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ABSTRACT 

This study proposes a semi-analytic approximation to the laminar boundary layer growth in a polarized 
pressure field with temperature gradient represented by the joint Blasius-energy equation. We illuminate that 

( )f  is a probability density function (PDF) approximated by an amended Gaussian PDF with zero mean 

and standard deviation 2.18  . This implies a diffusive structure for the molecular momentum conversion 
as well as the energy flux in the boundary layer. A new limit for the boundary layer edge is also presented. 
Results suggest an augmented boundary layer when compared to accepted values in the literature. We also 
reproduce the inverse proportionality of the free stream velocity to the diffusion of both momentum and 
energy. 

Keywords: Blasius laminar flow; Semi-analytic approximation; Boundary layer thickness; Momentum 
diffusion; Energy diffusion. 

NOMENCLATURE 

a constant determined to be 
9.24 (\ / 0)sqrt nu U   

pc  fluid specific heat  

0c   2
0= erf 2a U  

   

bD  uniform-pressure momentum constant 

tD  uniform-pressure thermal constant  

k  thermal conductivity  
*k  mean absorption coefficient  

0k  = 3NR/(3NR+4) 

RN  * * 3. / 4k k T  Radiation parameter  

p  piezometric pressure  

Pr
  modified Prandtl number 

Pr  Prandtl number 

0U  free stream velocity  

T  fluid temperature  

T  temperature of the ambient fluid  

wT  temperature of the wall  

u  streamwise velocity  

v  crosswise velocity  
 
  density of fluid  

( )f   = 
0/u U   

  thermal diffusivity  
  kinematic viscosity  
  dimensionless temperature defined in 

Eq. (6) 
*  Stefan–Boltzmann constant  

  0 /y U x  

   


,  amended Gaussian  PDF defined in 

Eq. (9) 
  =0 (Mean of the Gaussian 

distribution)   

   ,  Gaussian PDF with mean   and 

standard deviation   

  =2.18 (Standard deviation of the 
Gaussian distribution) 

  boundary layer thickness 
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1. INTRODUCTION 

The thorough investigation of inviscid flows led to 
the increased awareness and development of the 
boundary layer concept (Schlichting, 1979). This 
notion, which was largely evolved by the work of 
Prandtl, introduced various levels of simplification 
of the governing equations of fluid flow (Hirsch, 
2007). A direct consequence was the feasibility of 
simulation of industrial-scaled applications which 
used to be recalcitrant by the full Navier-Stokes 
equations (Chen et al., 1984; Raptis et al., 2004; 
Rashidi and Erfani, 2011; Lu and Law, 2014). 

One of the most spectacular examples of boundary 
layers was studied by Blasius almost a century ago. 
It was based on the low-speed laminar flow passing 
over a flat plate in a polarized pressure field 
(Blasius,  

1950). Along with experimental visualizations, 
Blasius exploited the Prandtl equations in 
conjunction with assumptions about the absence of 
pressure gradient and similarity of velocity profiles 
to elaborate the so-called Blasius equation. With the 
help of recursive power series, Blasius (1950) 
solved it with satisfying levels of accuracy. 
Subsequently, Howarth (1938) performed the 
Runge-Kutta method to provide an enhanced 
numerical scheme. 

Due to the engineering significance and 
mathematical value of Blasius equation, there has 
appeared an extensive body of literature 
surrounding it. For instance, Healey (2008) 
investigated the effect of a controlled point-source 
disturbance in the Blasius laminar regime. By 
means of a wave-envelope steepening mechanics, 
they illustrated the extent to which the flow 
becomes nonlinear at low amplitudes. Kuo (2004) 
presented the solution to the momentum and energy 
equations of Blasius flow in the presence of 
temperature gradient. Zuccher et al. (2006) 
suggested a numerical scheme to solve the whole 
boundary layer equations with the aim of 
determining the maximum energy growth in a 
surging instable Blasius flow. Abdallah and 
Zeghmati (2011) examined the relative tendency to 
heat and mass transfer through the boundary layer 
when exposed to buoyancy gradients in the vicinity 
of a cylindrical surface. Their results verified the 
dominance of mass transfer over energy scattering 
when the ratio of Prandtl to Schmidt number 
witnessed a significant plummet.   

