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ABSTRACT 

Experimental results for water level oscillations in vertical tubes, together with a theoretical solution for the 
flow in such tubes considering local and distributed energy losses, are presented and compared. The 
experimental data were obtained in small scale experiments, allowing adequately controlling the oscillations. 
The governing equation for the oscillations was obtained by applying the conservation laws of mass, 
momentum and energy for fluids. It is a second order nonlinear differential equation which was reduced to a 
first order differential Bernoulli equation. The obtained solution is composed by two different equations, one 
for the upwards motion and the other for the downwards motion, which together reproduce the oscillatory 
damped behavior of such flows. Numerical solutions of the differential equation were also checked. The 
experimental data and the theoretical and numerical results showed a good agreement between measured and 
calculated values of velocity and surface level for the first periods of oscillation.  

Keywords: Water level fluctuations; Damped fluctuations; Oscillation suppressing devices; Applied 
nonlinear differential equations. 

NOMENCLATURE 

A area  
D diameter of the tube 
F force  
FL resistive force  
f friction factor 
g acceleration of gravity  
h dimensional water level 
HR reference height or equilibrium position 
K local energy loss coefficient 
L length of volume of water in a tube 
N natural number N=23 

t dimensional time 

T period of oscillation 
V nondimensional water velocity  
VR dimensional water velocity 
Vol volume  
y nondimensional water level 

1 coefficient  
2 coefficient  
3 coefficient 
 water density
 nondimensional time 

1. INTRODUCTION

The possibility to predict the oscillations of water 
levels and velocities in water pipes is relevant for 
several applications in engineering. The use of 
oscillation suppressing devices in supply pipes for 
power generation turbines is perhaps the most 
classical example. Surge tanks and air chambers 
with or without orifices are among such devices, 

which may be adapted to vertical pipes, pointing to 
the convenience of studying with more details the 
flows in vertical pipes. As additional example, the 
somewhat uncontrolled growing of cities in the last 
century introduced some problems related to the 
drainage system of such “oversized” human centers. 
(Lou et al., 2008, for example). Vertical pipes that 
mainly conduct the excess of water from the surface 
to the horizontal buried pipelines may be subjected 
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to situations not predicted in the original design. 
The drainage systems may be flooded, generating 
geysers and level oscillations in the vertical pipes, 
which may propagate along the drainage system 
inducing damages. Considering the underground 
characteristic of such systems, it may be difficult 
and costly to repair damages. 

A sketch of the geometrical disposition of vertical 
tubes in drainage systems is shown in Fig. 1. The 
arrangements of the horizontal system of pipelines 
add particularities that must be considered in each 
design situation. (Politano et al., 2005, for example) 

 

 
Fig. 1. Sketch of the geometry of a vertical tube 
and horizontal pipelines in drainage systems. D 
is the diameter and V is the velocity of the flow. 

 
Predicting oscillations in vertical pipes naturally 
leads to comparisons between “free oscillation” and 
“damped oscillation” conditions, being the “damped 
oscillation” cases imposed by installed devices. In 
this sense, numerical procedures applied to proper 
governing equations are of practical use, giving 
quick support to professionals dealing with this 
theme. Numerical calculations impose calibration 
procedures, which also exposes the need of proper 
theoretical predictions or conveniently conducted 
experiments. Both controlled experimental data for 
isolated vertical columns and theoretical predictions 
for such flows are still somewhat rare in the 
literature, being convenient to spend some effort to 
provide an adequate bank of data, together with 
theoretical solutions for basic flows. One example 
of theoretical solutions is the study of Lorenceau et 
al. (2002), in which local losses are taken into 
account to obtain the solution. The distributed 
losses are considered only numerically using the 
first power of the velocity (laminar condition), and 
in discussions about large viscous effects related to 
threshold viscosity values that allow the appearance 
of oscillations (limiting viscosity values that totally 
damp oscillating movements). Considering smaller 
dimensions (diameters) of the tube, results and 
theoretical predictions involving capillarity are 
found in Zhmud et al. (2000), Quéré and Raphaël 
(1999), and Lorenceau et al. (2002), for example.  

Flows in vertical pipes involve arduous themes like 
bubble transport (Benattalah et al. 2011), settling 
instability (Weidman et al., 2012) or solids 
transport in gas flows (El-Behery et al., 2017), for 

example. These are beyond the scope of the present 
study. 

This study furnishes a nondimensional theoretical 
solution for the velocity of the flow in vertical 
tubes, obtained for a governing equation with local 
and distributed energy losses, considering turbulent 
condition, that is, losses are proportional to the 
square of the mean velocity. Further, experimental 
data of oscillating flows in vertical tubes are 
furnished to consider the main characteristics of the 
observed flow. 

 

 
 

 
 

Fig. 2. a) Oscillating column with pipe out of the 
water and main variables of Fig. 1; b) Oscillating 

column with semi-immersed pipe and the 
corresponding variables of case (a). 

 

2. EXPERIMENTAL DEVICES 

In this study the oscillations of the water level were 
observed in vertical pipes with constant diameters, 
subjected to local energy losses (at the pipe 
entrance) and distributed losses (friction losses 
along the tube).  

