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ABSTRACT 

In this paper, A Novel Alternating Cell Direction Implicit Method (ACDI) is researched which allows 
implementation of fast line implicit methods on quadrilateral unstructured meshes. In ACDI method, designated 
alternating cell directions are taken along a series of contiguous cells within the unstructured grid domain and 
used as implicit lines similar to Line Gauss Seidel Method (LGS). ACDI method applied earlier for the solution 
of potential flows is extended for the solution of the incompressible Navier-Stokes equations on unstructured 
grids. The system of equations is solved by using the Symmetric Line Gauss-Seidel (SGS) method along the 
alternating cell directions. Laminar flow fields over a single element NACA-0008 airfoil are computed by using 
structured and unstructured quadrilateral grids, and inviscid Euler flow solutions are given for the NACA-
23012b multielement airfoil. The predictive capability of the method is validated against the data taken from 
the experimental or the other numerical studies and the efficiency of the ACDI method is compared with the 
implicit Point Gauss Seidel (PGS) method. In the selected validation cases, the results show that a reduction in 
total computation between 18% and 23% is achieved by the ACDI method over the PGS. In general, the results 
show that the ACDI method is a fast, efficient, robust and versatile method that can handle complicated 
unstructured grid cases with equal ease as with the structured grids. 

Keywords: Alternating cell directions implicit method; ACDI; U-MUSCL; Artificial compressibility; 
Incompressible N-S solver. 

NOMENCLATURE 

A area 
 flux jacobian 
 convective flux 

 viscous flux 

 unit vector 

P pressure 
 residual vector 

 position vector 

Re Reynolds number 
S length 
Q flow variables 

u,v velocity component 
β artificial compressibility parameter 
∆t time step 

1. INTRODUCTION

General trends such as reducing grid generation time 
and increasing the robustness, accuracy and time 
efficiency of the solvers are still valid in the 
computational fluid dynamics community. There are 
ongoing research, especially on unstructured grid 
generators and solvers, high order schemes and fast 

implicit methods. 

The most common schemes used for temporal 
discretisation of the governing equations can be 
classified into two main groups which are explicit 
and implicit methods. In general, it is known that 
explicit methods are easy to implement and solution 
steps are not computationally expensive, whereas 
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implicit methods have better convergence 
characteristics and are less dependent on 
computational grids compared with the explicit 
methods. Increasing reputation of implicit schemes 
for steady-state problem solutions is caused from 
their two remarkable properties which are the 
robustness and the time efficiency. 

Full implicit Sato et al. (2003); Chan and Anastasiou 
(1999) and point implicit Sheng and Whitfield 
(1999) methods are the most commonly used 
techniques for solvers on unstructured grids. 
However, well established and widely used line 
implicit methods such as Line Gauss Seidel Rogers 
and Kwak (1990) and Alternating Directions Implicit 
(ADI) Duc (1999); Kaliakatsos et al. (1996) methods 
are mostly employed on structured grid solvers. 
Comparison of these implicit solution methods are 
given in the references Yuan (2002); Rogers (1995) 
and Anderson et al. (1996). 

In general, the line implicit methods have an 
advantage over the point implicit methods in terms 
of time efficiency. Besides, requirement of less 
computer resources is another remarkable benefit of 
them when they compared with the full implicit 
schemes. However, the line implicit methods are not 
applicable on unstructured grids in their 
conventional forms. Recently, a novel method was 
proposed by Çete and Kaynak (2006); Çete (2004) 
that implements a line implicit method on 
unstructured grids, which is called Alternating Cell 
Directions Implicit, ACDI. In this new method, a 
series or a chain of contiguous cells are used to form 
implicit solution bands in such a way that the entire 
flow field is covered by passing over each cell twice. 
The solution on each solution band is performed 
similar to the Gauss-Seidel method. The method is 
shown to be fast and accurate similar to the ADI. 
This method was first applied to potential flows and 
showed equal levels of efficiency on both the 
structured and unstructured grids. 

On the other hand, in recent years, developing an 
incompressible Navier-Stokes solvers which are 
robust and efficient has gain importance for design 
and analysis purposes of unmanned air vehicles, 
wind turbines, bio-fluids and etc. Although the 
incompressible N-S equations constitute a subset of 
the compressible N-S equations, they are treated 
separately and in general are more difficult to solve. 
Numerous methodologies and algorithms can be 
found in the literature for the solution of 
incompressible flow equations. These solution 
methods fall under three main categories: vorticity-
stream function method, pressure based methods and 
density based methods. Among these various 
methods, the artificial compressibility Chorin (1967) 
formulation which is included in the density based 
methods category is chosen in the present work 
because of its wide usage and similarity with the 
compressible flow equations. This similarity allows 
implementation of most of the methods developed 
and successfully used in the compressible flow 
solvers. 

In the present paper, the ACDI method is extended 
to the solution of incompressible Navier-Stokes 

equations on unstructured quadrilateral grids. The 
efficiency and stability of the ACDI method are 
studied in detail. 

2. ALTERNATING CELL DIRECTIONS 
IMPLICIT METHOD 

Utilization of sequential cell directions formed the 
main structure of the idea behind the ACDI method. 
These directions are used for creating solution bands 
which are essential in all line implicit methods. It is 
possible to define directions passing through the 
mutual edges of quadrilateral cells as shown in Fig. 
1. Solution bands are generated by combining the 
lines passing through these mutual edges. These 
bands pass twice from each quadrilateral element. 
There are two valid directions for each solution 
bands and these directions depends on the choice of 
the starting edge. However, both direction can be 
used for the solution process without making any 
difference of the results. The main difference 
between these two direction is taking one direction 
as implicit and the other one as explicit which yields 
a three diagonal matrix system. 

