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ABSTRACT 

The velocity field and tangential shear stress for unsteady flow of an Oldroyd-B fluid with Caputo fractional 
derivatives through an infinite long cylinder are evaluated. The fluid in the infinitely long cylinder is initially 
at rest and at t = 0+, due to shear, the fluid starts to oscillate longitudinally. We have solved the fractional model 
with the tool of Laplace and finite Hankel transformations. The solutions are in series form and are written in 
generalized G-function to avoid the entanglement. In limiting cases, the solutions of ordinary Oldroyd-B fluid, 
Maxwell fluid with fractional as well as ordinary and Newtonian fluid are derived. Finally, behavior of different 
physical parameters on fluid is illustrated by graphs. 
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NOMENCLATURE 

A arbitrary constant 
E extra shear stress 
R radius of circular cylinder 
t time 
u velocity field 
 
ρ density 
λ relaxation time 

λr retardation time 
ζ shear stress 
σ angular frequency 
ψ fractional parameter 
φ similarity parameter 
Θ direction vector 
µ dynamic viscosity 
ν kinematic viscosity

 

 
1. INTRODUCTION 

The performance and shape of the movement of non-
Newtonian fluids can be narrated well by Navier-
Stokes equations. Examples of these non-Newtonian 
fluids are blood, dough, suspensions, polymer 
resolution, liquid crystals and bitumen. Due to their 
multiple applications in industry, engineering and 
medical, these non-Newtonian fluids achieve much 
significance. The motion of non-Newtonian fluids 
between oscillating and rotating cylinders is the most 
worthy and fascinating phenomenon in engineering. 

The phenomenon in which a non-Newtonian fluid is 
moving in a cylinder is very valuable problem in 
dynamics. The exact solution of these kind of 
problems such that rotational oscillation in an infinite 

rod is firstly presented by Stokes (1886). Casarella 
and Laura (1969) described the movement of fluid in 
a cylinder in both longitudinal oscillation and 
rotation. Rajagopal (1983) and later Rajagopal and 
Bhatnagar (1995) firstly solved the models for the 
motion of non-Newtonian fluids. The models of rate 
type fluids that are viscoelastic have been solved by 
Rajagopal and Srinivasa (2000). 

The extensions to exact solutions of rate type fluids 
discussed by Fetecau et al. (2008 a) and Rubab et al. 
(2009). Some conventional exact solutions to the 
steady state viscoelastic fluid have been studied by 
Fetecau et al. (2008 b). Exact solutions for the 
motion due to time-dependent shear to a non-
Newtonian fluid have been discussed by Fetecau and 
Kannan (2005). Rotational motion within annulus of 
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an Oldroyd-B fluid is discussed by Imran et al. 
(2015). Some important attempts to get exact 
solutions of fractional non-Newtonian fluid models 
are listed here (Mahmood et al. (2009), Tong et al. 
(2005), Sultan and Nazar (2016)). 

Recently, the solution of some incompressible flu-
ids which have convection flow in two parallel plates 
is discussed by Rashidi et al. (2013) and solution of 
Oldroyd-B fluid for magnetohydrodynamic flow is 
presented by Abbasbandy et al. (2013), both are 
playing key role in dynamics industry. Many papers 
associated to non-Newtonian fluids have been 
proclaimed (Awan et al. (2010), Keimanesh et al. 
(2011), Galanis and Rashidi (2012), Riaz et al. 
(2016), Jamil et al. (2012)). In this paper, exact 
solutions of velocity field and tangential stress of an 
Oldroyd-B fluid with fractional derivatives which is 
oscillating longitudinally are computed. Initially the 
cylinder is at rest and at t = 0+, the cylinder starts to 
move. To solve the problem, Laplace and Hankel 
transformations are used that made the approach to 
the solutions more attainable. 