Two arrangements were initially considered for 
observing oscillations without the need to quantify 
particularities of horizontal pipelines: i) pipe out of 
the water (Fig. 2a), and ii) semi-immersed pipe 
(Fig. 2b). The arrangement of Fig. 2a is perhaps 
easier to relate to surge tanks and vertical tubes in 
drainage systems like shown in Fig. 1. But it works 
similar to the semi-immersed tube of Fig. 2b, being 
the last much easier to build in a laboratory. 
Eventual distinctions exist for the inlet/outlet loss 
coefficient K, because it depends on the local 
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geometry, but they are not relevant in the present 
study. The arrangement of Fig. 2b was used here, 
being simple and elegant to obtain oscillation 
results for isolated vertical columns. It is similar to 

that used by Lorenceau et al. (2002). 

2.1 Laboratory Setups 

Two setups were built to obtain results for the 
position and the velocity of the oscillating surface 
under controlled situations: a small scale setup, with 
the vertical tube having a diameter of 0.62 cm, and 
a large scale setup, with the vertical tube having a 
diameter of 2.54 cm, shown here in Fig. 3. Both 
setups had similar constructive arrangements. The 
different scales allowed obtaining different sets of 
data to compare with the theoretical predictions.  

 

 
Fig. 3. Large scale oscillating column following 
Fig. 2b, with diameter D=2.54cm.; a) Detail of 
the upper part of the setup; b) Lateral view. 

 

 
Fig. 4. Adjusting the initial condition using a cap 

linked to a hose. 

Figure 3a shows the vertical tube capped and linked 
to a hose. The cap and hose allowed setting the 
initial water level to start the oscillations, as shown 
in Figs. 4a and 4b. Air was added to or extracted 
from the vertical tube through the hose, which was 
then closed imposing the initial condition. To run 
the experiment, the cap was removed and the water 
begun to oscillate.  

2.2 Measured Values 

Tables 1 to 4 present experimental data obtained by 
filming runs of oscillating flows in the two 
described setups. The data of time, level and 
velocity were obtained from frame by frame 
analysis of the recorded films. The frames were 
individualized using the ‘instantaneous’ tool of the 
Windows ® Life Movie Maker software. The level 
of the water was measured from each frame using a 
digital image program (Paint ® of the Windows ® 
operational system). The record speed (in fps) 
allowed determining the mean velocity of the 
surface between two sequent water level registers. 

The data of the first two tables were recorded with a 
digital camera at a speed of 30 fps. The third table 
was obtained with a second camera at 120 fps. In 
this case, the two first periods of oscillation were 
computed for 120 fps, the third period for 60 fps, 
and the subsequent data for 40 fps. Small 
amplitudes allow using the usual filming velocities 
(30 fps) or the lower range of 40 to 60 fps, as done 
here. But larger amplitudes need higher speeds. The 
fourth table presents data for damped oscillations. 
Only the first period of oscillation is furnished, and 
was obtained with the camera at 60 fps. 

3. GOVERNING EQUATION 

Considering the variables shown in Fig. 2b, the 
governing equation for the position of the water 
level along time in the vertical pipe was obtained. 
The integral equations for mass and momentum 
conservation were applied in the control volume 
given by the internal volume of the tube with length 
h for homogeneous variables at the cross sections 
furnishing, respectively: 

0 RAV
td

hd
A                                             (1) 

2
R

R
R VA

td

Vd
hA

td

hd
VAF                     (2) 

The variables are defined in the NOMENCLATURE 
table. The force F is calculated considering the 
hydraulic head HR, the weight of the column, and 
the resistive force during the movement, expressed 
as FL. Mathematically, for upwards movement: 

LR FhgAHgAF                                 (3) 

The resistive force is evaluated through the pressure 
difference caused by energy losses using the Darcy-
Weisbach equation for distributed losses, and 
adequate coefficients for local losses. The result is: 
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Eqs. (1), (2), and (4) allow replacing Eqs. (1) and 
(2), respectively, by:  
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                                                             (5) 
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Equation (6) can also be derived from the integral 
energy equation, together with the Darcy-Weisbach 
equation and local loss coefficients. Inserting Eq. 
(5) into Eq. (6) it follows that: 
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Equation (7) was converted into a nondimensional 
form by using 
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The final nondimensional governing equation of the 
water level along the time in the vertical pipe is:  
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The signs + and – in 1 mean downwards and 
upwards motions, respectively. It is convenient to 
mention that 3, which computes local losses (and 
momentum flows through the control surface), may 
be different for upwards and downwards motions. 
This is evidenced in studies for capillary tubes, as 
for example Masoodi et al. (2014), and Lorenceau 
et al. (2002). y and  of Eq. (9) are nondimensional 
variables for level and time that allow better 
comparison between results of different geometries. 
It is a second order nonlinear equation, in principle 
having no general rules for its integration. As 
inferred from Eqs. (8), 2 and 3 depend on the flow 
conditions (laminar or turbulent) and on the 
geometrical aspects of the tubes, like the form of 
the inlet/outlet and the roughness of the inner 
surface. These aspects may be considered in 
numerical procedures by inserting empirical 
information, like the Churchill equation for friction 
factors (Churchill, 1977). But for testing the 
convergence of numerical schemes to theoretical 
results, constant values of 2 and 3 can be used to 
obtain the theoretical solutions, procedure followed 
here. Lorenceau et al. (2002, p.1989) presented an 
equation similar to Eq. (9), but with the parcel 
involving 2 (distributed losses) multiplied by the 
first power of the velocity, and not by the second 
power like in the present study. Eq. (9) was here 
converted into a first order Bernoulli equation. In 

addition to the definitions of Eqs. (8), the 
nondimensional velocity is given by: 

