0   1.2669 

     0.2   1.1572 

     0.3   1.1022 

      -0.1  1.2121 

      0.0  1.1467 

      0.1  1.0815 

       -0.1 1.2121 

       0.0 1.1502 

       0.1 1.075 

 

6. CONCLUSIONS 

Effects of thermal radiation and non-uniform heat 
source/sink in flow of couple stress fluid by a 
stretching cylinder embedded in a thermally 
stratified medium are examined. Main findings of 
the presented analysis are mentioned below. 

 Velocity ( )f   decays for larger values of 

couple stress parameter  . 

 Reynolds number Re  increases the velocity 
and associated boundary layer thickness. 

 Velocity and boundary layer thickness increase 
for larger curvature parameter. 

 Effects of curvature parameter , couple stress 

parameter   and Reynolds number Re  on 

the temperature field are qualitatively similar. 

 Stratification parameter S  decays the 
temperature and temperature gradient. 

 Temperature and thermal boundary layer 
thickness increase when thermal radiation 
parameter R increases. 

 Magnitude of wall shear stress increases 
through larger values of  ,   and Re.  

 Nusselt number decays considerably when A  
and B  increase. 
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