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ABSTRACT 

Cavitation is a major problem in pump design and operation because this phenomenon may lead to various 
types of instabilities, including hydraulic performance loss and catastrophic damage to the pump material 
caused by bubble collapse. Therefore, it is critical to predict the cavitation performance of the pump in the 
design phase itself. The motivation of this study is to develop a systematic methodology to calculate the 
cavitation performance of radial flow pumps. In the first step of the present work, a cavitating nozzle flow case 
for which the bubble dynamic behavior is accurately resolved in literature is studied numerically. Subsequently, 
the capabilities of three cavitation models, implemented in the commercial code Fluent, are evaluated for three 
radial flow pumps designed at specific speeds ns = 10.4, 22.4, and 34.4. The numerical results are validated 
with global quantities based on net positive suction head (NPSH) measurements. The results led to the 
determination of reasonably accurate NPSH values for the defined range of specific speeds.  

Keywords: NPSH; Cavitation; Pump; Bubble dynamics. 

NOMENCLATURE 

b2 impeller outlet width 
Cp pressure coefficient 
D0 impeller eye diameter  
D2 impeller outlet diameter 
fg non-condensable gas mass fraction  
fv vapor mass fraction 
H pump head 
k turbulent kinetic energy 
n impeller rotation speed 
ns specific speed 
NPSH net-positive suction head 

P local pressure 
P01 inlet total pressure 
Pv vapor pressure 
Ps inlet pressure 
Q flow rate 
RB bubble radius 
us inlet velocity 
 
β2 blade outlet angle 
ρ density 
σn cavitation number 

 
1. INTRODUCTION 

Conventionally, the cavitation performance of a 
centrifugal pump is associated with a critical value 
called net positive suction head required, NPSHr. It 
is the difference between the absolute total pressure 
at the plane of impeller inlet and vaporization 
pressure. When handling this critical value, there are 
several alternatives such as the cavitation inception 
value NPSHi, or developed cavitation values like 
NPSH3 or NPSH5. When calculating NPSH3, inlet 
conditions are used at the state when the pump head 
is reduced by 3% owing to the effects of the cavitated 

flow field compared to a non-cavitating case at the 
same flow rate.  

Pump manufacturers conventionally declare NPSH3 
values in their catalogues for practical reasons. To 
determine the NPSHi value, the visual inception of 
bubbles has to be captured by optical measurements. 
However, this procedure is highly expensive to be 
repeatedly performed for a family of pumps. 
Furthermore, this value is much higher than the 
NPSH3 value, making it difficult for the installers to 
provide an adequate NPSH in several cases. Some 
developed cavitation is therefore, usually allowed on 
site. The limit is set to the 3% head drop case and is 
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fixed by international standards. In this manner, it 
becomes possible to calculate the NPSH value by 
simple static pressure measurements.  

In this perspective, the main purpose of this study is 
to estimate the NPSH3 value of end-suction radial 
flow pumps at the design phase via numerical 
calculations. The successful estimation of NPSH3 
will provide an opportunity to analyze the effects of 
geometric parameters on the cavitation performance 
of pumps. Furthermore, it will lead to the 
development of a design methodology for low 
NPSH3 radial pumps. 

In recent years, numerical modeling of cavitation has 
been used effectively in academia as well as industry. 
Cavitation models are generally categorized into 3 
groups: barotropic models, interface tracking 
models, and bubble dynamic models. NPSH 
calculations are possible with all these models. 

Visser (2001) used the CFX CEV barotropic model 
to calculate the head-drop and Q-NPSH3 curves. This 
model yielded good results particularly at optimum 
and partial flow rates compared to experiments. This 
model was also used by Nohmi (2012) in a three-
vane, low specific speed pump. As before, the 
calculated head-drop curve was found to be 
consistent with experimental results at the optimum 
flow rate, but the gradual head-drop at higher flow 
rates could not be captured.  

Surface tracking methods resolve the interface 
between the vapor cavity and surrounding fluid and 
iteratively adapt the cavity shape. For the theoretical 
background in this regard, refer the work of Hirschi 
et al. (1998). Dupont (2001) used the surface 
tracking model to calculate the cavitating flow field 
in pumps. The calculated and measured cavity 
lengths showed good agreement. Another example 
of this method is the work of Li et al. (2006) in which 
the cavity thickness and pressure coefficient 
distribution along blade surfaces were computed. 