On the mathematical side, major advances in 
numerical/analytical techniques have been made to 
the need for an enhanced quantification of fluid 
motion problems. Such spectrum is very broad 
ranging from the revelation of homotopy analysis 
(Liao, 1992; Liao, 1999; Bég et al., 2012; Malvandi 
et al., 2014; Hassan and Rashidi, 2014 and 
Makukula and Motsa, 2014), differential transforms 
(Rashidi et al., 2013 and Ganji et al., 2016) and 
Adomian decompositions (Adomian, 1994; Wang, 
2004; Aski et al., 2014 and Akpan, 2015) to a 
combination of these and analogous techniques 
(e.g., coupled integral transform and functional 

analysis (Lari and Moeini, 2015) and the joined 
differential transform method with the Padè 
approximants (Rashidi et al., 2013 and Thiagarajan 
and Senthilkumar, 2013). An important outcome 
was investigation into more complex physical 
problems. For example, the boundary layer 
development was examined under the influence of 
magnetic response, with results showing the 
possibility of devaluating the skin friction in an 
orthogonal magnetic field configuration 
(Thiagarajan and Senthilkumar, 2013; and Vyas and 
Srivastavat, 2012). In addition, several works 
arrived at a simulation for the behavior of non-
Newtonian and thixotropic fluids in the boundary 
layers (Sadeqi et al., 2011; Pan et al., 2016 and 
Ashraf et al., 2016) which have been unknown until 
quite recently.  

As a sequel to this corpus, our goal here is to 
suggest a semi-analytic approximation analogous to 
results in Ahmad and Al-Barakati (2009), Yun 
(2010), Savas (2012) and Bataller (2008) with the 
aim of providing more detailed analysis of the 
laminar boundary layer physics in a polarized 
pressure field with temperature gradient. The reason 
behind the appeal to this approximation, which 
makes it preferable to the comparable works, lies in 
its simplicity; In fact, we will justify that through 
this closed-form approximation, the important 
properties of boundary layer thickness/diffusion can 
be investigated with little computational expense. 

2. GOVERNING EQUATIONS 

The Prandtl equation (Bird et al., 2001, p. 135] 

2

2

1u u dp u
u v

x y dx y



  

   
  

  (1) 

lays the theoretical foundation to identify the 
external flow characteristics. Here, u is the 
streamwise velocity, v the crosswise velocity, p the 
piezometric pressure and  the kinematic viscosity. 
In the case of a uniform pressure field through the 
boundary layer, Prandtl equation reduces to the 
Blasius equation (Bird et al. 2001, p. 138] 

     
 

0

0

2 0

u
f

U
f f f

U
y

x


  




 

  



 (2) 

Considering the no-slip condition on the plate (u = v 
= 0 at y = 0) and an asymptotically-reached 
potential flow outside the boundary layer (u = U0 at 
y = ), Eq. (2) will get subject to  

0 0
0 0 1f f f    

      (3) 

In addition, thermal radiation in the Blasius regime 
is typically formulated as (Bataller, 2008) 

2

2
0

T T T
u v

x y k y

  
 

  
 (4) 
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where T is the temperature, / pk c   the 

thermal diffusivity, k the thermal conductivity, 

pc the fluid specific heat, k0 = 3NR/(3NR+4) where 

* * 3/. 4RN k k T   is the radiation parameter, 

*k the mean absorption coefficient and * the 
Stefan–Boltzmann constant. This PDE can be 
transformed to (Bataller, 2008) 

0Pr
( ) ( ) ( ) = 0

2

k
f       (5) 

where Pr is the Prandtl number and  the 
dimensionless temprature defined as 

= w

w

T T

T T







 (6) 

where wT  is the temperature of the wall and T  

the temperature of the ambient fluid. The boundary 
conditions for Eq. (5) are 

| |=0 =
= 0; = 1

 
 


 (7) 

resulting from the temperature equilibrium at the 
interface of solid-fluid boundary (T = Tw at y = 0) 
and the prevailing uniform ambient temperature at 
the far-field. 

3. SEMI-ANALYTICAL 
APPROXIMATION 

The present approximation is based on the 
hypothesis that a dimensionless quantity taking 
values in the interval [0, 1] can be regarded as a 
cumulative distribution function (CDF). By 
comparing the CDF against numerical schemes, we 
propose a closed-form solution to the ODE in this 
section, and portray some of its outcomes in section 
(4). 