RR HgVV /                                               (10) 

The variables V, y and  were used into Eq. (6). 
After simplifying constants, it is obtained that: 
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From Eqs. (9) and (11) it is seen that dy/d=V. By 
defining: 

1 VW                                                             (12) 

It follows that: 

dyWd                                                         (13) 

Equations (11), (12), and (13) produce 
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This is an integrable first order Bernoulli equation.  

3.1 General Solution 

Solutions for V were obtained for the upwards 
motion (1=-1) and the other for the downwards 
motion (1=+1), in the form:  
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(16) 

The upper indexes Up/Down indicate the direction 
of the motion of each solution. C represents the 
integration constant. N=23 is a natural number 
(N=1, 2, 3,…). When using the theoretical solution 
for predictions, the “physically real” 3 must be 
adjusted to the closest adequate N. Eq. (16) shows 
that the downwards motion involves an infinite sum 



H. E. Schulz and D. Z. Zhu / JAFM, Vol. 10, No.6, pp. 1515-1525, 2017.  
 

1519 

of powers of y. The nondimensional procedures 
followed here implied in y close to one (1.0) for the 
calculated examples, so that the infinite series 
converged using 13 parcels (that is, j=13). The 
number of parcels depends on y. 

 

Tables 1 and 2 Data for D=0.62 cm, 30 fps 
 

Table 1 

HR (cm)=7.50 

Table 2 

HR (cm)=5.80 

t 

s 

h 

cm 

VR 

cm/s 

t 

s 

H 

cm 

VR 

cm/s 

0.033 0.82 9.55 0.033 0.72 6.04 

0.066 2.00 35.5 0.066 2.45 52.0 

0.100 4.00 60.0 0.100 4.43 59.2 

0.133 5.91 57.3 0.133 5.64 36,3 

0.167 7.59 50.5 0.167 6.76 33.8 

0.200 8.55 28.6 0.200 7.57 24.2 

0.233 9.64 32.7 0.233 8.25 20.5 

0.267 10.41 23.2 0.267 8.45 6.04 

0.300 10.77 10.9 0.300 8.29 -4.83 

0.333 10.82 1.36 0.333 8.01 -8.46 

0.367 10.64 -5.45 0.367 7.42 -16.9 

0.400 10.23 -12.3 0.400 6.72 -21.8 

0.433 9.36 -25.9 0.433 5.80 -27.8 

0.467 8.50 -25.9 0.467 5.27 -15.7 

0.500 7.73 -23.2 0.500 4.75 -15.7 

0.533 6.73 -30.0 0.533 4.59 -4.83 

0.567 6.00 -21.8 0.567 4.71 3.63 

0.600 5.77 -6.82 0.600 5.11 12.1 

0.633 5.82 1.36 0.633 5.68 16.9 

0.667 6.14 9.55 0.667 6.00 9.67 

0.700 6.45 9.55 0.700 6.40 12.1 

0.733 7.00 16.4 0.733 6.64 7.25 

0.767 7.64 19.1 0.767 6.64 0.00 

0.800 8.05 12.3 0.800 6.72 2.41 

0.833 8.32 8.18 0.833 6.48 -7.25 

0.867 8.50 5.45 0.867 6.28 -6.04 

0.900 8.36 -4.09 0.900 6.08 -6.04 

0.933 8.23 -4.09 0.933 5.76 -9.67 

0.967 8.05 -5.45 0.967 5.68 -2.42 

1.000 7.73 -9.55 1.000 5.55 -3.63 

1.033 7.36 -10.9 1.033 5.60 1.21 

1.067 7.14 -6.82 1.067 5.63 1.21 

1.100 7.09 -1.36 

1.133 7.09 0.00 

 
 

3.2 Solution for N=2 

To perform calculations and compare the theoretical 
solution with numerical results, the lower natural 
values N=2 and 2=1 were used. They generate the 
typical oscillating behavior through equations that 

are sufficiently short for a more immediate analysis. 
The same value of 3 was used for the upwards and 
downwards motions, producing Eqs. (17) and (18): 

yUp eCy
y

V 22
2

2
1

1 







                      (17) 

 






































C
ii

y

y
y

e

y

e

yeV

i

i

yy

yDown

1

2

2

2

22
2

!.

2
8

ln84

 (18) 

For the calculations, the constant of integration C 
must be adjusted for the initial condition of every 
upwards and downwards half period. The initial 
velocity in each half period is V=0 (rest). The initial 
value of y for the problem is the observed value 
(known). The start y value of each subsequent half 
period is the last y value of the previous half period 
(also known). The values of C are then determined. 