Bubble dynamic models employ simplified forms of 
the Rayleigh–Plesset equation to calculate the 
cavitated flow field. Source terms in the transport 
equation for the volume fraction are modeled, 
considering the evaporation and condensation 
processes. Niedzwiedzka et al. (2016) gave a 
detailed overview of the available models that can be 
used with homogenous approach. These models are 
generally validated with hydrofoil, venturi, or 
cylinder test cases. Amongst these, the models of 
Zwart et al. (2004), Schnerr and Sauer (2001), and 
Singhal et al. (2002) hereafter referred to as the 
Zwart, Schnerr, and Singhal models are the most 
frequently used models for the hydrodynamic 
cavitation in pumps and inducers. The bubble 
dynamics approach is already implemented in 
commercial CFD packages such as Fluent and CFX. 
The model proposed by Zwart is the default model in 
CFX and has been used in its original form by 
Balasubramanian et al. (2011), Shukla et al. (2008), 
Somashekar et al. (2012), and Jeanty et al. (2009) for 
centrifugal pump applications. Marini et al. (2011) 
studied impeller cavitation using the models of 
Zwart and Schnerr with the Fluent software and 
reported the Schnerr model as the more accurate one. 

This model is presently the default option in Fluent. 
There are also successful applications of the Singhal 
model for the head-drop curve calculation such as 
that by Li (2014) using Fluent. Ding et al. (2011) also 
adopted this model into the Pumplinx CFD tool, 
which gave good estimations of the NPSHi curve. 

As explained above, there are several published 
studies in this field. On the other hand, the present 
study covers a wide range of specific speeds over 
their allowable operating ranges. Three end-suction 
radial pumps designed for ns = 10.4, 22.4, and 34.4 
were selected. The cavitation models proposed by 
Zwart, Schnerr, and Singhal were considered, and 
their capabilities were evaluated for end-suction 
radial flow pumps.  

In this article, initially, the theoretical background of 
cavitation models is provided. Then, in the first part, 
the effects of the simplifications over the Rayleigh-
Plesset equation are investigated on a converging–
diverging nozzle case. In the second part, the 
cavitating flow in radial pumps is analyzed. The 
experimental setup and measurement methodology 
is briefly explained. After that, three-dimensional 
(3D) cavitating pump calculations are performed. 
For the pump with ns = 34.4, cavitation is calculated 
in a single impeller passage as well as in a more 
realistic model, including all rotating and stationary 
elements. The effect of the calculation domain 
extension with volute casing and leakage zones on 
the NPSH value is analyzed. Furthermore, the effects 
of inlet and outlet boundary conditions (BCs) on the 
head-drop characteristics are evaluated. The same 
numerical procedure is repeated for other pumps. 
Numerical results are compared with experimental 
values based on NPSH measurements. 

2. CONSERVATION EQUATIONS AND 

CAVITATION MODELS 

A two-phase flow of water and water vapor is 
considered. The commercial code Fluent is used to 
calculate the cavitational flow in a one-dimensional 
(1D) nozzle and in radial flow impellers. Continuity, 
momentum, and volume fraction equations are 
solved with the homogeneous mixture approach. The 
velocity slip between phases is not considered. Body 
forces and heat transfer are neglected. The set of 
equations is given below. Because the computations 
are in steady state, all transient terms drop.  ૒ૉܕ૒ܜ +  ૒(ૉܒܝܕ)૒ܒܠ  = ૙                                                 (૚) ∂(ρ୫u୧)∂t +  ∂൫ρ୫u୧u୨൯∂x୨  =  − ∂P∂x୧                             (2) 

+ ∂∂x୨  ቈ(μ୫ + μT) ቆ∂u୧∂x୨ + ∂u୨∂x୧ − 23 ∂u୩∂x୩ δ୧୨ቇ቉ ∂(ρ୴α୴)∂t + ∂൫ρ୴α୴u୨൯∂x୨ = mሶ ି − mሶ ା                        (3) ρ୫ = ρ୴α୴ + ρ୪α୪                                                       (4) μ୫ = μ୴α୴ + μ୪α୪                                                       (5) 
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Here, ρm is the mixture density, ρl is the density of 
water, ρv is the density of water vapor, αv is the 
volume fraction of vapor, αl is the volume fraction of 
water, μm is the laminar viscosity of the mixture, μl 
and μv are the liquid and vapor dynamic viscosities, 
respectively, and μt is the turbulent viscosity. Source 
terms mሶ ି  and mሶ ା  in the volume fraction equation 
are the interphase mass transfer rates per unit volume 
for the vaporization and condensation processes, 
respectively. These source terms are derived using 
simplified forms of the Rayleigh–Plesset equation 
for bubble dynamics. The general form of the 
equation is P୴ − Pρ୪ = RB dଶRBdtଶ +  32 ൬dRBdt ൰ଶ +  4ԂLRB  dRBdt+  2σρ୪RB                                      (6) 

This equation expresses the growth and collapse of a 
bubble of radius RB. Elimination of the surface 
tension term, viscous term, and 2nd order derivative 
for the acceleration term leads to the basic expression 
given below. This simplification is used in all the 
cavitation models considered in this study. dRBdt =  ඨ23 ൬P୴ − Pρ୪ ൰                                                  (7) 