2. FORMULATION OF THE 
PROBLEM 

The extra-stress E and the velocity U of the move-
ment of fluid are considered as 

u=u(r,t)݁௭,      E= E (r,t),                                            (1) 

where ez in the cylindrical coordinate system (r,θ,z) 
is the unit vector in z-direction. Moreover, when the 
fluid starts to move, we have 

u(r,0)=0,          E(r,0)=0.                                          (2) 

The equations that govern the motion of an Oldroyd-
B fluid are given as (Fetecau et al. (2008) 

(1+ૃ డడ௧)ߞ(r,t)=µ(1+ߣ௥ డడ௧) డ௨(௥,௧)డ௥ ߩ (3)                                డ௨(௥,௧)డ௧ = ቀ డడ௥ + ଵ௥ቁ ,ݎ)ߞ  (4)                                       .(ݐ

where τ(r,t) = Erθ(r,t) is the only nontrivial shear 
stress. By eliminating ζ from Eqs. (3) and (4), we 
have 

(1+ૃ∂/∂t)∂u(r,t)/∂t=v(1+λr∂/∂t)× 
(∂/∂r+1/r)∂u(r,t)/∂r                                                      (5) 

The Caputo fractional differential operator (Fetecau 
et al. (2008)) is 

(ݐ)௧ఘ݂ܦ  = ቐ ଵ(ଵିఘ) ௗௗ௧ ׬ ௙(௫)(௧ି௫)ഐ 0      ,ݔ݀ < ߩ < 1;௧଴ௗ௙(௧)ௗ௧ ߩ                                          = 1,    (6) 

where Γ(·) denotes the Gamma function. 

From Eqs. (3) and (5) by using the fractional 
differential operators ܦ௧ః and ܦ௧అ in place of integer 
time derivatives, we obtain the equations of motion 
of an Oldroyd-B fluid with fractional derivatives 

(௧అܦ௥అߣ+1)µ=(r,t)ߞ(௧ఃܦఃߣ+1)
డ௨(௥,௧)డ௥ ,                            (7) 

 

 
Fig. 1. Oldroyd-B fluid with longitudinal 

oscillation. 

 
(௧ఃܦఃߣ+1)

డ௨(௥,௧)డ௧ =v(1+ߣ௥అܦ௧అ)× ቀ డడ௥ + ଵ௥ቁ డ௨(௥,௧)డ௥ .   (8) 

Consider a fractional Oldroyd-B fluid which is 
initially at rest in an infinitely long cylinder of radius 
R. In the presence of shear stress, after some time the 
cylinder starts to oscillate. As a result of applied 
shear stress, the fluid is gradually moved. The 
appropriate initial and boundary conditions are 

u(r,0)=
డ௨(௥,௧)డ௧ ห ݐ  = 0 = ,ݎ)ߞ   ,0 0)=0;   rא  ሾ0, ܴሿ,  (9) 

ห (r,t)ߞ(௧ఃܦఃߣ+1) ݎ  = ܴ = µ(1+ߣ௥అܦ௧అ) డ௨(௥,௧)డ௥  ห ݎ  = ܴ =  (10)                                    (ݐ߱)݊݅ݏܣ

where ω is angular frequency. Eqs. (7) and (8) 
involving fractional derivatives are solved by using 
the tool of Laplace transformation and Hankel 
transformation. 

3. CALCULATION OF THE 
VELOCITY FIELD 

Taking the Laplace transformation of Eqs. (8) and 
(10), we have 

(p+ߣః݌ఃାଵ)ݑത(ݎ, (݌ = 1)ݒ + (అ݌௥అߣ × ቀ డడ௥ + ଵ௥ቁ డ௨ഥ(௥,௣)డ௥ ,                                                      (11) డ௨ഥ(௥,௣)డ௥   ห ݎ  = ܴ=
஺ఠஜ൫ଵାఒೝ೽௣೽൯(௣మାఠమ),                          (12) 

The finite Hankel transform of u(r, p) is defined as 
(Fetecau et al. (2008)) ݑுതതതത(ݎ௡, (݌ = ׬ ,ݎ)തݑݎ ோ଴,ݎ݀(௡ݎݎ)଴ܬ(݌                      (13) 

where J0(·) is the Bessel function of first type having 
zeroth order and rn, n = 1,2,3,... are the positive roots 
of the transcendental equation J1(Rr) = 0. 
Multiplying Eq. (11) by rJ0 (rrn), then integrating 
with respect to ’r’ from 0 to R and using the identity ׬ ݎ ቂ డమడ௥మ + ଵ௥ డడ௥ቃோ଴ ,ݎ)തݑ ݎ݀(௡ݎݎ)଴ܬ(݌ = డ௨ഥ(ோ,௣)డ௥ (௡ݎܴ)଴ܬܴ ,௡ݎ)ுതതതതݑ ௡ଶݎ  (14)                                                  (݌
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,௡ݎ)ுതതതതݑ (݌ = ஺ோఠఔ௃బ(ோ௥೙)ஜ(௣మାఠమ)ൣ(௣ାఒ೻௣೻శభ)ାఔ௥೙మ൫ଵାఒೝ೽௣೽൯൧  (15) 

