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ABSTRACT 

Flow past two tandem triangular cylinders forced to oscillate transversely in a uniform flow, is numerically 
investigated at a Reynolds number Re = 100. The incompressible Navier-Stokes equations in Arbitrary-
Lagrangian-Eulerian formulation are solved by four-step fractional finite element method. The two cylinders 
are oscillated in phase and their motions are limited to low amplitudes with a wide frequency range. This 
study focuses on two typical spacings between the two cylinders, corresponding to vortex suppression (VS) 
regime and vortex formation (VF) regime respectively for flow past two stationary cylinders. Numerical 
results show that the response characteristics of two cylinders are significantly affected by the spacing, 
oscillation amplitude and frequency. For the VS spacing, both cylinders have a wider lock-on region, 
especially at relatively larger amplitude and higher frequency; the downstream wake patterns are mainly 2S 
and a combination of 2S* and 2S. However, for the VF spacing, the lock-on frequency range of the cylinders 
is even slightly narrower than that of a single oscillating cylinder; the wake field is more complex since it 
may comprises 2S, P+S and 2S* structures at some higher frequencies. Additionally, the hydrodynamic 
forces are also discussed in terms of mean and root mean square quantities, and reveal large differences 
between oscillating and stationary cylinders. 
 
Keywords: Two triangular cylinders; Forced oscillation; Response characteristics; Wake pattern; 
Hydrodynamic Force. 

NOMENCLATURE 

A oscillation amplitude 
CD drag coefficient 
CL lift coefficient 
D characteristic length 
FD drag force acting on the cylinder  
FL lift force acting on the cylinder  
fe excitation frequency 
fo natural vortex shedding frequency for flow 

past a stationary triangular cylinder 
L center-to-center spacing between two tandem 

triangular cylinders 

p fluid pressure 
Re Reynolds number 
St Strouhal number 
t time 
ui fluid velocity in the ith direction 
U∞ free-stream velocity 
wi mesh velocity in the ith direction 

 
ν kinematic viscosity of the fluid 
ρ fluid density 

 
1. INTRODUCTION 

Flow around bluff bodies has been a subject of 
extensive research during the past few decades, due 
to its significance in engineering applications such 
as skyscrapers, suspension bridges, heat 
exchangers, and offshore risers, etc. Regarding the 

fundamental physics of the flow, the periodic vortex 
shedding from the bodies would induce fluctuating 
forces which, in turn, may cause structural 
vibrations and damages. Thus, to avoid fatigue of 
structures and improve their performance, an in-
depth investigation of interactions between flow 
and cylinder-like structures is very important. 
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Previous studies have greatly enhanced our 
understanding of flow past a single cylinder both 
numerically and experimentally (Luo et al. 1994; 
Williamson 1996; Zdravkovich 1997; Williamson 
and Govardhan 2004; Alonso et al. 2009; Yoon et 
al. 2010; Bao et al. 2011; Nemes et al. 2012). As 
confirmed in these works, some parameters, such as 
material properties of the cylinder, cross-section 
shape, flow incidence angle, and Reynolds number, 
can lead to significant changes in flow field, as well 
as flow-induced forces and vibrations of the 
cylinder. 