3.3 Numerical Calculations 

As mentioned, theoretical solutions may be used 
during calibration procedures as a way of checking 
the quality of numerical calculations. They also 
allow observing how different control parameters of 
the governing equation (for example, the parameters 
that quantify energy losses) are linked to observable 
parameters (water level, for example). In this case, 
Eqs. (15) and (16) show that the distributed losses 
(2) are linked to exponential terms, while the local 
losses (3 or N/2) determine the limiting power 
value of y in the sums of powers of y (water level). 

A numerical procedure was necessary to show that 
the theoretical solutions furnished here correspond 
to proper solutions of the original problem given by 
the second order nonlinear Eq. (9). An expeditious 
explicit “one-forward-step” procedure was adopted 
to perform this checking. The discrete quantities 
given by following Eqs. (19) and (20) are obtained 
immediately from Eq. (9): 

d

yd
V  ,     thus      iii Vyy 1               (19) 

23
211

1
V

yyd

Vd






















, thus 

 






























23
211 1

1
i

ii
ii V

yy
VV     (20) 

The iterative one-forward-step procedure is resumed 
as: 

1 To furnish the control parameters 1, 2,and 
3, and the time increment  

2 To furnish the initial conditions yi, Vi, i=0. 

3 To calculate Vi+1 using Eq. (20). 

4 To calculate yi+1 using Eq. (19). 
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5 To repeat steps 3 and 4 until attaining the 
desired final condition.  

4. RESULTS AND DISCUSSION 

4.1 Theoretical and Numerical Results 

Equations (17) and (18) form a set for the up/down 
motion of the water column when using 2=1 and 
3=1 (or N=2). Fig. 5 shows the evolution of the 
obtained functions in the phase plot (y, V). The 
attractor structure converging to the fixed point 
(1,0) is expected, considering that it reflects a 
damped oscillatory movement. Similar plots may be 
found, for example, in Weidman and Kllakhandler 
(2014), for capped liquid-air columns.  

Each part of the solution itself, that is, Eq. (17) Up 
and Eq. (18) Down, is not a periodic movement in 
the (y, V) plane. Only both solutions together confer 
a cyclic character to the predicted motion. Note that 
also the real movement is not the projection of a 
cyclic movement continuous in time. It is in fact 
composed by a succession of inverse motions 
intercalated by moments of rest, that is, a sequence 
of juxtaposed “pieces” of movement of the water 
column. Despite this correspondence between real 
motion and theoretical solutions, this “piecewise 
aspect” of the solution may induce doubts about the 
complementarity of Eqs. (17) and (18). The 
numerical result was thus necessary to show that, 
although represented by two distinct functions, the 
two equations do correspond to the solution of the 
original governing equation, tested for 2=1 and 
3=1 (or N=2). Fig. 5 shows that the agreement 
between numerical results and analytical solutions 
is very good, confirming that Eqs. (15) and (16) 
may be used as tools for subsequent studies in this 
field. For example, more complex numerical codes 
may be tested with this simpler situation, for which 
the theoretical solution is now furnished. 

 

 
 

Fig. 5. Good agreement of numerical and exact 
results show that the theoretical equations can 

be used to calibrate numerical codes for simpler 
situations. 2=1.0, 3=1.0, =0.01. 

 
4.2 Results of the Small Setup 

Figure 6 shows the measured data of Tables 1 and 2 

plotted together with numerical results in the (y, V) 
plane. The data are for free oscillations (not 
damped) in the tube with diameter of 0.62 cm. HR 
was fixed at 5.8 cm and 7.5 cm. The normalized 
immersion lengths HR/D thus were 9.4 and 12.1, 
respectively. The experimental velocity values were 
obtained from the difference between two 
successive measured heights divided by the time 
interval between the measurements, characterizing 
the mean velocity for this time interval. It was 
plotted against the mean height obtained from the 
two limiting heights of each time interval. The use 
of mean values implied in a shift in the time scale of 
Fig. 7, which presents the evolution of the 
nondimensional mean water level (considering the 
time interval) in the vertical tube plotted against the 
nondimensional time. Figs. 6 and 7 used the same 
data. The results show that numerical calculations 
and experimental values follow similar trends in 
these initial periods of oscillation.  

 

 
 

Fig. 6. Experimental data of Tables 1 and 2 and 
numerical results of Eq. (9) for 2=0.3, 3=1.0, 

=0.01. 

 

 
 

Fig. 7. Time evolution of the nondimensional 
height for the same conditions of Fig. 6. 