On the grounds of the important property (Iacono 
and Boyd, 2015)  

       
0

0 1f d f d f f   


 

          (8) 

f ″() can be thought of a probability density 
function (PDF) (Roussas, 2003, p. 34). Vias and 
Srivastava (2012) and Iacono and Boyd (2015) 
justified that f″() attains an exponential decline 
when  linearly grows. This provides us with a 
criterion to the need for a proximate estimation of 
the PDF. For this purpose, we define an Amended 
Gaussian function as  

   2 0

0 0

   
  



   


,
,  (9) 

where        2 22 2
e

    
  

 
, is the PDF 

of a Gaussian variable with mean  and standard 
deviation  (Roussas, 2003). The function (9) is 
called the Amended Gaussian PDF since the 

negative branch of the Gaussian PDF is cut and the 
positive values are doubled to keep the 

integral ˆ( , ) = 1  


 (analogous with the integral 

in Eq. (8) and with the definition of a probability 
density function). As a result of a qualitative 
interpolation, it can be seen that the option 0   

and 2.18   results in a close consistency between 
the two PDFs (see Fig. (1)). Therefore,  

ˆ( ) = (0, )f     (10) 

 

  
Fig. 1. Close consistency between the density 

function f ''
\sigma=2.18

() and the Amended 
Gaussian PDF in Eq. (9). 

 

This can be validated by solving ODE (10) to obtain 
the closed-form approximation  

2

22 2
( ) = erf

2
f e





   

  

 
 
   

    
 

 (11) 

 

 
Fig. 2. Comparison of the suggested 

approximation f=2.18
() with the comparable 

schemes in Howarth (1938), Ahmad and Al-
Barakati (2009) and Savas (2012). Note that the 

results are coincident. 
 

which is fully concordant with the exact solution of 
Blasius equation (e,g., Howarth, 1938 (numerical), 
Ahmad and Al-Barakati, 2009 and Savas, 2012 
(semi-analytical)) as shown in Fig. (2).  
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Fig. 3. Visualization of the dimensionless vertical and mainstream velocities near the flat plate (lying in 

the xz plane) in the Blasius regime with U0 = 0.1 m/s and  = 106 m2/s. 

 
 

Eqs. (11) and (1) enable us to provide a closed-form 
representation of the velocity vector as 

0
0

2

0.5
( , ) = erf ( , ) =

2

2
erf ( )

2

U y
u x y U v x y

x





 

 
  
 

  
 

;

 (12) 

Indeed, these formulas are of practical use in terms 
of performing separate mathematical/programming 
operators, as opposed to the typical coupled 
relationship existing in the literature [e.g., Hirsh, 
2007, p. 619] 

0 0
1

( , ) = , ( )
2

u v U f U x f f      
 (13) 

An immediate fruit of this approximation is the 
velocity field visualization, as seen in Fig. (3), with 
the advantage of eliminating extra computational 
expense. The plots correspond to U0 = 0.1 m/s and 
 = 106 m2/s. From the graphs we observe that the 
crosswise velocity plays a marginal role inside the 
boundary layer (bellow the dashed-curve) compared 
with the streamwise component. In fact, computing 
the boundary layer edge is another outcome of this 
approximation that will be discussed in subsection 
(4.1). 

4. SOLUTION OUTCOMES  

4.1.  Determination of Boundary Layer 
Locus 

Our goal here is to identify the boundary layer edge 
by the Eq. (12). Although there is no orthodox 
measurement of the viscous region edge due to its 
asymptotic attenuation (Schlichting, 1979), it is 
generally accepted to be the locus of points at which 
the streamwise velocity attains 99% of the potential 
velocity (Schlichting, 1979, p. 140). 