Compared with a circular cylinder, the non-circular 
counterpart, such as square and triangular, has its 
own characteristic since the flow separation points 
are fixed at sharp corners of the non-circular 
section. Extensive studies have been performed on 
flow past a stationary triangular cylinder in the past 
decade. De and Dalal (2006) performed a numerical 
study of laminar flow over a triangular cylinder 
with varying low Reynolds numbers. A large-eddy 
simulation (LES) for flow over a triangular cylinder 
was reported by Camarri et al. (2006). Iungo and 
Buresti (2009) investigated the effects of cross-
section shape and wind direction on a triangular 
cylinder in a wind-tunnel at high Reynolds number. 
Bao et al. (2010) considered flow over an 
equilateral triangular cylinder with different 
incidence angles at low Reynolds number range. 
Johansson et al. (2010) studied the vortex shedding 
past triangular cylinders using a k-ε model of 
turbulence. Wei et al. (2016) developed an hybrid 
RANS/LES model to simulate the complex 
turbulent flow around a triangular cylinder. Ng et 
al. (2016) performed a direct numerical simulation 
on the wake dynamics behind triangular cylinder at 
critical Reynolds numbers using a spectral-element 
method. Yagmur et al. (2017) investigated the flow 
characteristics around a triangle via PIV and LES 
methods. In addition, some studies focused on the 
heat transfer characteristics of a triangular cylinder 
placed in a channel with confined flows (De and 
Dalal 2006; Srikanth et al. 2010; Ali et al. 2011). 
Further experimental and numerical results are 
available for flow past an oscillating triangular 
cylinder (Alonso and Meseguer 2006; Alonso et al. 
2007; Srigrarom and Koh 2008; Alonso et al. 2012; 
Alawadhi 2013). Srigrarom and Koh (2008) 
presented the self-excited rotational oscillation on 
isolated triangular cylinder. Alonso et al. (2012) 
investigated the transverse galloping of different 
triangular cross-sections though wind tunnel 
experiments. The numerical simulation of flow past 
a vertical oscillating triangular cylinder was 
accomplished by Alawadhi (2013) and, more 
recently, Wang et al. (2015) studied the flow-
induced vibration of a triangular cylinder with 
different incidence angles at low Reynolds number. 

On the other hand, flow interference between 
multiple cylinders are more frequently encountered 
in practical engineering, which further increases the 
complexity of the problem. Numerous studies 
focused on the classical case of flow past two 
stationary circular cylinders with various 
arrangements (Meneghini et al. 2001; Kang 2003; 

Sharman et al. 2005; Papaioannou 2006; Carmo et 
al. 2008; Mussa et al. 2009; Sumner 2010). 
Additionally, the free vibrations (Prasanth and 
Mittal 2009; Assi et al. 2010; Huera-Huarte and 
Gharib 2011; Carmo et al. 2013; Cui et al. 2014) 
and forced vibrations (Mahir and Rockwell 1996; 
Papaioannou et al. 2006; Yang and Zheng 2010; 
Bao et al. 2012; Bao et al. 2013; Yang et al. 2014) 
involving two circular cylinders have also been 
investigated extensively. It was found that the 
arrangement type and gap spacing have great 
influences upon the flow dynamics of two-cylinder 
system. However, to date, there are few studies on 
flow past two triangular cylinders. Wang et al. 
(2011) presented the self-excited rotational 
oscillation of two tandem triangular cylinders, and 
identified three different states of motion of the 
system with the increase of spacing. Ghafouri et al. 
(2015) studied the deposition and dispersion of 
aerosols over two tandem triangular cylinders. 

The current work aims to numerically investigate 
the flow past two transversely oscillating triangular 
cylinders in tandem, which has not been done yet so 
far. But to start with, the problems of flow past two 
stationary triangles and a single oscillating triangle 
are simulated as the reference cases. Then, the 
effects of cylinder spacing, oscillation amplitude 
and frequency on the flow characteristics of two 
oscillating triangular cylinders are investigated. 

2. NUMERICAL METHOD 

2.1 Fractional Step Algorithm 

The incompressible fluid flow is governed by the 
Navier-Stokes equations, which can be expressed in 
the non-dimensional form: 
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In the present study, the Navier-Stokes equations 
are solved by using the semi-implicit four-step 
fractional method (Wang et al. 2015), which can be 
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Fig. 1. Two tandem triangular cylinders forced to oscillate transversely to the flow: schematic of the 

computational domain and boundary conditions. 
 