 

As mentioned, the data of Tables 1 and 2 were 
obtained in the small setup, corresponding mostly to 
the lower range of the Reynolds number (highest 
Reynolds number of 3,720), being also subjected to 
capillary effects. However, despite these conditions, 
data and calculations agreed well for the first 
periods using constant coefficients. The coefficients 
were fixed in 2=0.3, 3=1.0, for both runs. Note 
that the usual friction factors are valid for  
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Table 3 Data for D=2.54 cm. Nondimensional variables, 120, 60 and 40 fps.  given by Eq. (8) 


h/HR V 

 
h/HR V 

 
h/HR V 

 
h/HR V 

 
h/HR V 

mean mean mean mean mean mean mean mean mean mean 
0.183 0.042 0.000 4.277 1.463 -0.191 8.370 1.023 0.268 12.464 0.867 -0.191 19.368 0.867 -0.076 
0.244 0.047 0.076 4.338 1.449 -0.229 8.431 1.042 0.306 12.525 0.855 -0.191 19.490 0.857 -0.076 
0.305 0.056 0.153 4.399 1.428 -0.344 8.493 1.061 0.306 12.586 0.843 -0.191 19.612 0.853 -0.038 
0.367 0.065 0.153 4.460 1.414 -0.229 8.554 1.079 0.306 12.647 0.832 -0.191 19.734 0.853 0.000 
0.428 0.084 0.306 4.521 1.395 -0.306 8.615 1.096 0.268 12.708 0.825 -0.115 19.857 0.855 0.019 
0.489 0.107 0.382 4.582 1.374 -0.344 8.676 1.112 0.268 12.769 0.815 -0.153 19.979 0.860 0.038 
0.550 0.164 0.918 4.643 1.357 -0.268 8.737 1.126 0.229 12.830 0.806 -0.153 20.101 0.862 0.019 
0.611 0.196 0.535 4.704 1.336 -0.344 8.798 1.143 0.268 12.892 0.797 -0.153 20.223 0.874 0.096 
0.672 0.229 0.535 4.766 1.308 -0.459 8.859 1.157 0.229 12.953 0.792 -0.076 20.406 0.893 0.102 
0.733 0.278 0.803 4.827 1.283 -0.421 8.920 1.173 0.268 13.014 0.787 -0.076 20.590 0.911 0.102 
0.794 0.343 1.071 4.888 1.262 -0.344 8.981 1.185 0.191 13.075 0.783 -0.076 20.773 0.930 0.102 
0.855 0.400 0.918 4.949 1.238 -0.382 9.042 1.194 0.153 13.136 0.783 0.000 20.956 0.951 0.115 
0.916 0.449 0.803 5.010 1.215 -0.382 9.103 1.206 0.191 13.197 0.783 0.000 21.140 0.972 0.115 
0.978 0.498 0.803 5.071 1.189 -0.421 9.165 1.215 0.153 13.258 0.780 -0.038 21.323 0.991 0.102 
1.039 0.542 0.727 5.132 1.166 -0.382 9.226 1.222 0.115 13.319 0.780 0.000 21.506 1.012 0.115 
1.100 0.584 0.688 5.193 1.140 -0.421 9.287 1.229 0.115 13.380 0.783 0.038 21.690 1.030 0.102 
1.161 0.629 0.727 5.254 1.114 -0.421 9.348 1.238 0.153 13.441 0.783 0.000 21.873 1.054 0.127 
1.222 0.668 0.650 5.315 1.091 -0.382 9.409 1.243 0.076 13.503 0.785 0.038 22.056 1.075 0.115 
1.283 0.710 0.688 5.377 1.063 -0.459 9.470 1.252 0.153 13.564 0.787 0.038 22.239 1.093 0.102 
1.344 0.757 0.765 5.438 1.030 -0.535 9.531 1.257 0.076 13.625 0.792 0.076 22.423 1.105 0.064 
1.405 0.804 0.765 5.499 0.995 -0.574 9.592 1.262 0.076 13.686 0.799 0.115 22.606 1.117 0.064 
1.466 0.853 0.803 5.560 0.965 -0.497 9.653 1.269 0.115 13.747 0.804 0.076 22.789 1.124 0.038 
1.527 0.893 0.650 5.621 0.939 -0.421 9.714 1.276 0.115 13.869 0.818 0.115 22.973 1.124 0.000 
1.589 0.928 0.574 5.682 0.907 -0.535 9.776 1.280 0.076 13.991 0.836 0.153 23.156 1.124 0.000 
1.650 0.958 0.497 5.743 0.883 -0.382 9.837 1.283 0.038 14.113 0.860 0.191 23.339 1.124 0.000 
1.711 0.995 0.612 5.804 0.857 -0.421 9.898 1.283 0.000 14.236 0.886 0.210 23.522 1.119 -0.025 
1.772 1.035 0.650 5.865 0.829 -0.459 9.959 1.283 0.000 14.358 0.909 0.191 23.706 1.110 -0.051 
1.833 1.075 0.650 5.926 0.801 -0.459 10.020 1.283 0.000 14.480 0.932 0.191 23.889 1.100 -0.051 
1.894 1.112 0.612 5.988 0.783 -0.306 10.081 1.283 0.000 14.602 0.956 0.191 24.072 1.084 -0.089 
1.955 1.140 0.459 6.049 0.759 -0.382 10.142 1.283 0.000 14.724 0.981 0.210 24.256 1.065 -0.102 
2.016 1.166 0.421 6.110 0.736 -0.382 10.203 1.283 0.000 14.847 1.009 0.229 24.439 1.044 -0.115 
2.077 1.194 0.459 6.171 0.720 -0.268 10.264 1.283 0.000 14.969 1.033 0.191 24.622 1.026 -0.102 
2.138 1.234 0.650 6.232 0.703 -0.268 10.325 1.280 -0.038 15.091 1.051 0.153 24.805 1.005 -0.115 
2.200 1.262 0.459 6.293 0.689 -0.229 10.387 1.278 -0.038 15.213 1.072 0.172 24.989 0.986 -0.102 
2.261 1.287 0.421 6.354 0.673 -0.268 10.448 1.273 -0.076 15.335 1.089 0.134 25.172 0.965 -0.115 
2.322 1.304 0.268 6.415 0.664 -0.153 10.509 1.269 -0.076 15.458 1.107 0.153 25.355 0.949 -0.089 
2.383 1.329 0.421 6.476 0.654 -0.153 10.570 1.262 -0.115 15.580 1.124 0.134 25.539 0.935 -0.076 
2.444 1.353 0.382 6.537 0.645 -0.153 10.631 1.257 -0.076 15.702 1.138 0.115 25.722 0.925 -0.051 
2.505 1.376 0.382 6.599 0.638 -0.115 10.692 1.250 -0.115 15.824 1.147 0.076 25.905 0.916 -0.051 
2.566 1.395 0.306 6.660 0.633 -0.076 10.753 1.241 -0.153 15.946 1.159 0.096 26.089 0.904 -0.064 
2.627 1.411 0.268 6.721 0.629 -0.076 10.814 1.234 -0.115 16.069 1.168 0.076 26.272 0.895 -0.051 
2.688 1.430 0.306 6.782 0.626 -0.038 10.875 1.224 -0.153 16.191 1.173 0.038 26.455 0.893 -0.013 
2.749 1.442 0.191 6.843 0.626 0.000 10.936 1.213 -0.191 16.313 1.178 0.038 26.638 0.902 0.051 
2.810 1.463 0.344 6.904 0.631 0.076 10.998 1.201 -0.191 16.435 1.185 0.057 26.822 0.916 0.076 
2.872 1.477 0.229 6.965 0.633 0.038 11.059 1.185 -0.268 16.557 1.185 0.000 27.005 0.925 0.051 
2.933 1.486 0.153 7.026 0.638 0.076 11.120 1.173 -0.191 16.680 1.182 -0.019 27.188 0.939 0.076 
2.994 1.491 0.076 7.087 0.647 0.153 11.181 1.159 -0.229 16.802 1.180 -0.019 27.372 0.956 0.089 
3.055 1.495 0.076 7.148 0.657 0.153 11.242 1.150 -0.153 16.924 1.180 0.000 27.555 0.972 0.089 
3.116 1.502 0.115 7.209 0.671 0.229 11.303 1.140 -0.153 17.046 1.171 -0.076 27.738 0.986 0.076 
3.177 1.509 0.115 7.271 0.685 0.229 11.364 1.129 -0.191 17.168 1.161 -0.076 27.921 1.000 0.076 
3.238 1.512 0.038 7.332 0.699 0.229 11.425 1.114 -0.229 17.291 1.150 -0.096 28.105 1.012 0.064 
3.299 1.516 0.076 7.393 0.713 0.229 11.486 1.103 -0.191 17.413 1.138 -0.096 28.288 1.028 0.089 
3.360 1.519 0.038 7.454 0.727 0.229 11.547 1.086 -0.268 17.535 1.121 -0.134 28.471 1.040 0.064 
3.421 1.523 0.076 7.515 0.745 0.306 11.608 1.072 -0.229 17.657 1.107 -0.115 28.655 1.051 0.064 
3.483 1.528 0.076 7.576 0.762 0.268 11.670 1.056 -0.268 17.779 1.093 -0.115 

