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ABSTRACT 

Longitudinal dispersion of solute released in an unsteady flow between two coaxial cylinders is re-examined 
in the presence of first order chemical kinetics in the bulk flow. The flow unsteadiness is caused by the 
oscillation of the outer tube around its axis as well as by a periodic pressure gradient. Unlike some previous 
works, the gap width of the annular tube is used as the typical length scale which is physically meaningful to a 
greater extent. In order to employ the method of moment, a finite difference implicit scheme has been adopted 
to solve the Aris integral moment equations arising from the unsteady convective diffusion equation for all time 
periods. The individual and combined effects of different velocity components resulting from steady and time-
dependent parts of the driving forces are examined and they are identified based on their functionality. In any 
flow situation, wall factor is found to have a larger contribution in velocity as well as in dispersion compared 
to the pressure factor. The behaviour of dispersion coefficient with the variation of radius ratio, bulk flow 
reaction parameter, and frequency parameters have been examined. Dispersion coefficient is found to diminish 
with the increase of the reaction-rate in the bulk flow, whereas the effect of the radius ratio on the dispersion 
coefficient is fixed by the form of the velocity distribution. The axial distributions of mean concentration are 
approximated using Hermite polynomial representation from the first four central moments for a range of 
different reaction-rate parameters. It has been found that, irrespective of the flow situation, the peak of the 
concentration distribution decreases with the increase in reaction rate parameter. 

Keywords: Dispersion coefficient; Axial Reynolds number; Concentration distribution; Radius ratio; 
Poiseuille number; Bulk-flow reaction. 

NOMENCLATURE 

C concentration 
Dα  dispersion coefficient 
i time index during navigation 
j space index 
P Poiseuille number 
r radial coordinate  
Re  axial Reynolds number 
ri internal radius 
ro external radius 
Sc  Schmidth number 
t time 

u axial velocity 
 
αp frequency of pressure pulsation 
αw frequency of Wall oscillation 
εp amplitude of pressure pulsation 
εw amplitude of wall oscillation 
η aspect ratio  
ν kinetic viscosity  
ρ density 
δ direct delta function 
κ bulk flow reaction constant  

 
1. INTRODUCTION 

Dispersion is the mechanism that controls the rate 
of spreading of a cloud contaminant in a flowing 
stream. Due to its numerous application in 
chemical, environmental and bio-medical 
processes, considerable attention has been given on 
the axial dispersion of tracer. When Taylor (1953) 
initiated the study of dispersion, it was his 

anticipation that in shear flow, additional 
longitudinal diffusion of matters could result from 
the combined action of lateral diffusion and 
velocity shear. Aris (1956) generalized Taylors 
conceptual model by removing restrictions 
imposed by Taylor to include longitudinal diffusion 
and developed an approach viz. method of 
moments whose main scope is to analyze the 
asymptotic behaviour of the second moment of the 
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distribution of solute about the mean. Certain 
technical difficulties in Aris (1956) method was 
resolved by Barton (1983) and obtained the 
solutions of second and third-order moment 
equations of the distribution of solute which are 
valid for all time. Flow unsteadiness is one of the 
key factors having a heavier impact on the 
dispersion phenomena. For laminar flow, the case 
of an oscillatory axial flow in a uniform tube was 
first studied by Aris (1960) by the moment method. 
He studied the effect of flow pulsation with the 
consideration that the velocity at a point as a 
periodic function of time. An exact solution of the 
diffusion equation was acquired by Chatwin (1970) 
to study the dispersion by considering solute 
concentration as a harmonic function of time. The 
idea proposed by Chatwin was utilized by Watson 
(1983) to dissect the mass transfer of a diffusing 
substance through a pipe in oscillatory flow, which 
was extended to an annular flow by Tsangaris and 
Athanassiadis (1985). 

The effect of wall absorption on dispersion in an 
oscillatory flow through a pipe was explained by 
Mazumder and Das (1992). Mondal and Mazumder 
(2005) studied the tracer dispersion in an annular 
pipe with reactive boundary. Solute transport in 
oscillatory flow through an annulus was 
investigated by Sarkar and Jayaraman (2004) and 
Mazumder and Mondal (2005) and also explained 
the application of their study to a catheterized 
artery. Ng (2006) and Mazumder and Paul (2012) 
examined dispersion process in presence of 
reversible and irreversible reactions in the 
boundary. In spite of the fact that there exists a 
number of attempts where boundary reaction is 
considered in the study of dispersion process to 
analyze the impact of the former on the later, but 
very scant attention has been given to study the 
behaviour of dispersion in the presence of 
homogeneous reaction in the bulk flow though it 
has abundant applications in chemical and 
biomedical engineering, e.g. hydrolysis of ester, 
gas absorption in an agitated tank with chemical 
reaction and so on. Cleland and Wilhelm (1956), 
Gupta and Gupta (1972), Kumar, Umavathi, and 
Basavaraj (2012) are a few who threw some light 
on the effect of first order reaction in the bulk flow. 

For flow through a channel, quite a number of efforts 
have been launched to investigate dispersion 
phenomena under the pulsation of walls. Few studies 
in this field may include Secomb (1978), Hydon and 
Pedley (1993),Waters (2001) etc. Dispersion process 
through a channel forced by unsteady pressure 
gradient has been studied by Paul and Mazumder 
(2009), Mazumder and Mondal (2005). Literature 
suggests that there exist a number of studies on 
dispersion under the sole influence of either pressure 
pulsation or boundary oscillation, but very few 
studies considered both pressure pulsation or 
boundary oscillation. 