,௡ݎ)ுതതതതݑ (݌ = ஺ோఠ௏௃(ோ௥೙)ஜ௥೙మ ൤ ଵ൫ଵାఒೝ೽௣೽൯(௣మାఠమ) −(௣ାఒ೻௣೻శభ)൫ଵାఒೝ೽௣೽൯(௣మାఠమ)ൣ(௣ାఒ೻௣೻శభ)ାఔ௥೙మ൫ଵାఒೝ೽௣೽൯൧൨           (16) 

Taking the inverse Hankel transform, we obtain ݑത(ݎ, (݌ = ஺௥మఠଶஜோ ଵ൫ଵାఒೝ೽௣೽൯(௣మାఠమ) −ଶ஺ఠஜோ ∑ ௃బ(௥௥೙)௥೙మ௃బ(ோ௥೙) ×ஶ௡ୀଵ ൤ (௣ାఒ೻௣೻శభ)൫ଵାఒೝ೽௣൯(௣మାఠమ)ൣ(௣ାఒ೻௣೻శభ)ାఔ௥೙మ൫ଵାఒೝ೽௣೽൯൧൨        (17) 

The suitable form of the last factor of Eq. (17) is (ଵାఒ೻௣೻)ൣ(௣ାఒ೻௣೻శభ)ା௏௥೙మ൫ଵାఒೝ೽௣೽൯൧ =
ଵఒ೻ ∑ ∑ ܿ௜௝ߣ௥௝ ቀି௏௥೙మఒ ቁ௜

× ൥௣೽ೕష೔షభାఒ೻௣೻శ೽ೕష೔షభቀ௣೻ା భഊ೻ቁ೔శభ ൩ ,௜௝ୀ଴ஶ௜ୀ଴                    (18) 

where ܥ௜௝  =
௜!௝!(௜ି ௝)!  is the binomial co-efficient. 

Introducing Eq. (18) in (17) and applying inverse 

Laplace transformation, using convolution theorem 
and the formula ିܮଵ ቂ ௣೑(௣೑ିௗ)೒ቃ = ,݀)௘,௙,௚ܩ   ;(ݐ

Re(eg-f)>0, Re(p)>0, ቚ ௗ௣೐ቚ < 1,                            (19) 

where ܩ௘,௙,௚(݀, (ݐ = ∑ ௗೕ௰(௚ା௜)௰(௚)௰(௝ାଵ) ௧(೒శ೔)೐ష೑షభ௰ሾ(௚ା௝)௘ି௙ሿ ,ஶ௜ୀ଴             (20) 

is the generalized G-function. We find the expression 
u(r,t) for the velocity field 

u(r,t)=
஺௥మଶஜோఒೝ೽ ቂsin ݐ߱ ∗ అ,଴,ଵ(ିଵఒೝ೻ܩ , ቃ(ݐ − ଶ஺ఒஜோఒೝ೻  ∑ ௃బ(௥௥೙)௥೙మ௃బ(ோ௥೙) ஶ௡ୀଵ  ∑ ∑ ܿ௜௝(ߣ௥అ) ௝ ቀି௏௥೙మఒ೻ ቁ௜ ×௜௝ୀ଴ஶ௜ୀ଴  ቂ{sin ݐ߱ ∗ అ,଴,ଵܩ ቀିଵఒೝ೽ , {ቁݐ ×൬ܩః,అ௝ି௜ିଵ,௜ାଵ ቀିଵఒ೻ , ቁݐ + ః,అ௝ି௜ିଵ,௜ାଵܩఃߣ ቀିଵఒ೻ ,   ቁ൰ቃݐ

 (21) 

where ∗ denotes the convolution between two 
functions. 