Table 1 Comparison of numerical results for flow past a stationary triangular cylinder at Re = 100 

Studies CD, mean CL, rms St 

De and Dalal (2006) 1.7607 0.2968 0.1966 

Alawadhi (2013) 1.757 - 0.18204 

The present 1.710 0.285 0.196 

 

 

The solution procedure based on the fractional step 
algorithm can be described here as: (i) solve Eqs. 
(4)-(5) to get the intermediate velocities ˆiu  and *

iu ; 

(ii) obtain the pressure p from Eq. (6); (iii) correct 
the velocity field by solving Eq. (7). 

2.2 Mesh Motion Scheme 

To account for the cylinder motion in the flow field, 
the fractional step algorithm is extended to the 
arbitrary Lagrangian-Eulerian (ALE) formulation of 
the Navier-Stokes equations (Donea 1982; Hughes 
and Tezduyar 1984). The ALE formulation can be 
implemented by substituting the convective velocity 
in Eq. (1) with cj = uj-wj, where cj is the relative 
velocity between the fluid and the mesh. For the 
purpose of mesh movement, a modified Laplacian 
method, presented by Masud et al. (2007) is 
incorporated into the ALE scheme. 

3. PROBLEM DESCRIPTION 

The flow configuration and boundary conditions are 
illustrated in Fig. 1. Two transversely oscillating 
triangular cylinders in tandem, each of side length 
D, are placed in a computational domain defined as 
Ω = [-25D, 50D] × [-25D, 25D]. The origin of the 
Cartesian coordinates is located at the center of the 
upstream cylinder. The inlet boundary has uniform 
flow velocity of u1 = U∞ and u2 = 0, while at the 
outlet, the flow conditions are / 0iu x   and p= 0. 

Symmetric conditions are applied on the lateral 

boundaries:
1 / 0u y   and u2= 0. The no-slip 

condition is imposed upon the cylinder surface. The 
transverse oscillations of two cylinders are 
governed by Y(t) = A sin(2πfet). Numerical 
simulations are conducted at two different 
amplitudes, A/D = 0.1 and 0.25, with varying 
frequency ratio in a range of 0.5 ≤ fe/fo ≤ 2.0 at Re = 
100. The center-to-center spacing between the 
cylinders takes two values: L/D = 2.0 and 5.0, 
corresponding to two distinct flow patterns 
observed in the stationary two-cylinder system.  

Some important flow parameters used in this study, 
such as drag coefficient CD, lift coefficient CL, and 
strouhal number St, are also defined as follows: 

2

2 D
D

F
C

U D 

 ,   2

2 L
L

F
C

U D 

 , 
   

St of D

U

                  (8)
 

4. NUMERICAL VALIDATION AND 
REFINEMENT 

The developed finite element code based on the 
four-step fractional method has been validated in 
our previous work (Wang et al. 2015). In this 
section, the accuracy of the numerical model is 
further demonstrated by applying it for flow past a 
stationary triangular cylinder at Re = 100. Table 1 
compares the present results with those in other 
literature, involving the mean drag coefficient 
CD,mean, the root mean square of lift coefficient 
CL,rms, and the Strouhal number St. Excellent  
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(a) (A/D, fe/fo) = (0.25, 0.7) 

 

 
(b) (A/D, fe/fo) = (0.25, 1.0) 

Fig. 2. Time evolutions of the lift coefficient CL (left column), power spectral density (PSD) of the lift 
coefficient (middle column) and phase portraits for the oscillating cylinder at: (a) (A/D, fe/fo) = (0.25, 

0.7); (b) (A/D, fe/fo) = (0.25, 1.0). 
 

 

agreement is obtained between our numerical 
results and the published data. 

5. RESULTS AND DISCUSSIONS 

5.1 Flow Past a Single Oscillating 
Triangular Cylinder 

Alawadhi (2013) has numerically investigated the 
influence of oscillation frequency and amplitude on 
the drag and lift forces acting on a triangular 
cylinder. In this section, the main intention is to 
determine the lock-on state of a single triangular 
cylinder, where the vortex shedding frequency is 
completely dominated by the excitation frequency fe 
rather than the natural vortex shedding frequency fo. 
The calculations are run for two oscillation 
amplitudes A/D = 0.1 and 0.25 at Re = 100. The 
frequency ratio is varied in the range of 0.0 ≤ fe/fo ≤ 
2.0, expecting to cross the lock-on region. The 
single triangular cylinder is forced to oscillate also 
as Y(t) = A sin(2πfet). 