Here, we suggest a new measure u = 0.999980U0, 
with the reason behind whose appeal becoming 
apparent in later paragraphs, and base the 

calculations on the criterion 0| |=V U


, where | |V


is 

the magnitude of velocity field. The aim here, 
therefore, is to solve 

2 2
2 20
0 02 2

2
20
02 2

erf 0.25
2

2
=erf ( )

2

U y
U y U

x x

U
Uy

x

 

  

 
  

 

 
 

  

 (14) 

where both sides of equation 0| |=V U


has been 

squared. Solving the quadratic Eq. (14) leads to the 
relation 

 
 

0
2

4 2 2 24 2 4 2

4 2 2

erf =
2

0.5 0.54 4

0.25

U
y

x

x yx y

x y

 

  



 
  
 

     



 (15) 

Since the boundary-layer thickness increases as the 
square root of the streamwise coordinate (Bird et 

al., 2001, p. 137), we set =y a x  where ’a ’ is a 
constant to be determined. As a result, the right-
hand side of Eq. (15) is simplified 

to  2
0erf 2a U  

  , which is constant for any 

values of parameters involved. For the reason of 

convenience, we denote  20 0= erf 2c a U  
  . 

Equation (15) then can be written as 

 
 
 

4 2 8 4 6 4 4
0 0

2 2 8 2 6 2 8 2 4
0 0

2 2 8 8
0

0.0625 0.25 0.25

0.5 0.25

= 0

a c a c a

x a c a c a a

x c

  

   

 

  

   



 (16) 

Equation (16) holds when the coefficients of 
variables xn (n  {0, 1, 2}) vanish. The 
simultaneous solution of this system indicates that 
c0 = 1 and  = 1.41 (note that among the three, only 
two equations are independent). The constant  
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then can be calculated from the definition of c0. At 
the same time, it is noted that these values introduce 
a slight deviation from the expected value  = 2.18 
corresponding to f 2.18 (). This issue can be 
addressed by providing a smooth solution to the 
system (16). By setting  = 2.18, Eq. (16) is 
simplified into  

 

 

 

4 2 4 4
0 0

22 2 2 2
00

2 2
0

31.881 26.833 5.646

107.334255.048 127.524 22.585

510.096 510.096 = 0

a c a c a

x

a ca c a a

x c

 



  

 

                      (17) 

It is worth to note that erf(x) is a monotone 
increasing function with a rapid rate of convergence 
to unity for large enough arguments (limx erf(x) 
=1). A computer algebra package shows that erf (3) 
 1< 5105. If an acceptable accuracy is satisfied 
by 0.005% error at this stage (we shall show that 
this amount of error results in the negligible 2% 
error in later equations), we are able to set c0 = 
0.999980. One should bear in mind that c0 is the 
dimensionless velocity u/U0 combined with the 
assumption that boundary layer locus is a parabola. 
This demonstrates that the intuitive criterion u = 
0.99U0 in the boundary layer literature (Schlichting, 
1979; Bird et al., 2011) has been changed to u = 
0.999980U0 in this work. 

With this attribution, the coefficients of x and x0 
become of orders O(a2) and O(a4) respectively, being 
negligible on the level of reality in which 0.1 m/s < U0 < 100 
m/s and  = 106 m2/s. Therefore, the predominant 
source of error is the coefficient of x2, with a nearly 
2% error (acceptably small). This verifies that the 
assumption of parabolic growth of y versus x still 

remains valid for  = 2.18. 

The final outcome, therefore, is the determination of 
boundary layer locus as 

0
= 9.24895

x
y

U


 (18) 

where a has been derived by 2 1
0 02 erf ( )U c  . 

It should be mentioned that this result is in 
agreement with the results in Schlichting (1979) in 
terms of dimension and relation among the 
parameters involved. However, the value suggested 
in Eq. (18) is nearly twice higher than Schlichting 

(1979, p. 140) ( 0( ) = 5x x U  ). The distinction 

mainly arisen from the fact that in Schlichting 
(1979) u = 0.99U0 is accepted as a premise without 
any recourse to mathematical analysis. Although 
setting u = 0.99U0 here results in an approximately 
the same factor as that in Schlichting (calculated to 

be 0= 5.6y x U ), the current outcomes, being on 

the grounds of merely three 

assunptions 0| |=V U


, y x and u = 0.999980U0, 

are believed to provide more reasonable estimations 

of the viscous zone. In Fig. 3, we have plotted the 
boundary layer parabola by the dashed-line. 