In two successive attempts, Paul and Mazumder 
(2008) and Paul (2009) has given weightage to both 
types of driving forces in order to study their 
combined effect on the dispersion process. While 
the first attempt was focused on channel-flow, it 

was extended to flow through an annular tube in the 
subsequent attempt where the radius of the outer 
cylinder was considered as the typical length scale 
which is based on weak physical background. The 
same physically insignificant non-
dimensionalisation procedure was adopted in the 
work of Mazumder and Mondal (2005) also. The 
radial diffusion processes like viscous and 
concentration diffusion, are expected to be over the 
gap width of the annular tube which was violated in 
those studies. Time was also scaled on the same 
faulty platform. The typical diffusion time should 
never be over a length scale with outer radius. 
These types of errors lead the authors to have some 
erroneous results. The unexpected presence of 
Schmidt number in the velocity profile, for 
example, is the outcome of the slips done in those 
works. As the feedback of concentration gradients 
on the flow was explicitly excluded, therefore the 
flow is not affected by the concentration field, so 
the ratio of viscosity and concentration diffusion 
are not relevant to the flow indicating the Schmidt 
number independence of the velocity distribution. 

In the present work, attempts are made to re-
investigate the dispersion process through an 
annular tube in the presence of two types of driving 
forces, of course, by avoiding the slips already 
pointed out. Like the work of Paul (2011), the gap 
width of the annular tube is considered as the 
typical length scale. It is assumed that the solute 
chemically reacts with the liquid in which it is 
dispersed, the rate of reaction being first order. The 
main objective is to explain the behaviour of the 
dispersion coefficient due to the intricate 
distribution of velocity resulting from the 
interactions of the two driving forces and to solve 
the present problem we consider Aris-Barton 
method, which allows to simplify the convection-
diffusion equation into moment equation and solve 
numerically, as it is pretty complicated when p > 1. 
There are some analytical and semi-analytical 
methods, viz., Perturbation method (Purtell 1981), 
Multiple scale analysis method (Paul and 
Mazumder 2009) and Homotopy analysis method 
(He 2000; Tufail, Butt, and Ali 2016), etc., by 
which one can solve the advection-diffusion 
paradigm directly and eventually able to calculate 
the apparent diffusion coefficient. But these 
methods have certain limitation such as 
perturbation method is physically sound for weak 
physical parameter again multiple scale analysis 
could not produce time dependent behaviour as the 
method based on averaging the time, The 
Homotopy analysis method overcome these 
difficulty but very difficult to implement. There are 
some non-perturb analytic method such as 
Weighted linearization method (Agrwal and 
Denman 1985), Adomian decomposition 
(Adomian 1988; El-Danaf, Ramadan, and Alaal 
2005) method, Laplace Transform method (Alia, 
Sheikha; Saqiba, and Khanb 2017) vibrational 
iteration method (He, Wan, and Guo 2004), 
δ−expansion method (Awrejcewicz, Andrianov, 
and Manevitch 2012) however all these customary 
strategies can’t guarantee about the convergence of 
solution series and also those methods cannot be 
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are easily implemented. The present work may 
excel for the following aspects: 

First - To the best of our knowledge it is one of the 
very few works which takes into account both of the 
driving forces, specially when the flow is through an 
annulus. 

Second - It removes the technical difficulties of some 
previous works in this field that occurred due to the 
consideration of the outer radius as the typical length 
scale. 

Third - It is probably a fresh attempt where two 
driving forces and bulk flow reactions receiving 
parallel attention in order to find out the complex 
interactions of the two forces with the reaction 
parameter. 

For simplicity, only first order chemical kinetics 
have been considered here. The outer wall of the 
annulus is considered to execute oscillatory 
motion in its own plane keeping the inner one 
stationary. To find out the aggregate effects due to 
the presence of both the driving forces as 
compared with the isolated effects due to either of 
the oscillations alone, velocity is dissected into 
multiple parts using an additive model from where 
the participation of the velocity terms in the 
dispersion process can be made out. Results are 
obtained to find the effects of the radius ratio of 
the annular tube, the frequencies of oscillations of 
the forces and bulk flow reaction parameter on the 
spreading of tracers. The movement of the center 
of mass and the patterns of the mean concentration 
distributions in presence of both driving forces are 
also discussed. In a wide variety of problems of 
chemical engineering, diffusion of a solute takes 
place in oscillatory flows with simultaneous 
chemical reactions. Many industrial processes, 
such as the transport of oil, gas, water and 
foodstuffs through pipes, are directly or indirectly 
related with the dispersion subject to this type of 
physical situation. The study may have a 
significant contribution to the understanding of 
pulsatile flow through catheterized artery where 
bulk flow reaction may be considered as 
mandatory due to injection as a part of medication. 