The above expression allows the introduction of 
bubble dynamic effects into the transport equation 
for mass transfer. A brief overview of the source 
terms in the Zwart, Schnerr, and Singhal models are 
as follows: 

Zwart Model (2004) 

ሶܕ ି = ܘ܉܄۴ ૜હ܋ܝܖ(૚ − હܞ)ૉ۰܀ܞ  ඨ൬૛૜ ܞ۾ − ܔૉ۾ ൰ , ൏۾  ܞ۾
(8)  

ሶ࢓ ା = ࢔࢕ࢉࡲ ૜࡮ࡾ࢜࣋࢜ࢻ  ඨ൬૛૜ ࡼ − ࢒࣋࢜ࡼ ൰ ,ࡼ ൐  (ૢ)      ࢜ࡼ
The evaporation and condensation terms are 
proportional to the square root of the difference 
between the local pressure and vapor pressure. Fvap, 
Fcon, αnuc, and RB are the model coefficients that 
should be selected in conformity with the physics of 
the problem.  

Schnerr Model (2001) 

ሶܕ ି = ૉܞૉܔૉ  હܞ(૚ − હܞ) ૜۰܀ ඨ൬૛૜ ܞ۾ − ܔૉ۾ ൰ ۾    ,  ൏  ܞ۾

ሶܕ  (10) ା = ૉܞૉܔૉ  હܞ(૚ − હܞ) ૜۰܀ ඨ൬૛૜ ۾ − ܔૉܞ۾ ൰ ۾   ,   ൐  ܞ۾

(11)  
The only parameter to be specified in this model is 
the number of bubbles per volume of liquid, nb, 
which is not explicitly seen above. 

Singhal Model (2002) 

ሶܕ ି = ܘ܉ܞ۴  ,൫૚ܠ܉ܕ ൯ ൫૚ܓ√ − ൯ો܏܎−ܞ܎ ૉܔૉܞ             (૚૛) 

             ඨ൬૛૜ ܞ۾ − ܔૉ۾ ൰ ۾       ,  ൏     ܞ۾
ሶܕ ା = ܖܗ܋۴  ,൫૚ܠ܉ܕ ોܞ܎ ൯ܓ√ ૉܔૉܞඨ൬૛૜ ܞ۾ − ܔૉ۾ ൰ ൐۾   ,    ܞ۾

(13)  

Unlike the Zwart and Schnerr models, the Singhal 
model takes into account the effects of surface 
tension, turbulent pressure fluctuations, and non-
condensable gases. Inclusion of non-condensable 
gases results in a real advantage when using this 
model because in real pumping applications, small 
fractions of air may penetrate inside the pumped 
media. Furthermore, two-phase mixture is 
considered to be compressible. Fvap and Fcon are 
constants.  

3. CAVITATING FLOW IN A 1D 

NOZZLE 

A 1D converging–diverging nozzle case is studied 
before proceeding to the complex pump problem, 
because exact solutions for the bubble dynamic 
equations in a 3D geometry are not known yet. In 
contrast, the bubble dynamics solution of a 1D 
cavitating nozzle problem as shown in Fig. 1, has 
been provided by Wang and Brennen (1998). The 
objective of this calculation is to determine whether 
the pressure drop due to the cavitation and 
vaporization zones are determined appropriately 
with the selected cavitation models. In this context, 
turbulence and boundary layer effects are not 
involved. Furthermore, we intend to study the effects 
of the simplifications of the Rayleigh–Plesset 
equation when using cavitation models.  
 

 
Fig. 1. Bubbly flow in the nozzle, Wang and 

Brennen (1998). 
 

Wang and Brennen (1998) solved the dimensionless 
continuity, momentum, and Rayleigh–Plesset 
equations in steady state. Turbulence is not involved. 
A fluid composed of liquid water and air bubbles of 
radius 100 µm enters the nozzle with a 10 m/s inlet 
velocity and at a cavitation number of σn = 0.8. The 
minimum pressure coefficient at the throat (x/0.5L) 
is selected as -1 to ensure cavitation ൫σ ൏ −C୮୫୧୬൯. 
An effective liquid viscosity of µe = 0.03 Ns/m2 is 
considered to incorporate various bubble damping 
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mechanisms. Five different upstream void fractions 
αs of the order 10-6 are considered. αs = 0 corresponds 
to the case without bubbles studied by Wang and 
Brennen (1998). 