Fig. 2 illustrates the lock-on states for two cases of 
(A/D, fe/fo) = (0.25, 0.7) and (0.25, 1.0). As 
observed in the left column, the time evolutions of 
the lift coefficient are absolutely periodic and 
characterized by a pure sinusoidal response. The 
PSD (power spectral density) of the lift coefficient 
shown in the middle column highlights the 
sinusoidal response and clearly presents that the 
dominant frequency is fe. Phase portraits in the right 
column exhibit a single limit cycle, which is 
consistent with the perfect sinusoidal response. 

The two cases of (A/D, fe/fo) = (0.25, 0.6) and (0.25, 

1.5) are selected to illustrate the unlock-on 
responses, as shown in Fig. 3. Time evolutions of 
the lift coefficient (left column) are no longer 
purely sinusoidal, but exhibit a beating behavior. 
The power spectra of the lift (middle column) 
shows two peaks (one significant peak at fe, the 
other small peak at fo or at a modulation frequency 
fm). Instead of a single cycle, multiple cycles are 
observed in the phase portraits (right column) since 
the lift signal contains more than one frequency. 

Fig. 4 shows the vorticity fields when the cylinder 
moves to the top position (Y = A) at A/D = 0.25. For 
the lock-on state (Figs. 4(a) and (b)), the vortex 
shedding pattern is commonly called 2S mode 
(Williamson and Roshko 1988), in which two single 
vortices are shed per circle. In the far wake at fe/fo = 
1.0, the positive and negative vortices form two 
parallel rows, which is the 2S* pattern previously 
mentioned (Yang and Zheng 2010). For the unlock-
on state (Figs. 4(c) and (d)), the wake is shown to 
be disordered, due to the multiple frequency 
components in the cylinder oscillation. Moreover, 
an asymmetric P+S pattern (Williamson and 
Roshko 1988) is observed at a higher excitation 
frequency (fe/fo = 1.5, see Fig. 4(d)), where a pair of 
vortices and a single vortex are shed per cycle. 

Fig. 5 shows the simulation results for an oscillating 
triangular cylinder with different spacings, 
amplitudes and frequencies at Re = 100, along with 
the results for an oscillating circular cylinder (Bao 
et al. 2012) and square cylinder (Singh et al. 2009) 
at the same Re for the sake of comparison. The 
schematic of the lock-on and unlock-on regions is 
illustrated in Fig. 5(a). In general, the lock-on  
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(a) (A/D, fe/fo) = (0.25, 0.6) 

 

 
(b) (A/D, fe/fo) = (0.25, 1.5) 

Fig. 3. Time evolutions of the lift coefficient CL (left column), power spectral density (PSD) of the lift 
coefficient (middle column) and phase portraits for the oscillating cylinder at: (a) (A/D, fe/fo) = (0.25, 

0.6); (b) (A/D, fe/fo) = (0.25, 1.5). 

 

 
Fig. 4. Instantaneous vorticity fields for the flow past an oscillating triangular cylinder at different 

excitation frequencies: (a) (A/D, fe/fo) = (0.25, 0.7); (b) (A/D, fe/fo) = (0.25, 1.0); (c) (A/D, fe/fo) = (0.25, 
0.6); and (d) (A/D, fe/fo) = (0.25, 1.5). 