2. MATHEMATICAL MODEL 

An unsteady fully developed, axi-symmetric laminar 
flow of a homogeneous, incompressible viscous 
fluid is considered through the annular gap of two 
coaxial infinitely long cylinders having a and b their 
external and internal radii respectively, d = a − b 
being the annular gap between the cylinders. The 
geometry of the annulus is maintained by the radius 
ratio (ratio of the inner radius to the outer radius) η = 
of the annulus. Due to the infinite axial extend of the 
system, the aspect ratio, ratio between the axial 
length L and the gap width d, is infinite in this study. 
In the cylindrical coordinate system used, the radial 

and axial co-ordinates are r̂  and x̂  respectively, 
where hat represents dimensional quantities. The 
flow through the above geometry is strictly one-
dimensional and the Navier-Stokes equation 

becomes డ௨ෝడ௧መ = − ଵఘ డ௣ොడ௫ො + ݒ ଵ௥̂ డడ௥̂ ቀ̂ݎ డ௨ෝడ௥̂ቁ                                       (1) 

where ρ,ν and pˆ are the density, the kinematic 
viscosity and the pressure of the fluid respectively. 

The flow is driven by the combined action of 
periodic pressure gradient and pulsation of the outer 
tube around its axis, both with non-zero means. 
While the axial periodic pressure gradient is given by 

ˆ
ˆ

ˆ1
[1 Re( )]

ˆ
pi t

x p
p

P e e
x






  


                                        (2) 

the velocity of the outer wall of the annular tube is 
prescribed by, 

ˆˆˆ( , ) [1 Re( )],wi t
wu a t U e e                                         (3) 

where tˆ is the time, U is the steady component of 
velocity of the outer cylinder, ep and eω are factors 
representing respectively the amplitude of the 
pressure pulsation and that of the wall oscillation, ωp 
is the frequency of the pressure pulsation and ωw of 
the wall oscillation. Re(.) represents the real part of 
the complex number. 

As the inner wall of the annulus is stationary, no-slip 
condition holds for the inner wall, i.e., 

ˆˆ( , ) 0u b t                                                                     (4) 

3. CONVECTION-DIFFUSION 
EQUATION 

If a solute is injected in the above discussed flow 
situation through the annular gap of the cylinders, the 
concentration C(t,r,x) of the solute as a function of 
axial distance x, radial distance r and time t, satisfies 
the non-dimensional convective-diffusion equation, 
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with dimensionless quantities 
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Here the velocity u(r,t) is composed of steady 
components usp(r) & usw(r) and the unsteady 
components uop(r,t) & uow(r,t) respectively due to 
the periodic pressure gradient and oscillatory 
motion of the outer cylinder, both with non zero 
means. C0 is the reference concentration, D is the 
molecular diffusion coefficient (assumed 
constant) and κ is the first-order reaction rate 
constant so that the last term κC represents the 
volume rate of disappearance of the solute due to 
chemical reaction. Sc is the Schmidt number (the 
ratio of viscous diffusion to molecular diffusion). 
The discharged material is assumed to be so dilute 
in concentration that its presence does not 
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materially effect the flow of the carrying fluid. 

The initial and boundary conditions for the 
concentration distributions are 

o
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where B(r) s a function of δ is theDirac delta 

function, ௜ݎ ቀ= ఎଵିఎቁ  and ݎ଴ ቀ= ఎଵିఎቁ  are the 

dimensionless inner and outer radius of the annulus 
respectively. The first condition depicts the initial 
condition at t=0. Conditions second and third 
describe the no flux boundary condition at the inner 
and outer wall of the annular tube respectively 
whereas the last condition of equation (6) tells that 
the total amount of material inside the annulus is 
unity at t = 0. This amount will be depleted over time 
because of the reaction in the bulk flow. 

4. VELOCITY DISTRIBUTION 

Using the following non-dimensional quantities 

3
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the Navier-Stokes equation along with boundary 

conditions i.e., the system of equations (1) − (4) 
reduce to the following form:, 
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where P is the Poiseuille number, εp(= epP) is the 
non-dimensional amplitude of the pressure pulsation 
and εw(= ewRe) that of the outer-cylinders axial 
oscillation which is determined by the axial 
Reynolds number Re. 

The velocity profile in (5) can be readily found from 
the solution of equation (7) with boundary conditions 
(8) and is given in dimensionless form as 

( , ) ( ) ( ) ( , ) ( , )sp sw op owu r t u r u r u r t u r t        (9) 
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The constants Ci’s are given by where 

ଵܥ = ଴ܻ൫݅√݅ߙ௣ݎ௜൯ − ଴ܻ൫݅√݅ߙ௣ݎ଴൯଴ܻ൫݅√݅ߙ௣ݎ௜൯ܬ଴൫݅√݅ߙ௣ݎ଴൯ − ଴ܻ൫݅√݅ߙ௣ݎ଴൯ܬ଴൫݅√݅ߙ௣ݎ௜൯ 

ଶܥ = ௜൯ݎ௣ߙ݅√଴൫݅ܬ − ଴ܻ൫݅√݅ߙ௣ݎ଴൯଴ܻ൫݅√݅ߙ௣ݎ௜൯ܬ଴൫݅√݅ߙ௣ݎ௜൯ − ଴ܻ൫݅√݅ߙ௣ݎ௜൯ܬ଴൫݅√݅ߙ௣ݎ௜൯ 

ଷܥ = ଴ܻ൫݅√݅ߙ௪ݎ௜൯଴ܻ൫݅√݅ߙ௣ݎ௜൯ܬ଴൫݅√݅ߙ௣ݎ଴൯ − ଴ܻ൫݅√݅ߙ௣ݎ଴൯ܬ଴൫݅√݅ߙ௣ݎ௜൯ 

ସܥ =  (ቁ݅ݎݓߙ0ቀ݅ඥ݅ܬ0ቁݎݓߙ0ቁ−ܻ0ቀ݅ඥ݅ݎݓߙ0ቀ݅ඥ݅ܬቁ݅ݎݓߙቁܻ0ቀ݅ඥ݅݅ݎݓߙ0ቀ݅ඥ݅ܬ
Here J0, Y0 are the Bessel functions of first and 
second kind respectively. The dimensionless 
frequency parameters αp, αw used here are the 

measures of ratio of the time ൬ௗమ
 ൰  required for 

viscosity to smooth out the transverse variationin 

vorticity to the periods of oscillations ൬ ଵఠ೛൰ and ቀ ଵఠೢቁ 

respectively. The first term in the expression for 
u(r,t) (Eq.9) results from the steady part of the 
pressure force and the second term from the steady 
part of the wall force. Last two terms originate from 
the periodic time dependent parts of the two driving 
forces respectively. 