In the present study, numerical analysis of single-
phase and two-phase flows is performed in a 2D 
computational domain. The domain is meshed with 
50 structured mesh elements perpendicular to the 
flow and 300 elements parallel to the flow. The void 
fraction equation is solved instead of the Rayleigh–
Plesset equation. The material properties of water 
vapor are specified based on the given temperature 
at the saturation condition. The following two 
different values are used for the vapor density: 
0.0094 kg/m3 at 10 °C and 0.023 kg/m3 at 25 °C. A 
laminar flow with free slip at the walls is considered. 
First, single-phase water flow is solved 
corresponding to the αs =0 case. Then the two-phase 
cavitating flow is solved with an inlet void fraction 
of 2.5 × 10-6. Because the same simplifications are 
applied to all the cavitation models, only the Zwart 
model is used for the nozzle calculations for 
demonstration purposes. A 100-µm of initial bubble 
radius is imposed. A convergence criterion of 10-5 is 
set for the continuity, momentum, and volume 
fraction equation residuals. Comparative solutions of 
pressure coefficient and volume fraction along the 
flow direction are shown in Fig. 2.  

 

 
Fig. 2. Literature and current results for Cp and 

α along the flow axis. 

Considering the single-phase flow case, there is a 
negligible pressure drop similar to the results of 
Wang and Brennen (1998). This small loss is only 
because of friction and viscosity. For the cavitating 
flow case with ρv = 0.0094 kg/m3, the pressure field 
changes dramatically even at very low levels of the 
inlet void fraction. When the density of the vapor is 
increased to ρv = 0.023 kg/m3, the pressure loss 
becomes more. This loss is only a result of the 
growth of bubbles after the throat area and can be 
defined as the cavitation loss. Variation of the vapor 
density as the temperature is changed from 10 °C to 
25°C modifies the pressure field drastically. Thus, 
for multiphase calculations, temperature of the vapor 
phase should be precisely designated. Solutions for 
different αs are provided in the literature. Because the 
αs variation is very small, only αs = 2.5 × 10-6 is 
considered in the present study.  

As seen from Fig. 2, averaged profiles of Cp and α 
are achieved. In contrast, the oscillatory behavior of 
bubbles could not be captured, possibly owing to the 
elimination of the second order derivative term from 
the original Rayleigh–Plesset equation. However, 
global quantities such as the pressure drop due to 
cavitation are approximately computed, which is the 
main motivation of NPSH computations for pumps.  

4. CAVITATING FLOW IN RADIAL 

PUMPS 

Meridional views of the selected impellers, all scaled 
to the same outlet diameter, are shown in Fig. 3.  

 

 
Fig. 3. Meridional view of selected radial 

impellers. 
 

Some of the characteristic features of these selected 
pumps are listed below. The ns = 10.4 pump has 
cylindrical blades, while the other impellers have 
blades of double curvature. 

Table 1 Some characteristic dimensions of the 
selected impellers 

 ns = 10.4 ns = 22.4 ns = 34.4 

D2 [mm] 328 179 177 

b2  [mm] 13,5 10.8 21 

D0 [mm] 87 73 105 

number of 
blades 

4 5 6 

β2  [°] 28 26 25 
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Fig. 4. Schematic of the test rig. 

 

 

4.1 Experimental Setup and Determination 
of Pump Characteristics 

The experiments were conducted at the open loop 
test rig of Standart Pompa AS. A schematic of the 
test bench is presented in Fig. 4. Performance 
measurements were realized by fulfilling the 
requirements of the rotodynamic pumps— hydraulic 
performance acceptance tests— ISO EN 9906 
standard. All the data acquisition systems, 
measurement methods, and equipment calibration 
were according of international standards. As can be 
seen from Fig. 4, a suction pool of 400 m3 capacity 
is used in the performance tests, which is filled with 
fresh water. Prior to running, air is evacuated from 
the suction line with a vacuum pump. When the 
pumps are filled with water, operation is initiated 
using a soft starter connected to a three-phase electric 
motor in synchronous speed. The suction line is 
equipped with a throttling valve to control the 
suction pressure. The pipeline characteristics and 
pump flow rate are determined through a flow 
control valve placed at the discharge line. The 
discharged water flows through a magnetic 
flowmeter and is flushed back into the pool 
afterwards.  

The volumetric flow rate is measured with different 
sizes of flowmeters based on the pump capacity. The 
suction pressure is obtained from an absolute 
pressure transducer, while the discharge pressure is 
determined using two different sizes of gauge 
pressure transducers based on the pump outlet 
pressure levels. 

Atmospheric pressure measurement is also required 
to bring the suction and discharge pressure readings 
on the same level. This is accomplished using an air 
station. The rotation speed is measured with a laser 
tachometer from the pump shaft. The temperature of 
water is measured with a thermocouple placed at the 
sump, near the suction pipeline. This is used to 
determine the density of water and vaporization 
pressure.  

Digital data from the measurement chain are 
collected in the data acquisition system, which is 

controlled with a sophisticated software. A list of 
equipment, their accuracy, and max. uncertainty 
associated with the calculated quantities are provided 
in Table 2 and Table 3. 