4.2.  Momentum and Energy Diffusion 

Our goal here is to infer the momentum and energy 
conservation equations in the diffusion modes from 
the previous approximation. A direct calculation 
using Eq. (11) in conjunction with the chain rule 
shows that 

2

2
= b

u u
D

x y

 
 

 (19) 

where Db = 2/(2U0) represents the effect of 
mollecular mometum flux in the laminar visous 
zone. Since this equation is valid for the absence of 
pressure gradient, we call it the uniform-pressure 
momentum constant. Equation (19) describes a 
stationary diffusion process in the 2-dimensional 
spatial domain (the reader can compare with the 
typical time-dependent heat diffusion in Logan 
(2004)). Here, the constant of diffusion (Db) 
depends on the viscosity and the upstream velocity; 
the more the fluid is viscous and its flow retarded, 
the more the momentum flux transpires in the 
control volume. This leads us to a significant 
inference that the transport of momentum in the 
laminar boundary layer is governed by a diffusion 
process. 

Furthermore, applying the chain rule to Eq. (6) 
leads to 

= 0.5
T y T

x x y

 


 
 (20) 

Solving this equation for y/x and substituting to the 
vertical and mainstream velocity components in Eq. 
(12) shows that 

0 2
0

( , ) 2
( , ) = .

u x yT x
v x y U

UT y 
        

 (21) 

Finally, combination of Eq. (21) and Eq. (4) results 
in the differential equation 

2

2
= t

T T
D

x y

 
 

 (22) 

where  2
0 02=t k UD  is the uniform-pressure 

thermal constant since it represents how heat 
diffuses between the plate and the physical infinity 
in the paucity of pressure gradient. Indeed, the 
increased radiation parameter and free stream 
velocity would be impediments to the diffusion of 
heat, while the thermal diffusivity is proportionally 
correlated, predicting a linearly grown flux as a 
consequence of a steady improvement in the 
thermal diffusivity value.  

These results conform well with Hirsch (2007, p. 
96) demonstrating that the Navier-Stokes equations, 
as a consequence of boundary layer approximations, 
will reduce to relationships very close to standard 
parabolic second order PDEs. However, to the 
authors' knowledge, this study is the first one that 
explicitly presents the momentum/energy laws in 
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the Blasius regime in the form of diffusion 
equations. Interestingly, by dividing the uniform-
pressure momentum constant by the uniform-
pressure thermal constant, we attain an indication 
for the boundary layer relative readiness to transport 
momentum/energy. This ratio introduces a modified 
Prandtl number  

0Pr b

t

D
k

D




 


 (23) 

which is analogous with the definition of Prandlt 

number Pr



  for a typical flow system (Bird et 

al., 2001, p. 268). However, the modified form of 
Prandtl number includes the intrinsic effect of 
radiation parameter as well. It is noted that for large 
values of radiation parameter, the Pr


 asymptotes to 

Pr .  

Finally, we support the validation of some of our 
results by means of comparison against higher level 
approximations seen in Bataller (2008). If we 
substitute Eq. (11) for f () in Eq. (5), there appears 
a linear second-order ODE having  as the only 
unknown involved. This can represent a remarkable 
simplification in the solving process since the 
calculation of  becomes decoupled from the 
calculation of f (). Table (1) shows the solution of 
this ODE, representing the value of (0) in the 
current work and Bataller (2008), which the former 
has been obtained by typical numerical methods in 
ordinary differential equations. A good agreement is 
observed between the results. This also suggests 
that the problem of thermal radiation would be 
more tractable, in terms of investigating its physics, 
if we benefit from this or similar semi-analytical 
approximations.  

 

Table 1 Comparison of the solutions to Eq. (5) 
obtained in this work and in Bataller (2008) with 

K0 = 1 

Pr


 
(0) 

Bataller (2008) Current Study 

0.1 - 0.14035 

0.4 - 0.24094 

0.7 0.29268 0.29607 

5 0.57669 0.59023 

10 0.72814 0.74735 

50 1.24729 1.28518 

100 1.57183 1.62100 

 

5. CONCLUSIONS 

In this study, we investigated the basic properties of 
laminar flow regime near a flat plate governed by 
the Blasius ODE. By providing a semi-analytical 
approximation, we calculated the thickness of 

viscous region. It was shown that, due to the 
amended criteria suggested in this work, the 
boundary layer edge expands to include almost 85% 
more volume in the vicinity of the flat plate. We 
also introduced a uniform-pressure thermal 
constant and a uniform-pressure momentum 
constant for the two suggested energy and 
momentum time-independent equations. 
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