5. MOMENT EQUATIONS 

Following the method of integral moment as 
proposed by Aris (1956), the pth moment of the 
distribution of the solute in the filament through r at 
time t is defined as, ܥ௣(ݐ, ׬=(ݎ ௣ାஶିஶݔ ,ݐ) ,ݎ  (14)                                    ݔ݀(ݔ

and the concentration distribution of the solute over 
the crosssection of the annulus is given by, ܥҧ௣(ݐ) = ଶ௥బమି௥೔మ ׬ ,ݐ)௣ܥݎ ௥బ௥೔ݎ݀(ݎ                                    (15) 

where over-bar denotes the cross-sectional average. 

Using equation (14), the diffusion equation (5) 
subject to the initial and boundary conditions can be 
written as డ஼೛డ௧ − ଵௌ௖ ଵ௥ డడ௥ ቀݎ డ஼೛డ௥ ቁ = ,ݎ)ݑ ݌ ௣ିଵܥ(ݐ + ଵௌ௖ ݌)݌ ௣ିଶܥ(1− −  ௣                                                        (16)ܥ݇

with 
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where B(r)=1 for ri≤r≤ro . 

Averaging over the annular cross-section, Eq. (16) 
subject to the conditions (17) reduces to, ௗ஼ҧ೛ௗ௧ = ,ݎ)ݑ ݌ ௣ିଵതതതതതതതതതതതതതതതതതܥ(ݐ + ଵௌ௖ ݌)݌ − ҧ௣ିଶܥ(1 −  ҧ௣  (18)ܥ݇
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The pth order central moment of the concentration 
distribution about the mean can be defined as µ௣(ݐ) = ׬ ׬ ׬ ௥൫௫ି௫೒൯೛శಮషಮ ஼ ௗ௥ ௗఏ ௗ௫మഏబೝబೝ೔ ׬ ׬ ׬ ௥శಮషಮ ஼ ௗ௥ ௗఏ ௗ௫మഏబೝబೝ೔                      (20) 
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is the centroid or first moment of the solute and ܥҧ଴ represents the total mass of the solute in the whole 
volume of the annulus. which decays gradually with 
time due to the reaction in the bulk flow. The 
expressions for the central moments can then be 
obtained from (20) as 
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Each of the integral moments of concentration 
defined in (22) has an important contribution for 
predicting dispersion phenomenon. The integral 
moments serve as simple and physically meaningful 
descriptors of the overall behaviour of the slug -(i) 
The zeroth moment gives the total area under the 
distribution curve, which corresponds to the total 
mass of the solute. (ii) The first moment xg measures 
the location of the center of gravity of the slug 
movement with the mean velocity of the fluid, 
initially located at the source. (iii) The second central 
moment µ2 represents the variance of the distribution 
about the mean position whose rate of change gives 
the dispersion coefficient. Aris (1956) showed that 
the rate of change of variance is proportional to the 
sum of molecular diffusion coefficient along the 
axial direction and apparent dispersion coefficient 

(Taylor dispersion coefficient). Since the axial 
diffusion is negligible compared to the lateral 
diffusion, the apparent dispersion coefficient Da can 
be written as ܦ௔ = ௗஜమௗ௧                                                                  (23) 

The skewness factor ν1 ൭= ஜయஜమయమ൱ , and the flatness 

factor ν2 ቀ= ஜరஜమమ − 3ቁ are also important factors during 

the initial stage of matter dispersion. 

6. NUMERICAL SOLUTION 

In the present paper, a finite difference implicit 
scheme has been applied due to the complexity of the 
moment equation when p > 1 and for that we have 
partitioned the entire annular region in (M−1) equal 
part of width ∆r represented by grid point j, where 
the initial grid j = 1 indicates the inner wall and j = 
M, the outer wall. The index i represents the time in 
which i = 1 indicates the initial time t = 0. The 
subsequent time grid is obtained from the 
relationship t = ∆t ×(i−1), where ∆t is the time 
increment. The resulting finite difference equation 
becomes a system of linear algebraic equation with 
tri-diagonal coefficient matrix, 

( 1, 1) ( 1, )j p j pP C i j Q C i j        

    ( 1, 1)j p jR C i j S                                                 (24) 

where Pj, Qj, Rj and Sj are the matrix elements and 
Cp(i, j) are the corresponding value of Cp at the grid 
point (i, j). The finite difference form of the initial 
condition is, 

(1, ) 1 for 0

0 for 0
pC j p

p

 
 

 

and that of boundary conditions are  ܥ௣(݅ + ݅)௣ܥ=(1,0 + 1,2) 

(at the surface of the inner cylinder) ܥ௣(݅ + 1, ܯ + ݅)௣ܥ=(1 + 1, ܯ − 1) 

(at the surface of the outer cylinder) 

The tri-diagonal system is solved by Thomas 
algorithm (I., Anderson, Tannehill, and Pletcher 
1986) with the help of above mentioned initial and 
boundary conditions, accordingly a matlab code is 
devolved to perform the action. The computational 
steps are as follows:  

(i) Time dependent axial velocity u is 
computed first from Eq.(7); 

(ii) the concentration Cp is then calculated 
from Eq.(16) as the value of u at each of the grid 
point (i, j) is already calculated in step (i); 

(iii) finally the value of Cp is calculated from 
Eq.(18) by applying Simpson’s one-third rule, with 
the known values of u(r,t) and Cp. 