 

Table 2 Accuracy of measurements 

Measured 
quantity 

Equipment 
 

Accuracy 
 

Q 
 

Krohne - Optiflux DN50 ± 0.5% 

Krohne - Optiflux DN80 ± 0.5% 

Krohne - Optiflux DN125 ± 0.5% 

Psuction 
 

Keller - PAA33X - 3barA ± 0.05% 

Pdischarge 
 

Keller - PR33X -3bar.g ± 0.05% 

Keller - PR33X -10bar.g ± 0.05% 

Pambient Delta OHM - HD2001.1 ± 0.1% 

n UNI-T - UT372 ± 0.02% 

Twater PT100 - 

 
Table 3 Uncertainties for head and NPSH3 

Calculated results Uncertainty 

H ± 1.5% 

NPSH3 ± 1.5% 

 
To determine the Q-NPSH3 characteristics, Q–H 
performance curves should be known first. 
Therefore, performance tests for three pumps are 
conducted at a constant speed in a fully open inlet 
valve position, allowing for the highest inlet 
pressure. Performance curves for all the pumps are 
constructed over their operating ranges. For the 
cavitation tests, the throttling valve at the suction 
pipeline is gradually closed to achieve the desired 
pressure loss. To compensate for the reduction in 
flow, the discharge valve is further opened to fix the 
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flow rate. When the pump head is reduced by 3% 
compared to the non-cavitating conditions at the 
same flow rate and speed, the suction pressure 
measurements are used to calculate the NPSH3 value.  NPSHଷ = Pୱ୳ୡ୲୧୭୬ρg + Vୱ୳ୡ୲୧୭୬ଶ2g − p୴ + zୣ              (14) 

Here, ze is the elevation difference between the 
measurement plane and NPSH datum plane, and 
Vsuction is the axial velocity at the suction pipe 
measurement section. 

NPSH measurements for three pumps are performed 
over the allowable operating ranges of the pumps. 
 

Table 4 Mesh independence analysis for passage 
and full model calculations of ns = 34.4 pump 

ns = 34.4 passage calculations 
[structured hex. elements] 

 coarse medium fine 

inlet mesh size 31020 74340 168168 

passage mesh 
size 

107734 248730 689346 

outlet mesh size 93060 282000 670320 

y+ on blades 
min–max 

1.3-15 0.9-15 0.9-14 

y+ area average 
value on blades 

12.8 12.2 10.8 

H [m] 36.93 37.12 37.2 

ns = 34.4 full model calculations 
[unstructured tetra. elements] 

 coarse medium fine 

suct. chamber 
mesh size 

122712 237393 354781 

impeller mesh 
size 

1638554 2410392 3851258 

volute casing 
mesh size 

2070328 3486031 4215952 

y+ on blades 
min–max 

8.3-383 2.4-314 0.4-208 

y+ area average 
value on blades 

285 130.6 102 

H [m] 37.1 37.02 37.08 

 

4.2 Cavitation Performance Analysis of ns = 
34.4 Pump 

First, computations are conducted for the ns = 34.4 
pump. All pump components, including the suction 
chamber, volute casing, sidewalls, leakage zones 
with gaps on the front and back wear rings, balance 
holes, and seal flush are modeled, as shown in the 
mesh section view in Fig. 5.  

The calculation domain is decomposed into 39 parts. 
The inlet and outlet pipes are added to the model to 
enable a homogenous boundary condition (BC) 
imposition. Unstructured tetragonal elements are 

used to mesh the domain, as can be seen from Fig. 6. 

 

 
Fig. 5. Details from the gap (100 µm) below the 

front wear ring. 

 

 
Fig. 6. Computational domain of ns = 34.4 pump; 

inlet elements, impeller, and volute casing. 
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Fig. 7. Passage flow calculation steps for ns = 34.4 pump. 

 
 

Single-phase solutions are obtained with a steady 
state approach using the moving reference frame 
(MRF) scheme for the impeller. Inlet mass flow rate 
and outlet static pressure boundary conditions are 
prescribed. Turbulence is modeled with the 
realizable k–ε model together with scalable wall 
functions. This type of wall functions enables the 
usage of arbitrarily fine mesh. For grid refinements 
below y+ < 11, deterioration in the standard wall 
functions is avoided. For a coarser mesh, standard 
wall functions are identical where the centroid of the 
wall-adjacent cell is located within the logarithmic 
law layer, i.e., 30 < y+ < 300. After that, the flow field 
at one passage of the impeller is studied. Inlet and 
outlet of the passage are extended as well, with the 
principle of zero diffusion. The mesh is constructed 
with structured hexagonal elements. Details from the 
leading edge are shown in Fig. 7. Because there is 
leakage from the front wear ring gap, back ring gap, 
seal flush, and balance holes, the flow rate passing 
through the impeller is higher than that at the pump 
outlet. The leakage is calculated using empirical 
correlations and added to the pump inlet flow rate. 
Based on the calculated leakage rates, the volumetric 
efficiency is 97.1% at Q/Qopt = 1.16, 96.6% at Q/Qopt 
= 1.05, and 96.08% at Q/Qopt = 0.95 where Qopt 
stands for the flow rate at the best efficiency point 
(BEP). Single-phase computations are repeated 
under periodic BCs using the MRF scheme. A 
convergence criteria of 10-5 is set for continuity, 
momentum, and turbulence equation residuals. 