 
 

regions for these cylinders are broadened with the 
increase of the oscillation amplitude. The lock-on 
region for the triangular cylinder is found within 
the frequency range of 0.82 ≤ fe/fo ≤ 1.02 at A/D = 
0.1, but expands to 0.7 ≤ fe/fo ≤ 1.04 at A/D = 0.25. 
Compared with the cases of the circular and 
square cylinders, both left and right boundaries of 
the lock-on region for the triangular cylinder shift 
towards lower frequency; meanwhile, the 
bandwidth becomes slightly larger. Figs. 5(b)-(d) 
show the variations of the force coefficients with 
the excitation frequency. As observed in Figs. 5(b) 
and (c), for the triangular cylinder, the curves of 
CD,mean or CD,rms are globally similar to those of the 
circular and square cylinders at a comparable 
amplitude, with a dominant peak around the end 

of the lock-on region. However, the values of drag 
force for the triangular cylinder are significantly 
larger than those for the circular cylinder over the 
examined frequency range. As shown in Fig. 5(d), 
near the end of the lock-on region, the CL,rms 
curves of triangular and square cylinders show a 
small drop, while the lift of circular cylinder 
exhibits a continuous increase. Despite such 
differences, all CL,rms curves of these cylinders rise 
rapidly beyond the lock-on region, which can be 
explained by reason that high-frequency 
oscillation leads to large pressure differences 
between the upper and lower surfaces of the 
cylinders and thus large variation in the lift 
coefficient. 

(c) (d) 

(b) (a) 
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Fig. 5. Simulation results for flow past an 

oscillating cylinder: (a) Strouhal number; (b) 
mean drag coefficient; (c) root mean square of 
drag coefficient; (d) root mean square of lift 

coefficient. TC: triangular cylinder; CC: 
circular cylinder; SC: square cylinder. 

5.2  Flow Past Two Oscillating Triangular 
Cylinders in Tandem 

As mentioned previously, the oscillations of a 
single cylinder can be categorized into two major 
responses of lock-on and unlock-on, depending 
on whether the vortex shedding frequency is 
dominated by the excitation frequency. Through 
further careful observation, the unlock-on state of 
two oscillating cylinders in this study is 
subdivided into two subclasses: transitional and 
quasi-periodic modes, the same modes also used 
by Papaioannou et al. (2006) and Yang et al. 
(2010). The identification of these modes is 
mainly based on the examination of (i) the phase 
portrait of lift force versus transverse 
displacement and (ii) the power spectra of lift 
force. In transitional mode, the power spectra of 
lift force is controlled by peaks at the excitation 
frequency, but some other small peaks may just 
emerge resulting in a small modulation in the 
phase portrait, thus deviating from the tight limit 
circle obtained from the lock-on response. In 
quasi-periodic mode, the power spectra of lift 
force shows multiple peaks at different 
frequencies; consequently, the phase portrait for 
this mode exhibits a highly irregular pattern. 

Flow past two cylinders under forced oscillation 
display more complex responses. Fig. 6 
illustrates the schematic of the response states for 
two oscillating triangular cylinders with respect 
to different combinations of spacing, amplitude, 
and frequency. At the VS spacing, since the flow 
oscillations are closely coupled between the 
upstream and downstream zones, the flow is 
lock-on within a wide frequency range (Yang and 
Zheng 2010). As can be seen from Fig. 6(a), at 
different amplitudes (A/D = 0.1 and 0.25) for the 
VS spacing (L/D = 2.0), the lock-on region of the 
upstream cylinder is substantially broadened 
compared to the single cylinder case, especially 
toward higher frequency. Similar results are 
observed for the downstream cylinder at higher 
amplitude (Fig. 6b). Furthermore, with the 
increase of the excitation frequency for a fixed 
amplitude, the lock-on state of two cylinders first 
occurs in the vicinity of natural frequency for two 
stationary cylinders (fe/foo ≈ 1.0), which is 
corresponding to fe/fo ≈ 0.740 (Here, foo and fo are 
0.145 and 0.196 respectively), then switches to 
the transitional or quasi-periodic modes. 
Subsequently, the oscillation response returns to 
the lock-on state again at higher frequency, due 
to the intensified couple effect. Such 
phenomenon were previously observed in the 
experiments by Mahir and Rockwell (1996), who 
showed that the lock-on state can exist 
intermittently when two tandem circular 
cylinders are oscillating in-phase at small 
spacing. In addition, Papaioannou et al. (2006) 
provided numerical evidence revealing 
 the existence of "holes" that represent the 
unlock-on state may appear inside  
lock-on regions for two oscillating circular 
cylinders. 
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Fig. 6. Schematic of the lock-on/unlock-on regions for two oscillating triangular cylinders in tandem 

with different spacings, amplitudes and frequencies. 
 