 

3.544 1.535 0.115 7.637 0.778 0.268 11.731 1.042 -0.229 17.902 1.075 -0.153 
3.605 1.542 0.115 7.698 0.799 0.344 11.792 1.028 -0.229 18.024 1.056 -0.153 
3.666 1.542 0.000 7.759 0.820 0.344 11.853 1.014 -0.229 18.146 1.035 -0.172 
3.727 1.537 -0.076 7.820 0.843 0.382 11.914 0.995 -0.306 18.268 1.012 -0.191 
3.788 1.535 -0.038 7.882 0.862 0.306 11.975 0.974 -0.344 18.390 0.986 -0.210 
3.849 1.533 -0.038 7.943 0.881 0.306 12.036 0.960 -0.229 18.512 0.967 -0.153 
3.910 1.521 -0.191 8.004 0.902 0.344 12.097 0.944 -0.268 18.635 0.946 -0.172 
3.971 1.512 -0.153 8.065 0.923 0.344 12.158 0.930 -0.229 18.757 0.930 -0.134 
4.032 1.498 -0.229 8.126 0.942 0.306 12.219 0.918 -0.191 18.879 0.916 -0.115 
4.094 1.491 -0.115 8.187 0.965 0.382 12.281 0.907 -0.191 19.001 0.904 -0.096 
4.155 1.484 -0.115 8.248 0.988 0.382 12.342 0.895 -0.191 19.123 0.888 -0.134 
4.216 1.474 -0.153 8.309 1.007 0.306 12.403 0.879 -0.268 19.246 0.876 -0.096 
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developed flows in long tubes, and that the short 
oscillatory motions of vertical columns are similar 
to flows in short tubes. In such cases, adjustments 
of coefficients to the different experimental 
conditions must always be made (they follow 
naturally). The periods of oscillation obtained from 
the experiments using HR=7.5 cm and 5.8 cm were 
0.534 s and 0.500 s, respectively, calculated using 
the first and second peaks of oscillation. The 
adjusted coefficients allowed obtaining periods of 
0.565 s and 0.500 s, very close to the measured 
values.  