A mesh independence study is performed at the Q = 
1.05Qopt operating point flow rate for the single-
phase flow. Table 4 summarizes the mesh 
information and calculated head values in each 
simulation step. 

Regarding passage calculations, refining the mesh 
from coarse to fine resulted in an increased head 
value of 0.5% and 0.2% in each step. First, the node 
height is reduced until 3.7 microns in the fine mesh 
case, while only a minor change resulted in the area 
average value of y+. Therefore, further refinement is 
not considered and a medium size mesh is found 
sufficient. For full model calculations, a coarse mesh 
is selected because negligible head variation is 
observed with a finer mesh. Although a large value 
of y+ is observed in full model calculations, the 

criteria for logarithmic law layer is satisfied.  

The pump head is calculated for three operating 
points for Q/Qopt = 1.16, 1.05, and 0.95. An overview 
of the calculation steps for a single passage case is 
provided in Fig. 7.  

The calculated value of H for both the single passage 
and full model cases at Q/Qopt = 1.05 is 37.1 m. 
Losses in the volute casing are tolerated with the 
transfer of high-momentum liquid from the impeller 
sidewalls to the outlet section. The calculation error 
in the numerical results of H is ~+4% based on the 
experimental values. Next, the two-phase cavitation 
calculations for the same pump at the optimum flow 
rate were performed. The density and viscosity of 
water vapor were defined at 25 °C. The Zwart model 
was selected to compare the passage flow and full 
model cases for Q/Qopt = 1.05. The vaporization 
pressure was set to 3574 Pa and 1 µm was specified 
as the bubble radius size. A mass flow inlet with zero 
vapor volume fraction (αv = 0) was imposed. At the 
outlet, first a high static pressure was imposed to 
have limited cavitation that would not result in a 
head-drop. Then, the outlet pressure was gradually 
reduced stepwise to enhance the cavitation and 
obtain the head-drop (H–NPSH) curves. The rotation 
speed and mass flow rate were kept constant. A 
convergence criteria of 10-4 was set for the volume 
fraction equation residuals. Both for the passage flow 
and full model cases, steep head-drop characteristics 
were obtained with a head breakdown value of ~2 m. 
The H–NPSH curves are given in Fig. 8. 

A lower NPSHr is expected for the full model case 
because high-pressure liquid flashes into the suction 
chamber from the balance holes. However, no 
significant effect on the head-drop curve is observed. 
Based on this argument, a single passage is used for 
all other computations. Cavitation calculations near 
the BEP are also conducted using the Schnerr and 
Singhal models. For the Schnerr model, nb = 1013 is 
imposed. For the Singhal model, a non-condensable 
gas mass fraction of 2.3 × 10-5 is considered. This 
rate of gas content is specified in order to duplicate 
the fluid in the experiments. Based on Henry's law, 
air dissolved in water at 25 °C and 1 atm absolute 
pressure is calculated to be 0.023 g/kg. This rate is 
considered constant for all the cases. Steep head- 
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Fig. 8. Head-drop curves for ns = 34.4 pump and contours of vapor volume fraction on the blades. 

 
drop curves are also obtained with these models.  
Pump breakdown occurs at a significantly high 
NPSH in the computations with the Singhal model. 
The calculation error in the Singhal NPSH3 value is 
computed to be only -3.5%, based on experimental 
data. 

At high inlet pressures, near NPSH = 10 m, no vapor 
formation is found to occur using the Zwart and 
Schnerr models as depicted in Fig. 8. In contrast, a 
small amount of vapor (0.2 max.) around the suction 
and discharge sides of the blade leading edge are 
computed with the Singhal model. Until the cavity 
length exceeds a certain level, a head-drop owing to 
cavitation should not occur. As expected, such 
limited cavity zones do not result in a head-drop in 
this case. When the NPSH is reduced to 4.4 m, the 
leading-edge neighborhood is fully occupied by 
large vapor pockets for all the models. Similar cavity 
forms develop near the leading edge. There is a 
larger vapor region around the leading-edge shroud 
than at the hub because of the higher tangential 
velocity. Although a considerable amount of 
vaporization is predicted, the Zwart and Schnerr 
models do not yield any head-drop in opposition to 
the Singhal model. This is because the vaporization 
occurs from the blade to the blade throat and 
penetrates downstream using the Singhal model. 
This condition leads to a sudden head-drop even if 
the volume fraction is lower (0.77 max.) than that for 
the Zwart and Schnerr models (0.99 max.), as seen 
from Fig. 8. 

The best approximation to the experimental data is 
obtained using the Singhal model at the maximum 
efficiency operating point. Consequently, off-design 
calculations are conducted only with the Singhal 
model. 