3.1   Calculation of the Shear Stress 

Taking Laplace transform of Eq. (7), we have ߞҧ(ݎ, (݌ = ஜ൫ଵାఒೝ೽௣೽൯(ଵାఒ೻௣೻) డ௨ഥ(ோ,௣)డ௥                                     (22) 

Differentiating Eq. (17) w.r.t ’r’, we obtain డ௨ഥ(ோ,௣)డ௥ = ஺௥ఠஜோ ଵ൫ଵାఒೝ೽௣೽൯(௣మାఠమ) + 
ଶ஺ఠஜோ           ∑ ௃భ(௥௥೙)௥೙ ௃బ(ோ௥೙) ×ஶ௡ୀଵ      ൤ (௣ାఒ೻௣೻శభ)൫ଵାఒೝ೽௣೽൯(௣మାఠమ)ൣ(௣ାఒ೻௣೻శభ)ା௏௥೙మ൫ଵାఒೝ೽௣೽൯൧൨  (23) 

Introducing Eq. (23) into (22), we have 

,ݎ)ҧߞ (݌ = ஺௥ோ ఠ(ଵାఒ೻௣೻)(௣మାఠమ) + ଶ஺ோ  ∑ ௃భ(௥௥೙)௥೙ ௃బ(ோ௥೙)ஶ௡ୀଵ  ఠ(௣మାఠమ) × ൤ ఘൣ(௣ାఒ೻௣೻శభ)ା௏௥೙మ൫ଵାఒೝ೽௣೽൯൧൨  

(24) 

applying inverse Laplace transformation, using 
convolution theorem and the formula of G-function, 
we find the expression for shear stress ζ(r,t) ߞ(r,t)=

஺௥ఒ೻ோ  ቂsin ݐ߱ ∗ ః,଴,ଵ(ିଵఒ ೻ܩ , ቃ(ݐ +  
ଶ஺ோ  ∑ ௃భ(௥௥೙)௥೙ ௃బ(ோ௥೙) × ஶ௡ୀଵ  ∑ ∑ (−1)௜ (௩௥೙మ)೔(ఒ೻)೔శభ ௝௜௝ୀ଴ஶ௜ୀ଴(௥ఃߣ)௜௝ܥ × ቂ݊݅ݏ ݐ߱ ∗ ః,అ௝ି௜ିଵ,௜ାଵܩ ቀିଵఒ೻ ,  ቁቃ                             (25)ݐ

4. LIMITING CASES 

The solutions (21) and (25) are in general form. Af-
ter imposing some appropriate limits on these, we 
recover solutions for some other fluids. 

4.1   Ordinary Oldroyd-B Fluid 

Substituting ψ,φ → 1 in Eqs. (21) and (25), we get 
the expression for the velocity ݑை஻(ݎ, (ݐ = ஺௥మଶஜோఒೝ೽ ቂsin ݐ߱ ∗ ଵ,଴,ଵܩ ቀିଵఒೝ೽ , ቁቃݐ −ଶ஺ఒ೻ஜோఒೝ೽ ∑ ௃బ(௥௥೙)௥೙మ௃బ(ோ௥೙) × ஶ௡ୀଵ  ∑ ∑ ௝(௥అߣ)௜௝ܥ ቀି௩௥೙మ ఒ೻ ቁ௜ × ቂቄ݊݅ݏ ݐ߱ ∗௜௝ୀ଴ஶ௜ୀ଴ܩଵ,଴,ଵ ቀିଵఒೝ೽ , ቁቅݐ ∗ ൬ܩଵ,௝ି௜ିଵ,௜ାଵ ቀିଵఒ೻ , ቁݐ ଵ,௝ି௜ିଵ,௜ାଵܩఃߣ+ ቀିଵఒ೻ ,  ቁ൰ቃ                                           (26)ݐ

and for the shear stress ߞை஻(ݎ, (ݐ = ஺௥ఒ೻ோ ൤݊݅ݏ ݐ߱ ∗ ଵ,଴,ଵܩ ൬ିଵఒ೻ , ൰൨ݐ +ଶ஺ோ ∑ ௃భ(௥௥೙)௥೙ ௃బ(ோ௥೙) × ஶ௡ୀଵ  ∑ ∑ (ି௩௥೙మ)೔(ఒ೻)೔శభ ௝௜௝ୀ଴ஶ௜ୀ଴(௥అߣ)௜௝ܥ ቂ݊݅ݏ ݐ߱ ଵ,௝ି௜ିଵ,௜ାଵܩ∗ ቀିଵఒ೻ ,  ቁቃ                                                 (27)ݐ

of an ordinary Oldroyd-B fluid. 