 
 

 
Fig. 7. The VS case of L/D = 2.0, A/D = 0.25 and fe/fo = 0.7. (a) phase portrait for upstream Cylinder; (b) 

phase portrait for downstream Cylinder; (c) lift power spectra for two Cylinders; and (d) vorticity 
contour plot. 
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Fig. 8. The VS case of L/D = 2.0, A/D = 0.25 and fe/fo = 0.9. (a) phase portrait for upstream Cylinder; (b) 

phase portrait for downstream Cylinder; (c) lift power spectra for two Cylinders; and (d) vorticity 
contour plot. 

 

 
 

 

In the VS case with A/D = 0.25 and fe/fo =0.9, the 
phase portraits of two cylinders become a transational 
mode instead of a single closed orbit (Figs. 8(a) and 
(b)). The power spectra shows only one peak at fe for 
the upstream cylinder, but two peaks (one significant 
peak at fe, the other small peak at fm) for the 
downstream cylinder (Fig. 8(c)). The downstream 
near wake starts to show a P+S pattern, then develops 
into a 2S pattern in the far wake (Fig. 8(d)). 

For the VS spacing and A/D = 0.25, further increase 
of the excitation frequency to fe/fo = 1.5 takes the 
oscillations of both cylinders back to the lock-on 
state, as shown in Fig. 9. In this case, the near wake 
displays a 2S* pattern, while the far wake changes 
into a 2S pattern. 

As can be seen from Figs. 6(c) and (d), unlike the VS 
case, the lock-on state of two oscillating cylinders at 
the VF spacing ( L/D = 5.0) only occurs in the 
narrower region in the vicinity of natural frequency 
for the stationary counterpart (fe/foo ≈ 1.0, foo =0.179), 
corresponding to fe/fo ≈ 0.913. When fe/fo exceeds 1.0, 
the vortex shedding cannot be entrained by the 
excitation frequency, resulting in the unlock-on state. 
Therefore, at this spacing, the oscillation system 
shows more sensitive to change from lock-on to other 
states, which is similar to the case of a single 
oscillating cylinder. It is worth noting that both 
upstream and downstream cylinders always exhibit 
the lock-on state simultaneously, which is a quite 
different situation to that of the VS case. This can be 

attributed to the complete synchronization between 
vortices shedding from the two cylinders and flow 
impingement on the downstream cylinder. 

Fig. 10 shows the lock-on state of two cylinders for 
the VF spacing at A/D = 0.25 and fe/fo =0.8. The 
phase portraits and power spectra of the lift behave 
similarly to those in the VS lock-on state, as shown 
in Figs. 10(a)-(c) and Figs. 9(a)-(c). The vorticity 
contours in Fig. 10(d) displays a clear 2S* vortex 
shedding pattern over the downstream wake. 

The unlock-on case at A/D = 0.25 and fe/fo = 1.5 for 
the VF spacing is shown in Fig. 11. The phase 
portraits indicate that the upstream and downstream 
cylinders are in different response modes: the 
former is transitional but the latter quasi-periodic 
(Figs. 11(a) and (b)). The power spectra of lift force 
shows that only one significant peak appears at fe 
for upstream cylinder, while two major peaks 
coexist at fe and fm for downstream cylinder (Fig. 
11(c)). In the near wake of downstream cylinder, 
the 2S pattern persists, but the far wake changes 
into P+S and 2S* structures (Fig. 11(d)). 