4.2.1 Effect of Inlet and Outlet Boundary 
Conditions 

To analyze the effects of inlet and outlet BCs, mass 

flow inlet type BC is changed to total pressure inlet 
and static pressure outlet type BC is changed to mass 
flow outlet. When a mass flow BC is prescribed, 
mass flow rate for each phase shall be specified 
separately. This a priori knowledge is only available 
at pump inlet, where it is known that vaporization is 
not present. Mass flow rate is kept same for two 
cases. Resulting velocity distributions at inlet and 
outlet are shown in Fig. 9. Circumferentially 
averaged velocity profiles near 3% head drop 
conditions of Singhal model are plotted for the 
1.05Qopt operating point. A uniform velocity profile 
at inlet along the span is computed for both cases. At 
the outlet, domain is extended sufficiently to 
eliminate the effects of a fixed constant static 
pressure BC around the circumference. Therefore, a 
slight variation of outlet velocity profiles is observed 
between two BC sets.  

 

 
Fig. 9. Velocity distributions at inlet and outlet 

using two different type of BC sets. 
 

With Ptin-mout type of BC set, unrealistic head drop 
curves are calculated using Singhal model, which 
produce very gradual head drop characteristics. This 
is valid for all operating points. The head-drop 
curves are displayed in Fig. 10. Therefore, min-Psout 
type BC set is used for all the subsequent 
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calculations, which give steeper head drop 
characteristics as expected. On the other hand, head 
drop curves are unchanged for Zwart and Schnerr 
models with modified BC set, therefore are not 
shown here.  

 

 
Fig. 10. Head-drop curves over the operating 

range of ns = 34.4 pump using the Singhal model. 
 

The Q-NPSH3 curves are generated using the head- 
drop curves of the Singhal model and compared to 
experimental data, as seen in Fig. 11. The calculated 
NPSH3 values are consistent with experimental 
results near the optimum and overload operating 
points. However, there is a -27% calculation error at 
the part-load operating point where the absolute 
difference in NPSH3 is 0.99 m. 

 

 
Fig. 11. Q-H and Q-NPSH3 curves for ns = 34.4 

pump obtained numerically and experimentally. 

 
4.3 Cavitation Performance Analysis of ns = 
22.4 Pump  
The numerical procedure described earlier is 
repeated for other pumps. In this context, a mesh 
independence study is performed for single-phase 
calculations of the ns = 22.4 pump at the optimum 
flow rate. The mesh information is given in Table 5.  

Structured hexagonal elements are used. Increasing 
the mesh element size from coarse to medium 
resulted in a 1.4% reduction in the head. Refining the 
mesh further resulted in a 0.5% variation. Although 
the first node distance is reduced until 28 microns 
with the fine mesh case, it is seen that the average y+ 
on blades is not reduced any further. In this view, a 
medium sized mesh is selected. 

Table 5 Mesh convergence analysis of ns = 22.4 
pump 

 coarse medium fine 

inlet mesh size 19890 51600 79650 

passage mesh size 102408 210872 423252 

outlet mesh size 95880 208120 334800 

y+ on blades min-
max 

1.6-34 1.07-19 1.2-14 

y+ area average 
value on blades 

16.2 11.9 11.7 

first node from 
wall [µm] 

70 40 28 

H [m] 39.61 39.04 39.22 

 

Head-drop curves are obtained using three cavitation 
models at the best efficiency operating point. NPSH3 
values at BEP are calculated to be higher with the 
Singhal model than the other models, as seen from 
Fig. 12a. Furthermore, full cavitation breakdown 
occurs at higher NPSH values obtained with this 
model. Steep head-drop characteristics are calculated 
with all the models. Closest results to NPSH3 
measurements at BEP (refer Fig. 12b), are obtained 
using the Singhal model. Therefore, off-design 
cavitation calculations at Q/Qopt = 0.76 and 1.19 are 
performed only with this model. Head-breakdown is 
predicted at a higher NPSH value for the overload 
point and at a lower NPSH value for the part load 
point compared to BEP. Q–NPSH3 curves are 
constructed based on the head-drop curves. The 
comparative results are presented in Fig. 12b. The 
NPSH3 calculation error is -31%, -34%, and -10% 
for partload, BEP, and overload operating points, 
respectively. Although the calculated error is not 
small, the difference is not larger than 1.2 m at any 
of the operating points.  

4.4 Cavitation Performance Analysis of ns = 
10.4 Pump  
Calculation results for the mesh convergence study 
of ns = 10.4 pump are listed in Table 6. 