4.2   Fractional Maxwell Fluid 

Substituting λr→ 0,ψ → 1 in Eqs. (21) and (25), we 
get the expression ݑிெ(ݎ, (ݐ = ஺௥మଶஜோ ( ݊݅ݏ ݐ߱ )  − ଶ஺ఒ೻ஜோ ∑ ௃బ(௥௥೙)௥೙మ௃బ(ோ௥೙) ×ஶ௡ୀଵ∑ ቀି௩௥೙మ ఒ೻ ቁ௜ × ݊݅ݏ ݐ߱ ∗ஶ௜ୀ଴  ቂܩః,ି௜ିଵ,௜ାଵ ቀିଵఒ೻ , ቁݐ ః,ି௜ିଵ,௜ାଵܩ ߣ+ ቀିଵఒ೻ ,  ቁቃ                                            (28)ݐ

for the velocity field and ݑிெ(ݎ, (ݐ = ஺௥ ఒ೻ோ ൤݊݅ݏ ݐ߱ ∗ ଵ,଴,ଵܩ ൬ିଵఒ೻ , ൰൨ݐ +ଶ஺ோ ∑ ௃భ(௥௥೙)௥೙ ௃బ(ோ௥೙) × ஶ௡ୀଵ ∑ ቀି௩௥೙మ ఒ೻ ቁ௜ ቂ݊݅ݏ ݐ߱ ∗ஶ௜ୀ଴ܩః,ି௜ିଵ,௜ାଵ ቀିଵఒ೻ ,  ቁቃ                                             (29)ݐ

for the shear stress of Maxwell fluid with fractional 
derivatives. 
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4.3   Ordinary Maxwell Fluid 

Substituting λr→ 0and ψ,φ → 1 for Eqs. (21),(25) (or 
substituting φ → 1 for Eqs. (28), (29)), we get the 
expression ݑெ(ݎ, (ݐ = ஺௥మଶஜோ ( ݊݅ݏ ݐ߱ )  − ଶ஺ఒ೻ஜோ ∑ ௃బ(௥௥೙)௥೙మ௃బ(ோ௥೙) ×ஶ௡ୀଵ∑ ቀି௩௥೙మ ఒ೻ ቁ௜ × ݊݅ݏ ݐ߱ ∗ஶூୀ଴  ቂܩଵ,ି௜ିଵ,௜ାଵ ቀିଵఒ೻ , ቁݐ ଵ,ି௜ିଵ,௜ାଵܩ ఃߣ+ ቀିଵఒ೻ ,  ቁቃ                                         (30)ݐ

for the velocity field and ߞெ(ݎ, (ݐ = ஺௥ఒ೻ோ ൤݊݅ݏ ݐ߱ ∗ ଵ,଴,ଵܩ ൬ିଵఒ೻ , ൰൨ݐ +ଶ஺ோ ∑ ௃భ(௥௥೙)௥೙ ௃బ(ோ௥೙) × ஶ௡ୀଵ ∑ ቀି௩௥೙మ ఒ೻ ቁ ൤݊݅ݏ ݐ߱ ∗ஶ௜ୀ଴ܩଵ,ି௜ିଵ,௜ାଵ ൬ିଵఒ೻ ,  ൰൨ݐ
                                                 (31) 

for the shear stress of Maxwell fluid with ordinary 
derivatives. 

4.4   Newtonian Fluid 

Substituting λr,λ → 0 and ψ,φ → 1 for Eqs. (21),(25), 
we get the velocity field expression ݑெ(ݎ, (ݐ =஺௥మଶஜோ(݊݅ݏ −(ݐ߱ ଶ஺ோ ∑ ௃బ(௥௥೙)௥೙మ௃బ(ோ௥೙) (௡ଶݎݒ−) ݊݅ݏ ஶ௡ୀଵ ݐ߱    (32) 

and the shear stress expression ߞே(ݎ, (ݐ = ஺௥ோ ݊݅ݏ) (ݐ߱ +ଶ஺ோ ∑ ௃భ(௥௥೙)௥೙ ௃బ(ோ௥೙) (௡ଶݎݒ−) ݊݅ݏ ஶ௡ୀଵ ݐ߱                               (33) 

for a Newtonian fluid. 