Although the present scheme is linearly stable for  
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Table 1 Various combination of velocity components 

Velocity component Explanation 

usp 

Flow driven by only the steady part of the pressure gradient i.e., Fp = P; Fw = 0 

where Fp is the driving force exerted by the pressure gradient and Fw that by the 

boundary movement 

usw Flow driven by only the steady part of the wall movement i.e., Fp = 0, Fw = Re 

usp+usw Flow driven by the combined action of both steady parts i.e., Fp = P, Fw = Re 

uop 
Flow driven by only the periodic part of the pressure gradient i.e.,Fp = 

2

eR pi t
p e

  
 
 

, 

Fw = 0 

uow 

Flow driven by only the periodic part of the wall oscillation i.e., 

Fp = 0; Fw =
2

eR wi t
w e   

  
, 

uop+uow 

Flow driven by the joint action of both periodic parts i.e., Fp = 
2

eR pi t
p e

  
 
 

, 

Fw =
2

eR wi t
w e   

  
, 

usp+uop 

Flow driven by the steady and periodic part of the pressure gradient i.e., 

Fp=
2

eR pi t
p e

  
 
 

,Fw = 0 

usp+usw+uop 

Flow driven by the steady part of the wall oscillation combined with steady and 

oscillatory pressure gradient i.e., Fp = 
2

eR pi t
p e

  
 
 

, Fw = Re 

usp+uop+uow 

Flow driven by the steady part of the pressure gradient combined with steady 

and oscillatory boundary movement (case studied by Paul [23]) i.e., Fp = P+
2

eR pi t
p e

  
 
 

 Fw = Re+
2

eR wi t
w e   

  
, 

usw+uop+uow 

Flow driven by the oscillatory part of the pressure gradient combined with 

steady and oscillatory wall oscillation i.e., Fp = 
2

eR pi t
p e

  
 
 

, Fw = Re +

2

eR wi t
w e   

  
, 

usw+uop 

Flow driven by the steady part of the wall oscillation combined with oscillatory 

pressure gradient i.e., Fp = 
2

eR pi t
p e

  
 
 

, Fw = Re 

usp+uow 

Flow driven by the steady part of the pressure gradient combined with oscillatory 

wall movement i.e., Fp = P; Fw = 
2

eR wi t
w e   

  
, 

usp+usw+uop+uow 

Flow is supported by the full participation of both the driving forces i.e., 

Fp =P+
2

eR pi t
p e

  
 
 

, Fw = Re+
2

Re wi t
w e   

  
, 
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Fig. 1. Various combination of velocity components depending on the physique of the driving forces. 

 

 

any finite values of ∆t/(∆r)2, sufficiently small mesh 
size have been taken to obtain the results upto the 
desired accuracy. In all the cases we have taken 
εp=εw=1,Re=P=1,Sc=103. 

7. DISTRIBUTIONS OF MEAN 
CONCENTRATION 

Behaviour of the concentration distribution may be 
obtained from the knowledge of the first four central 
moments of the distribution. Using these four 
moments, it is possible to compute the mean axial 
concentration distribution Cm(x,t) of tracers with the 
help of Hermite polynomial representation for non-
Gaussian curves (Mehta, Merson, and McCoy 1974) 
and is given by, 

2

0
0

( , ) ( ) ( ) ( )z
m n n

n

C z t C t e a t H z





                      (25) 

where z = ௫ି௫೒(ଶఓమ)భ/మ  , ௚ݔ =  ഥభ஼బ and Hi, the Hermiteܥ

polynomials, satisfy the recurrence relation with 
H0(z)=1 as 

1 1( ) 2 ( ) 2 ( ), 0,1,2,i i iH z zH z iH z i      

The coefficients ai’s are 

ܽ଴ = 1ඥ2ߤߨଶ , ܽଵ = ܽଶ = 0, ܽଷ = √2ܽ଴ݒଶ24 , ܽସ = ܽ଴ݒଷ96  

Therefore, given the statistical parameters (21), the  
concentration distribution can be estimated from (25) 
at any given location in the axial direction and time. 

8. RESULTS AND DISCUSSION 

In the absence of the term uop in the velocity, the flow 
is caused by the constant pressure gradient and 
periodic movement of the outer cylinder with non-
zero mean, a case considered by Paul (2011) for 
passive solute. Results of the present study are in 
excellent agreement with Paul under similar 
background. In the limiting case when η → 0, the 
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Table 2 Interpretation of results from Fig. 1 

Figures Conclusion 

1(a) 
Steady part of the wall force dominates over that of the pressure force when the flow is 
completely time-independent i.e., usw > usp when u = usp+usw. 

1(a,b,d) 
For flow driven by pressure only, steady part has larger weightage than the periodic part 
i.e., usp > uop when u = usp+uop. 