 

Table 6 Mesh convergence analysis of ns = 10.4 
pump 

 coarse medium fine 

inlet mesh size 24480 37800 55500 

passage mesh size 117984 238950 449735 

outlet mesh size 71280 115200 177600 

y+ on blades min-
max 

1.67-42 1.4-25.3 1.3-14.1 

y+ area average 
value on blades 

15.4 11.6 11.3 

first node from 
wall [ µm ] 

92 42 23 

H [m] 35.18 35.1 35.1 
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(a) 

 
(b) 

Fig. 12. Head-drop (a) Q-H and Q-NPSH3 (b) 
curves of ns = 22.4 pump. 

 

 
(a) 

 
(b) 

Fig. 13. Head-drop (a) Q-H and Q-NPSH3 (b) 
curves of ns = 10.4 pump. 

 

A coarse mesh is selected in this case because the 
calculated head variation is only 0.2% with a finer 
mesh.  

Head-drop curves are calculated in a similar manner 
in reference to other pump calculations (see Fig. 
13a). The head breakdown and NPSH3 values 
computed with the Zwart and Schnerr models are 
similar. The highest NPSH3 value at BEP is 
calculated using the Singhal model, like other two 
pumps. Because the most accurate results at BEP are 
calculated using the Singhal model, this model is 
used to compute the cavitation at off-design 
operating points. Steep head-drop curves are 
obtained at all operating points.  

The Q-NPSH3 curves are constructed using Fig. 13a. 
It is seen that the calculated NPSH3 is lower than the 
experimental values over the operating range of the 
pump (see Fig. 13b).  A maximum NPSH3 
calculation error of 48% is revealed at partload 
operating point, resulting in a 1.08 m absolute 
difference. 

5. CONCLUSIONS 

The capabilities of three homogeneous mixture 
cavitation models are investigated in three radial 
flow pumps with different specific speeds. 
Cavitation performances of the pumps are calculated 
for BEP and off-design operating points, and 
compared to experimental data based on the NPSH3 
measurements. It is observed that the numerical 
results using the Singhal cavitation model are more 
accurate than other models in the selected radial 
pump range. Using the Singhal model, the NPSH3 
calculation error is within the limits of the NPSH 
margin. However, there are stability issues 
associated with this model. When the vapor volume 
fraction exceeds a certain limit, the pressure and 
mass flow rates oscillate excessively at the inlet and 
outlet. Residuals for the volume fraction equation do 
not drop below 10-4 in several cases. In contrast, the 
other models are more robust and converge quickly. 
It is highly recommended to use these models after 
the parametric optimization of the model coefficients 
is performed. 

The cavitating flow of the ns = 34.4 pump is 
simulated incorporating all the rotating and 
stationary elements, including the leakage patterns, 
balance holes, and seal flush. It is observed that the 
head-drop curves do not deviate significantly from 
the single passage calculations at BEP. Therefore, 
passage calculations under periodic BCs are 
recommended for a faster generation of the head-
drop curves. 

The effect of inlet and outlet BCs on the cavitation 
performance curves are analyzed using three 
cavitation models. Mass flow inlet and static 
pressure outlet boundary conditions provided 
satisfactory results using the Singhal model. A mass 
flow outlet BC with zero vapor volume fraction leads 
to an unrealistic head-drop curve, and should 
therefore be prevented. However, the head-drop 
curves do not change when using the Zwart and 
Schnerr models with the modified BC set.  
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For all the cases, NPSH3 is estimated to be lower than 
the experimental values. The possible reasons 
include the following: 

1. Usage of the turbulence model without any 
modification for multiphase flow: Bubbles form 
when the local pressure falls below the vapor 
pressure. The main reason for the pressure drop 
in a pump is the acceleration of the fluid around 
the suction side of the blade near the leading 
edge. In this study, cavitation is calculated in the 
allowable operating region of the pump. Owing 
to shockless entry conditions, low-momentum 
fluid accumulates at the separated flow field 
under adverse pressure gradient. Bubbles form 
and grow in these low-pressure fields and 
collapse downstream. In order to calculate 
appropriately the separated flow field, realizable 
k–ε turbulence model with scalable wall 
functions is used. Because turbulence models 
are constructed for single-phase flow, Coutier-
Delgosha et al. (2003) proposed a correction for 
the turbulent viscosity for unsteady cavitation 
calculations. This correction is successfully 
applied in the recent study of Tran et al. (2015) 
for the hydrofoil case and by Zhang et al. (2015) 
for the centrifugal pump case. However, in this 
work, the turbulence model is used in its original 
form. A reduction of the turbulent viscosity will 
enhance cavitation. 

2. The non-condensable gas content of experiment 
water: The mass fraction of dissolved air is not 
measured. Future studies will be conducted for the 
gas content influence on the cavitation 
performance for the same series of pumps.  

3. Utilization of the MRF scheme with a steady 
state approach, which eliminates all the 
transient effects: Sometimes, a transient 
analysis is required to calculate even the Q–H 
characteristics correctly. However, transient 
cavitation calculations make it unpractical for 
industry, due to the huge costs of calculation 
time.  
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