 

 
Fig. 2. Shear stress graph for R=0.5, λr=3, 
ν=0.0357541, µ=15, A=90, ω=15, λ=5, ψ=0.5, 

φ=0.3 and various values of t. 
 

5. NUMERICAL RESULTS AND 
DISCUS- SION 

The velocity field and the tangential stress for un-
steady flow of an Oldroyd-B fluid with the Ca-puto 
derivatives through an infinite long cylinder are 
evaluated. The fluid in the infinitely long cylinder is 

initially at rest and at t = 0+, due to shear, the fluid 
starts to move. The tool of finite Hankel and Laplace 
transformations is used for determining these 
solutions. The solutions are presented in generalized 
G−function. These solutions satisfy all initial and 
boundary conditions. The solutions of ordinary 
Oldroyd-B fluid, fractional Maxwell fluid, ordinary 
Maxwell fluid and Newtonian fluid are achieved in 
limiting cases. The behavior of solutions is 
illustrated graphically in the end. 

Finally, we have plotted some graphs for velocity 
and tangential stress of the fluid by using Eqs. (21) 
and (25) respectively, to see the effect of different 
physical parameters on our results. These graphs 
have been plotted against the values of r. Figs. 2 and 
3 depict that velocity and shear stress are directly 
proportional to time. From Figs. 4-7, we conclude 
that both the tangential stress and the velocity field 
are decreasing function to λr and λ. The impact of the 
kinematic viscosity ν is analyzed in Figs. 8 and 9, 
which show that both shear stress and velocity field 
are directly proportional to the kinematics viscosity. 

 

 
Fig. 3. Velocity field graph for R=0.5, λr=3, 
ν=0.0357541, µ=15, A=90, ω=15, λ=5, ψ=0.5, 

φ=0.3 and various values of t. 

 

 
Fig. 4. Shear stress graph for R=0.5, λr=3, 
ν=0.0357541, µ=15, A=90, ω=15, λ=5, ψ=0.5, 

φ=0.3, t=15 and various values of λr. 
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Fig. 5. Velocity field graph for R=0.5, λr=3, 
ν=0.0357541, µ=15, A=90, ω=15, λ=5, ψ=0.5, 

φ=0.3, t=15 and various values of λr. 

 

 
Fig. 6. Shear stress graph for R=0.5, λr=3, µ=15, 

A=90, ω=15, ν=0.0357541, ψ=0.5, φ=0.3, t=15 
and various values of λ. 

 

 
Fig. 7. Velocity field graphs for R=0.5, λr=3, 

µ=15, A=90, ω=15, ν=0.0357541, ψ=0.5, φ=0.3, 
t=15 and various values of λ. 

 

In fluid dynamics, the cylindrical domain is very 
useful to solve various engineering problems, that 
include meteorological geophysical and industrial 
problems and motion of fluid in oscillating, rotating 
annulus or flows in pipes. The flows of bio fluids 

through veins or stenosis arteries are intensively 
studied in the past decade. The biological fluids are 
viscoelastic in nature that has complex rheology. 
These fluids are well described by the non-
Newtonian fluid models, including the second grade 
and Maxwell fluid model. 

 

 
Fig. 8. Shear stress graph for R=0:5, λr=3, μ=15, 

A=90, ω =15, λ=5, y=0:5, φ=0.3, ψ =15 and 
various values of n. 

 

 
Fig. 9. Velocity field graph for R=0.5, λr=3, µ=15, 
A=90, ω=15, λ=5, ψ=0.5, φ=0.3, t=15 and various 

values of ν. 
 

6. CONCLUSIONS 

In this paper, exact analytical solutions of velocity 
field and shear stress of an Oldroyd-B fluid with 
fractional derivatives in cylindrical domain in 
calculated. To solve the problem, Laplace and 
Hankel transformations are used that made the 
approach to the solutions more attainable. 

• It is worthy to observe that the fluid layers 
situated close cylinder surface have a 
significant motion, while the fluid situated in 
the central area of the cylinder has a very slow 
motion. 

• The shear stress has the behavior similar with 
velocity; therefore, it is increasing when the 
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time increases. 

• The physical parameters ν is directly 
proportional to both velocity function and 
shear stress. 

• The physical parameters λ and λr are opposite 
to both velocity function and shear stress. 
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