1(b,c,f) 
Time dependent part of the wall force dominates over that of the pressure force when the
flow is completely periodic i.e., uow > uop when u = uop+uow. 

1(a,g,h) 
Oscillatory part of the wall force, when combined with the steady flows, receives greater 
weightage than the pressure force. 

1(f,i,j) 
Steady part of the wall force again is more influential than that of the pressure force 
when attached with the periodic flows 

1(g,h,k) 
For the total flow, unsteady part of the wall force is more effective than that of the 
pressure force i.e., uow > uop when u = usp+usw+uop+uow: 

1(I,j,k) 
Steady part of the wall force again is more influential than that of the pressure force 
when the total flow is considered i.e., usw > usp when u = usp +usw + uop+uow. 

 
 

findings of this work can be supported by the existing 
literature on tube flow. 

Let us first analyze the velocity components. The 
flow is driven by the combined action of the periodic 
pressure gradient and axial oscillation of outer 
cylinder in its own plane, both having non-zero 
means, i.e., both of the driving forces consists of a 
steady part and a periodic time dependent part. As a 
result, as we have seen already, the velocity u(r,t) is 
composed of four components, two being steady and 
two unsteady. They can be introduced as (i) the 
steady component usp(r) arising due to the steady part 
of the pressure gradient, (ii) the steady component 
usw(r) derived from the steady part of the wall 
motion, (iii) the oscillatory component uop(r,t) due to 
the time dependent part of the pressure fluctuation 
and (iv) another oscillatory part uow(r,t) resulting 
from the unsteady part of the boundary pulsation. 
These four parts may be combined with each other in 
the following way depending upon the build of the 
driving forces and as velocity distribution is one of 
the main factor controlling dispersion, the coefficient 
of dispersion will respond accordingly which can be 
seen later on To find out the contribution of the four 
components in the velocity, we have diagrammed 
some possible combinations of the velocity 
components in Fig.1. Fig.1(a) shows the variation of 
the steady components of velocity w.r.t radial 
coordinate. Velocity components, and are shown in 
the figure as a function of. In other words, the figure 
depicts the combined as well as the sole influences 
of the moving boundary and pressure factor on the 
steady part of the velocity. In the absence of pressure 
factor, the velocity is pushed in the positive direction 
from zero by the outer wall movement and naturally 
the deviation is growing in the direction of the outer 
wall. If, on the other hand, boundary wall does not 
contribute in the flow velocity, the flow profile takes 
the well known parabolic shape due to constant 
pressure gradient. The effects of both driving forces 
can be seen in the velocity when the two parts 

combine with each other. 

 

 
Fig. 2. Solute residual with time due to bulk-flow 

reaction. 
 

Periodic components of the velocity due to pressure 
pulsation and wall oscillation are shown in Fig. 1(b) 
and 1(c) respectively for different phase angles. 
While the pressure gradient creates disturbances over 
the whole domain of the flow, the effects of wall 
oscillation is prominent in the vicinity of the outer 
wall. Both steady and periodic parts of the pressure 
gradient and wall force are combined in Fig. 1(d) and 
1(e) respectively. Comparison of Fig.1(a) 1(b) and 
1(d) reveals that steady part of the pressure gradient 
has larger contribution than that of the oscillatory 
part in the velocity profile. If we compare Fig. 1(e) 
with 1(a) and 1(c), the main function of the steady 
part usw will translate the flow near the outer wall in 
the direction of flow, though the periodic part is 
found to have larger contribution in the total 
flow.Both the oscillatory parts of the driving forces 
(u=uop + uow) combine in Fig. 1( f ). Comparison of  
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Fig. 3. Temporal variation of the centroid displacement (a) for different values of the reaction 

parameter when u = usp &u = usw and (b) when u = uop (c) for different values of the radius ratio η 
when u = uow. 

 

 

Fig. 1(b), 1(c) and 1( f ) shows that when both 
periodic parts joins in the total flow, the part arising 
from boundary movement has greater contribution, 
the feedback from the pressure factor seems to be 
rather small. Fig. 1(g) and 1(h) describes the velocity 
profile in the absence of periodic pressure gradient 
(u = usp + usw + uow) and boundary movement (u = usp 
+ usw + uop) respectively. The same is shown in Fig. 
1(i) and 1( j) where steady components of the 
pressure gradient (u = usw +uop +uow) and boundary 
movement (u = usw + uop + uow) are respectively 
absent. Velocity profile with all components (u = usp 

+ usw + uop + uow) can be seen in in Fig. 1(k). 
Comparison of Fig. 1(g) and 1(h) with 1(k) 
establishes the fact that the absence of periodic wall 
oscillation is more influential than the periodic 
pressure gradient. Same conclusions can be drawn 
about the steady parts also by considering the figures 
1(i), 1( j) and 1(k). The greater effect of the 
periodicity of the boundary movement can also be 
apprehended by the comparison of the Fig. 1(a), 1(g), 
1(h) whereas Fig. 1( f ), 1(i), 1( j) brought forward 
the leading role of the steady part of boundary force 
over that of the pressure force. As wall factor puts 
down the pressure factor for both steady and periodic 
nature of flows (when considered individually), 
consequently this dominance further enhances in the 
total flow (Fig. 1(d), 1(e), 1(k)). Steady part of one 
driving force is combined with the periodic part of 
the other force in Fig. 4(l) which again proves the 
superiority of the wall force. Some of the important 
findings about the dominance of the velocity 
components over each other are listed in Table 2. To 
see the depletion of the solute w.r.t time due to the 
homogeneous reaction with the solvent, Eq. (18) is 
called upon. When p = 0, Eq. (18) becomes ܥഥ଴(t,κ) = ݁ି఑௧                                                          (26) 