Small scale experiments are easily built and more 
expeditious to furnish results, quickly generating 
sets of data. The comparison made here show that 
they may be used for the first tests of numerical 
models, related to the evolution of the water level, 
the velocity, and the magnitude of the periods of 
oscillation. Because small setups involve capillary 
effects, not considered in the present formulation, 
deviations between experimental and calculated 
results may eventually be observed for larger times. 

4.3 Results of the Large Setup  
Equation (9) with constant coefficients reproduces 
the usual approach of developed turbulent flows, 
valid for high Reynolds numbers. Large scale 
applications are more usual in engineering, like 
vertical tubes in drainage and water distribution 
systems, where capillary effects are not relevant.  

 

 
 

Fig. 8. Snapshots of one of the movies used to 
measure the level and the velocity of the internal 

water surface for the large setup. 
 

Figure 8 shows snapshots of one of the movies of 
the large setup (Fig. 3). Slides 1 to 5 (upper part of 
the figure) show the internal level of the water 
while positioned below the external surface level 
(white horizontal arrows). Slides 6 to 9 show the 
internal level of the water positioned above the 
external surface level (black horizontal arrows). 

Table 3 was obtained for free oscillations (not 
damped) in the large setup (diameter of 2.54 cm). 

Even for large setups the vertical motion in the tube 
involves instants of rest, with corresponding low 
Reynolds numbers for displacements “close to the 
rest”. But the highest Reynolds number was now 
36,400, generating fluctuations and secondary 
movements (not immediately damped), so that 
turbulence was more likely present. Adjustments of 
coefficients and friction factors are thus needed in 
all scales of work. 

Figure 9 shows the normalized velocity against the 
normalized depth for D=2.54 cm and HR=18.25 cm. 
The normalized immersion length HR/D was 7.2. 
Because some “blurring” of the images, regarded to 
the position of the surface, upper and lower limiting 
values for this position were marked in each frame. 
Velocities were calculated for the upper and lower 
registers, and for their mean value. Table 3 shows 
the mean depths and corresponding velocities. The 
graph of Fig. 9 shows the convergence to the fixed 
point, and that the velocity values oscillate 
intensively. The measured instantaneous velocity is 
strongly dependent on the quality of the 
measurements of the surface positions.  

Figure 10 shows the normalized water depths of 
Table 3 against the normalized time. Simulation and 
data follow similar trends, with similar periods and 
amplitude damping (blue dots and continuous line). 
Like for the smaller diameter (D=0.62 cm), also 
here a shift in the calculated time origin was used. 
The observed period of oscillation in Table 3 is 
0.878 s, obtained as mean value the four height 
peaks. The calculated numerical value is 0.869 s, 
also very close to the measured result.  

 

 
Fig. 9. Experimental data of Table 3 and 

numerical calculations of Eq. (9) using 2=0.1, 
3=0.7, =0.01. 
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Fig. 10. Evolution of normalized heights for the 

conditions of Fig. 9 (blue dots and solid line), and 
damped oscillations of Table 4 (green dots). 

 
4.4 Joint Results 

The nondimensional results for the periods of the 
experiments and of the numerical calculations are 
close to the value =6.4. The maximum difference 

from the value 2 is only about 3%. The periods of 
oscillation may thus be calculated with a good 
degree of approximation, for vertical nonlinear 
oscillations that follow Eq. (9), by: 

g

H
T R2                                                      (21) 

This is the period for oscillations in “U tubes”, for 
which HR=L/2, being L the total length of the 
oscillating volume of water. The experimental data 
for D=0.62 cm were followed by the numerical 
results by using 2=0.3 and 3=1.0, while for 
D=2.54 cm the coefficients were adjusted to 2=0.1 
and 3=0.7. The agreement observed in Figs. 6, 7, 9 
and 10 also show that the coefficients 2 and 3 
depend on the scale of the experiment. For the data 
of this study it was necessary to use lower values of 
the coefficients for larger diameters of the tube. 

The motion observed in small diameters, subjected 
to capillary effects, has shown similar behavior to 
that occurring in larger diameters when using 
nondimensional variables and taking the periods as 
function of the length HR (expressed by Eq. 21).  

Considering the good adherence of the results to 
Eq. (21), a run imposing oscillation damping at the 
air phase was also performed, intending to verify 
eventual adherence to this equation. The water in 
the tube with D=2.54cm and HR adjusted to 18.25 
cm was induced to oscillate while capped as shown 
in Fig. 3a. The device consisted of an impermeable 
cap having an opening with diameter of 0.48 cm, to 
which a hose with the same diameter and length of 
30 cm was attached, followed by a straight tube 
with diameter of 0.70 cm and length of 21.5 cm. 
This arrangement imposed a head loss in the flow 
of the gaseous phase that strongly reduced the 
amplitude of the movement. But the measured 
period of oscillation presented the value of 0.908 s, 
thus close to the previous value of 0.878 s. The 
difference is only of about 3.4%, and it may still be 
related to eventual differences in the value of HR. 
Fig. 10 shows the first period of oscillation of this 
damped experiment, which values are furnished in 

Table 4. Eq. (21) may thus be used as 
approximation even for damping of oscillations 
occurring in the air phase using orifices and hoses 
like described here. 