For the VF spacing at A/D = 0.1 and fe/fo = 1.5 in 
Fig. 12, the phase portraits of both cylinders display 
a quasi-periodic mode (Figs. 12(a) and (b)); two 
significant peaks in the power spectra of the lift 
appear at fo and fm for each cylinder (Fig. 12(c)); the 
downstream near wake has a combination of 2S* 
and P+S, developing into a 2S pattern in the far 
wake (Fig. 12(d)). 
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Fig. 9. The VS case of L/D = 2.0, A/D = 0.25 and fe/fo = 1.5. (a) phase portrait for upstream Cylinder; (b) 

phase portrait for downstream Cylinder; (c) lift power spectra for two Cylinders; and (d) vorticity 
contour plot. 

 

 

 
Fig. 10. The VS case of L/D = 5.0, A/D = 0.25 and fe/fo = 0.8. (a) phase portrait for upstream Cylinder; 
(b) phase portrait for downstream Cylinder; (c) lift power spectra for two Cylinders; and (d) vorticity 

contour plot. 
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Fig. 11. The VS case of L/D = 5.0, A/D = 0.25 and fe/fo = 1.5. (a) phase portrait for upstream Cylinder; 
(b) phase portrait for downstream Cylinder; (c) lift power spectra for two Cylinders; and (d) vorticity 

contour plot. 

 

 

 
Fig. 12. The VS case of L/D = 5.0, A/D = 0.1 and fe/fo = 1.5. (a) phase portrait for upstream Cylinder; (b) 

phase portrait for downstream Cylinder; (c) lift power spectra for two Cylinders; and (d) vorticity 
contour plot. 
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Table 2 Vortex shedding patterns of two oscillating triangular cylinders in tandem 

fe / fo 
L/D = 2 L/D = 5 

A/D = 0.1 A/D = 0.25 A/D = 0.1 A/D = 0.25 

0.5 2S 2S 2S*, 2S 2S*, 2S 

0.6 2S 2S 2S*, 2S 2S 

0.7 2S 2S 2S*, 2S 2S* 

0.8 2S 2S, 2S* 2S* 2S* 

0.9 2S*, 2S S+P, 2S 2S* 2S* 

1.0 2S*, 2S S+P, 2S 2S*, 2S 2S*, 2S 

1.1 2S*, 2S S+P, 2S 2S*, 2S 2S, 2S* 

1.2 2S*, 2S S+P, 2S S+P, 2S 2S, P+S, 2S* 

1.3 2S*, 2S S+P, 2S S+P, 2S 2S, 2S* 

1.4 2S*, 2S 2S*, 2S 2S*, P+S, 2S 2S, 2S* 

1.5 2S*, 2S 2S*, 2S 2S*, P+S, 2S 2S, P+S, 2S* 

1.7 2S*, 2S 2S*, 2S 2S*, 2S 2S, 2S* 

2.0 2S*, 2S 2S*, 2S 2S*, 2S 2S, 2S* 

 
 

A summary of the vortex shedding patterns for all 
examined cases is presented in Table 2. As can be 
seen from the table, for the VS spacing (L/D = 2.0), 
the downstream wake is mostly a 2S pattern at 
lower frequency, while it becomes a combination of 
2S* and 2S patterns at higher frequency. However, 
these wake patterns cannot be used to identify the 
lock-on and unlock-on states. For the VF spacing 
(L/D = 5.0), the wake flow is more complex since it 
may comprises 2S, P+S and 2S* patterns at some 
high frequencies. Note that the pure 2S* pattern 
only occurs in the lock-on cases at this spacing. 