Equation (26) represents the total mass of the solute, 
which is function of κ and t. We observe here how 
the total amount of tracer material is depleted over 
time for a given reaction parameter . When κ = 0, ܥഥ଴(t,κ) = 1, which represents a constant mass in the 
whole annular gap w.r.t time. As expected, 

dimensionless mass ݔ௚ =  ഥబ(௧,଴)  is a decreasingܥഥబ(௧,௞)ܥ

function of κ and t (Fig. 2). 

Centroid displacement of the solute, estimated by the 

normalized first order moment ݔ௚ =  భ஼బ has beenܥ

studied for steady flows usp, usw and periodic flows 
uop, uow with different values of the reaction 
parameter κ and radius ratio η. When the flow is 
steady, xg is found to increase linearly with time 
(Fig. 3(a)) and it advances for a given time t. It is 
observed that, for periodic flow, the center of gravity 
of the slug (xg) proceeds with periodic oscillations 
over time (Fig. 3(b,c)). In any case, the amplitude of 
oscillation decreases with the increase in reaction 
parameter κ, though the effect of radius ratio η is 
found to be flow dependent. While for pressure 
driven oscillatory flow, the amplitude increases with 
increase of η, opposite tendency cropped up for wall 
driven flow. 

Temporal variation of the dispersion coefficient Da 
with respect to time is shown in Fig. 4 for various 
possible combinations of velocity components as 
described in Table 1. While for most of the figures 
reaction parameter is considered to vary, the 
variation of radius ratio and frequency of oscillation 
are shown in Fig. 4(e) and 4(g) respectively, for the 
sake of completeness. It can be seen from Fig. 4(a) 
that for steady flow, dispersion coefficient increases 
almost linearly with time. Da is found to raise in the 
absence of pressure gradient whereas absence of wall 
movement makes the dispersion coefficient to fall 
dramatically. For all time, Da decreases with the 
increase of κ, the parameter for first order reaction in 
the bulk flow. This decrease of the dispersion 
coefficient with the increase in the reaction rate 
constant is based on sound physical ground. In-
crease in κ leads to the growth in the number of 
moles of solute undergoing chemical reaction 
resulting in a drop in dispersion coefficient (Gupta 
and Gupta 1972). It can be mentioned that, for ab-
sorption in the boundary also similar trend can be 
seen (Mazumder and Das 1992) 

. Fig. 4(b) shows the variation of the dispersion 
coefficient with time when the flow is only due to the 
periodicity of the pressure gradient. The same is 
shown in Fig. 4(c) for flow due to unsteady boundary 
movement only. It is seen that the dispersion 
coefficient moves with periodic oscillations over 
time. While for flow due to  
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Fig. 4. Dispersion coefficient Da against time due to various form of the velocity distribution as in Fig 1. 

 

 

 

boundary oscillation, the double frequency period in 
the dispersion coefficient is prominent, it is 
suppressed in case of pressure fluctuation. Wall 
oscillation is found to produce more dispersion than 
the pressure gradient (Paul and Mazumder 2008). 
Also Da in the oscillatory current is much lower than 
Da in the steady current (Mazumder and Das 1992). 

Actually, when the period of oscillatory current is 
much smaller then the characteristic time of lateral 
diffusion, the shear effect due to the periodic flow 
becomes asymptotically smaller than that of a steady 
current (Okubo 1967). For flow caused by wall 
factor, amplitudes of the oscillations in dispersion 
coefficient is many times higher compared to flow  
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Fig. 5. Distribution of mean concentration against the axial distance for different values of the reaction 

parameter (a) when u = usp + usw (b) when u = uop and (c) when u = uow. 
 

 

due to pressure factor. When the both oscillatory 
parts combine together (Fig. 4(f)), dispersion 
coefficient almost behaves like as if it is due to the 
boundary oscillation only, the presence of the 
pressure factor seems to have negligible effect. 
Therefore, as pointed out by Paul and Mazumder 
(2008), boundary oscillation has larger contribution 
in the dispersion coefficient than the pressure 
pulsation. It is quite expected since the velocity, a 
major factor controlling dispersion, shows similar 
biasness towards the wall movement. In all cases, the 
dispersion coefficient decreases with the increase of 
the reaction parameter. 

Dispersion coefficient due to the steady and 
oscillatory parts of the pressure gradient and that of 
the wall movement are shown in Fig. 4(d) and 4(e) 
respectively. It can be seen that the effect of steady 
flow is more prominent during initial time. Actually 
the controlling parameters like reaction parameter κ, 
radius ratio η, frequencies of oscillations (αp and αw) 
etc used to take some time to set themselves in 
motion. That’s why dispersion coefficient usually 
shows weak dependence on those parameters during 
initial time. Steady flow is found to have a better 
control over its unsteady counter part in producing 
dispersion when the driving force is pressure 
gradient. For dispersion due to wall vibration, the 
control is comparatively much weaker. Wall 
vibration moves many times ahead than the pressure 
gradient in producing dispersion when steady part is 
added to its periodic counter part, which is quite 
natural since for both steady and periodic flow, 
pressure factor is preceded by wall factor in the run 
for dispersion. 