 
Table 4 Data for D=2.54 cm, 60 fps. 

HR (cm)=18.25 

t 
s 

h 
cm 

t 
s 

h 
cm 

0.000 0.00 0.517 22.18 

0.017 0.55 0.533 22.18 

0.033 1.01 0.550 22.18 

0.050 2.24 0.567 21.93 

0.067 3.37 0.583 21.72 

0.083 4.39 0.600 21.35 

0.100 5.98 0.617 21.13 

0.117 7.42 0.633 20.92 

0.133 8.56 0.650 20.86 

0.150 9.57 0.667 20.67 

0.167 10.52 0.683 20.37 

0.183 11.47 0.700 20.09 

0.200 12.42 0.717 19.57 

0.217 13.13 0.733 19.29 

0.233 14.35 0.750 18.96 

0.250 15.40 0.767 18.80 

0.267 16.35 0.783 18.56 

0.283 17.08 0.800 18.34 

0.300 17.51 0.817 17.94 

0.317 18.22 0.833 17.64 

0.333 18.71 0.850 17.45 

0.350 18.96 0.867 17.12 

0.367 19.45 0.883 16.90 

0.383 19.91 0.900 16.69 

0.400 20.34 0.917 16.47 

0.417 20.83 0.933 16.32 

0.433 21.04 0.950 16.26 

0.450 21.35 0.967 16.13 

0.467 21.44 0.983 16.13 

0.483 21.93 1.000 16.13 

0.500 22.02 1.017 16.13 

 
Upwards and downwards motions were calculated 
using the same values of 2 and 3, not showing 
relevant deviations from the observed data in the 
oscillation periods reproduced here.  

The theoretical solution was obtained for integer 
values of N=23. The adjustment of the calculations 
to the experimental data showed that 3 may have 
fractional character, for which the differential Eq. 
(9) was solved numerically.  
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4.5 Water Ejection 

As mentioned in the introduction, vertical tubes in 
distribution or drainage systems may be subjected 
to geyser events. When subjected to internal water 
oscillations, vertical tubes may produce ‘momentary 
geysers’, or water ejections, due to the upwards 
acceleration of the water column. It is evident in 
Fig. 7 that if the vertical pipe is shorter than ~1.40 
(that is, about 0.40 above the equilibrium level 
y=1.0) the ascending water spills out of the pipe, 
that is, the amplitude of the movement is larger than 
the remaining pipe length. The velocity of ejection 
depends on the length of the tube and its diameter, 
combined factors that may inhibit the acceleration 
of the column. Fig. 11 shows a water ejection for 
the tube of D=0.62 cm and HR=15.3 cm. The upper 
cross section of the tube (position indicated as L in 
the figure) was maintained 0.25 cm above the water 
surface. The water was spilled until a height of     
2.2 D from the upper end of the tube. 

All the experiments of this study were performed by 
applying an initial displacement with value close to 
HR, below the water surface of the reservoir, thus 
implying in ascending initial movement. 

 

 
Fig. 11. Vertical water ejection, for D=0.62cm, 
HR=15.3 cm. L indicates the level of the upper 

cross section of the vertical tube. 
 

5. CONCLUSION 

Oscillations of water in vertical tubes, directed to 
the studies of water distribution systems, drainage 
systems, and oscillation suppressing devices, were 
subjected to theoretical and experimental analyses.  

For the theoretical analysis a nonlinear second order 
governing equation for the motion was presented, 
with two coefficients involving local and distributed 
energy losses. Both coefficients were multiplied by 
the square of the velocity. This condition reflects 

fully developed turbulent flows when using 
constant coefficients. Its solution is composed by a 
set of two equations, one for the upwards and other 
for the downwards motions, which depend on the 
two mentioned coefficients for the energy losses in 
the flow, and which lead to a cyclic behavior when 
used together. Theoretical solution and numerical 
calculations showed very good agreement. 

For the experimental analyses, results were obtained 
in adequately prepared semi-immersed tubes using 
diameters of 0.62 cm and 2.54 cm, and different 
immersion lengths. The behaviors of the observed 
water level and the velocity were well reproduced 
by the calculations. 

Data of free oscillations were obtained for both the 
small and the large setups. Data for damped 
oscillations were generated using the large setup by 
imposing energy losses for the air that moves due 
the water oscillations. The experimental results 
show that the periods of oscillation for all tested 
conditions are approximated by Eq. (21), suggesting 
further studies to check the observed tendency.  

Finally, it was shown that water may spill out of the 
vertical tube above the level of the reservoir, as 
momentary water ejections, depending on the 
geometry of the tube and the oscillation amplitude. 

A very good agreement between experimental, 
analytical and numerical results was observed, 
suggesting further studies for engineering purposes. 
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