The drag and lift coefficients of the two oscillating 
triangular cylinders are illustrated in Fig. 13. For 
comparison, the results of the stationary counterpart 
are also given in the figure. It can be seen that in 
most cases for the VS spacing, the CD,mean and CL,rms 
of the two oscillating cylinders are larger than those 
of the stationary counterpart, with highter oscillation 
amplitudes producing higher values. For the 
upstream cylinder, the CD1,mean at A/D = 0.1 is nearly 
constant over the examined frequency, and it is 
approximately equal to the value of the stationary 
cylinder (Fig. 13(a)). This means that the excitation 
frequency has little influence on CD1,mean at small 
amplitude for the VS spacing. The curves of CL1,rms 
at A/D = 0.1 and 0.25 exhibits a monotonous 
increase with the increase in the excitation 
frequency (Fig. 13(b)). For the downstream cylinder, 
both CD2,mean and CL2,rms obtain a peak within the 
lower frequency region of lock-on state (Figs. 13(c) 
and (d)). At higher frequency, the CL2,rms continues 
to increase and reaches its maximum. 

For the VF spacing, the curves of CD1,mean and 
CL1,rms of the upstream cylinder behave similarly to 
those observed for a single oscillating cylinder (see 
Figs. 13(a) and (b), Figs. 5(b) and (d)), indicative of 

the diminished effect of the downstream cylinder. 
However, because the vortices shed from the 
upstream cylinder impinge on the windward sides 
of the downstream cylinder, the CD2,mean exhibits 
more irregular fluctuations around the value of the 
stationary counterpart (Fig. 13(c)). 

6. CONCLUSIONS 

In this paper, numerical simulations of flow past 
two tandem triangular cylinders subjected to 
transverse oscillation of in-phase mode are 
performed at low Reynolds number of Re = 100. 
The oscillations of two cylinders are dominated by 
harmonic motion with low amplitudes of A/D = 0.1 
and 0.25, and varying frequency in the range of 0.5 
≤ fe/fo ≤ 2.0. The investigations on the cylinder 
response are conducted for two typical spacings: 
L/D = 2.0 and 5.0. The results of flow past two 
stationary tandem triangles and a single oscillating 
triangle are also presented for comparison. Main 
findings can be summarized as follows: 

For the VS spacing of L/D = 2.0, the lock-on 
frequency range for the upstream oscillating 
cylinder is substantially widen at different 
amplitudes (A/D = 0.1, 0.25), compared with that 
for a single oscillating cylinder. Similar results are 
also observed for the downstream oscillating 
cylinder, but the wake degrades its lock-on state at 
relatively smaller amplitude of A/D = 0.1. 
Additionally, a hole represents the unlock-on state 
may exist within the lock-on regions of the 
cylinders. The vorticity contours show that the 
wake patterns are mainly 2S at lower frequency, 
and a combination of 2S* and 2S at higher 
frequency. However, the wake patterns cannot be 
used to distinguish the response state. 
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Fig. 13. Variations of the force coefficients for 
two oscillating triangular cylinders in tandem 

with different spacings, amplitudes and 
frequencies. Left column: mean drag coefficient 

((a) upstream cylinder, (c) downstream 
cylinder); Right column: root mean square of lift 

coefficient ((b) upstream cylinder, (d) 
downstream cylinder). 

For the VF spacing of L/D = 5.0, the two tandem 
cylinders have the same lock-on regions, but with 
the width being slightly narrower than that for a 
single cylinder. The wake flow, on the other hand, 
is more complex and may contains 2S, 2S*, and 
P+S patterns at some higher frequencies. It is found 
that the lock-on response is always accompanied by 
a pure 2S* vortex shedding pattern at this spacing. 

The drag and lift forces of both oscillating and 
stationary triangular cylinders are also investigated. 
In most cases for the VS spacing, the hydrodynamic 
forces of two oscillating cylinders exceed those of 
the stationary counterpart, with larger oscillation 
amplitudes producing larger values. For the VF 
spacing, the drag and lift forces acting on the 
upstream oscillating cylinder behave similarly to 
those on a single oscillating cylinder, with a peak 
appearing in the lock-on region; however, the flow 
impingment induces more complex changes in 
hydrodynamic forces on the downstream oscillating 
cylinder. 
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