The effect of radius ratio of the annular tube on the 
dispersion coefficient is quite interesting. For flow 
under the sole influence of the periodic pressure 
gradient, it is found that the dispersion coefficient 
increases with the increase of radius ratio whereas 
the trend is reversed in the sole presence of periodic 
boundary movement. On physical ground, low radius 
ratio provides greater room for the solute to disperse 
giving rise to Da. When the driving force is the 
periodic pressure gradient, its strength becomes 
weaker if spread over larger area (i.e., smaller η) 
resulting a fall in dispersion coefficient. When steady 
counter part is added to its periodic part, Da responds 

in just a opposite way with the variation of the radius 
ratio. Due to the dominance of the wall factor, nature 
of Da in uow and uop + uow and in usw and usp +usw are 
same. Nature of Da withrespect to the velocity 
components are shown in the Table 3. For the sake 
of space figure (Fig. 4(e)) is provided only for a 
single case. 

 
Table 3 Nature of Da as a function of η 
depending on the velocity distribution 

Velocity 
component 

Nature of Da 

usp Decreasing 

usw Increasing 

uop Increasing 

uow Decreasing 

usp+uop Decreasing 

usw+uow Increasing (Fig. 4(e)) 

usp+usw Increasing 

uop+uow Decreasing 

 

 
Fig. 6. Variation of the dispersion coefficient 
with the reaction parameter when the flow is 

steady (u = usp + usw). 
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Dispersion coefficient due to the combined effort of 
all components of the velocity is shown in Fig. 4(k). 
It can be concluded that, for steady (u = usp + usw, 
Fig. 4(a)) as well as for combined flow (u = usp + usw 
+uop +uow, Fig. 4(k)), the effect of the pressure 
gradient is to diminish the dispersion coefficient 
whereas wall movement favors to raise it. The 
dominance of the wall factor in case of steady flow 
and periodic flow is already established in Fig. 4(a) 
and 4(c, f ) respectively. Now the same is established 
for combined flow also in Fig. 4(e,k). Like the case 
of steady and periodic flow, dispersion coefficient 
shows biasness towards the wall force compared to 
the pressure force in case of combined flow. In the 
case of periodic flow, the supremacy of the wall 
factor is not only qualitative, but quantitative also 
(Fig. 4(c, f )). 

Comparison of Fig. 4(a,g,h) bring forward the 
strength of the periodicity of the wall force 
compared to the pressure force. When the 
component uow is introduced, it makes a radical 
change in the dispersion coefficient whereas the 
introduction of uop seems to have no noticeable 
effect. It can also be explained from the Fig. 
4(g,h,k). The withdrawal of uop from the total flow 
seems less effective compared to the withdrawal 
of uow which shows a revolutionary effect leaving 
the velocity in a form as if it is time independent. 
The effect of frequency of oscillation on Da is 
explained in Fig. 4(g). The effect is found to be 
same irrespective of the combination of the 
velocity components. In any case, the increase of 
the frequency parameter leads to a decrease of the 
dispersion coefficient. The superiority of the 
steady part of the wall force compared to the 
pressure force can be inferred from the Fig. 4(i, 
j,k). While absence of usw makes a significant 
change in the profile, the feedback in the absence 
of usp in comparatively negligible. Fig. 4(l) shows 
that the oscillatory part of the pressure force is not 
stronger enough to produce any significant change 
in usw, but substantial effect of uow on usp can be 
seen. 

Fig. 6 shows the variation of the dispersion 
coefficient against the bulk flow reaction parameter 
κ when the flow is steady (u = usp + usw). The 
expected decrement of the dispersion coefficient 
with the increase of κ can be seen here. It is 
remarkable that the rate of decrement becomes 
sharper with the increase of κ. 

The variations of mean concentration distribution 
Cm(x,t) has been presented in Fig. 4(a − d) against 
the axial distance (x − xg) for different components 
of velocity. The increase of the reaction parameter κ 
ensures the depletion of the reactive material, and 
therefore the peak of the mean concentration 
distribution gradually decreases in any flow 
situation. It follows from Fig. 5(a) that steady 
component of the pressure force acts in favour of 
rising the peak of the concentration curve, whereas 
steady wall force attempts to make the concentration 
distribution curve to spread over larger portion 
forbidding the growth of the peak of the 
concentration curve. 

9. CONCLUSION 

In this work, longitudinal dispersion of reactive 
solute is examined in presence of homogeneous first 
order irreversible reaction between the solvent and 
the solute. The flow is considered to be driven by the 
joint action of two driving forces consisting of a 
steady and periodic part resulting in a tetra parted 
velocity distribution. The role played by each of the 
individual components of velocity in the dispersion 
process is sorted out. The following general 
conclusion can be made from the study: 

(a) The dispersion coefficient decreases with an 
increase in the reaction rate constant, the 
effect similar to irreversible reaction in the 
boundary. 

(b) Flow dependence of the effect of radius ratio 
is established through this analysis. 

(c) An absolute potency of the wall driven force 
over the pressure force on the velocity 
distribution as well as on dispersion 
coefficient is remarkable. 

(d) Pressure force is found to act in favour of 
decreasing the dispersion coefficient, 
whereas wall force against it. 

(e) Because of the depletion of the contaminant, 
peak of the mean concentration distribution 
has been seen to decrease with the increase 
of bulk-flow reaction rate constant.  
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