 

 
Fig. 1. A Sample Grid Portion with Solution 

Bands. 
 

 
Fig. 2. General Cell Structure. 

 

For single blocked structured grids, the sequential 
cell directions coincide with the curvilinear 
coordinates, but for unstructured grids, it becomes 
possible to obtain a direction concept by using this 
method. Once the solution bands are generated, it 
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becomes possible to apply line implicit methods with 
some modifications. Fig. 2 shows a solution band on 
a sample grid. As seen in Fig. 2, the flux computation 
on cell ”M” are coupled to the cells L and N, which 
eventually leads to a tridiagonal load matrix to be 
solved. 

3. FLOW SOLVER 

The governing equations used in this work are two 
dimensional incompressible Navier-Stokes 
equations with artificial compressibility 
modification. Laminar and constant viscosity flows 
without body forces are considered. The resulting set 
of equations for an arbitrary grid is given in integral 
form as 

  ˆ. 0c v
A S

QdA F F ndS
t


  

  
 

                     (1)  

where Q is the vector of independent variables, 
including pressure and velocity components, Fc is 
the convective flux and vF represents the viscous 

flux vectors. 
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In Eq. (1), β and Re represents the artificial 
compressibility coefficient and the Reynolds number 
respectively, and n̂ is the outward-pointing unit 
normal of the corresponding control volume 
boundary. 

3.1   Spatial Discretisation 

A cell centered finite volume method is used in this 
study for the spatial discretisation of the governing 
equations over quadrilateral elements. Derivatives 
are evaluated using Green-Gauss theorem while 
piecewise constant, piecewise linear and U-MUSCL 
schemes are applied for the evaluation of the flow 
variables over the cell edges. The convective terms 
of artificial compressibility formulation have a 
hyperbolic character and upwinding technique is 
used to obtain stable solutions. On the other hand, 
viscous terms are elliptical nature and a central 
discretisation is employed. 

It is well known that central discretisation causes 
series stability problems in convective terms and 
upwinding is the most widely used solution to this 
problem. When artificial compressibility 
formulation is considered, it is important to note that 
the convective fluxes do not have the homogeneity 
property. This property can be shown with the 

necessity of the equality given below, 

.
F

F Q
Q





                                              (2)  

Since the absence of homogeneity property, the flux 
vector splitting schemes can not be used in this 
formulation. The convective terms can be discretized 
by using Roe flux difference splitting scheme and 
central discretisation is employed for viscous fluxes. 
The general formula of the Roe approximate 
Riemann solver is given by 

      1

2

1
. .

2 L R Roe R L
i

F F Q F Q A Q Q


     

(3)  

where RoeA term represents the Roe averaged flux 

Jacobian matrix. Roe averaging is a simple 
arithmetic averaging in the modified version of the 
Navier-Stokes equations for incompressible case. 
The flux Jacobian matrix can be defined as, 
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  

 are the 

eigen-values of the flux Jacobian matrix. ”c” which 

is equal to 2V 


 epresents the artificial speed of 

sound.  

RoeA term can be evaluated for each edge by using 

the following formula, 

1ΛA T T                                           (4)  

In the Eq. (4), T and 1T  represents the right eigen-
vectors and the inverse of the right eigenvectors of 
the flux Jacobian, respectively. The all terms of the 
diagonal matrix |Λ| are the absolute values of the 
eigenvalues. These matrices can be written as, 
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. .V u i v j 
 

                                          (5)  

. .u j v i   
 

                                         (6)  

Flow variable reconstruction process is the 
evaluation of LQ and RQ terms occurring in Eq. (3). 

The simplest variable reconstruction method is to 
take the left and right state variables LQ  and RQ  as 

equal to the cell center values of the corresponding 
sides. This reconstruction generates a first order 
scheme for upwinded convective terms and a second 
order scheme for the central discretisation of the 
viscous terms for one dimensional problem. Second 
order discretisation of the viscous terms is the most 
popular way in the literature, but the first order 
discretisation of the convective flux terms causes 
strong numerical diffusion errors. To reduce the 
diffusion error, high order variable reconstruction 
schemes are employed. In general, structured grid 
solvers use the advantage of the structure in the grid 
for high order reconstruction. One of the most 
popular reconstruction schemes used in structured 
grids is the Monotone Upstream-Centered Scheme 
for Conservation Laws (MUSCL). Although 
MUSCL scheme can be used on structured grids 
without any complexity, some ghost points (phantom 
nodes) are needed to be generated on unstructured 
grids Blazek (2015). The U-MUSCL scheme Burg 
(2005) which removes the necessity of these 
phantom nodes is used in this study. 

The data reconstruction formula of U-MUSCL 
scheme with the variables shown in Fig. 3 is given as 

   1 . .
2L i j i i i
k

Q Q Q Q k Q r     
            (7)  

 
Fig. 3. Edge Variable Extrapolation. 

 
The parameter κ, occurring in Eq. (7), is the U-
MUSCL parameter and different diffusion error 
levels or accuracies can be obtained from different κ 
values. Also, it is seen from Eq. (7) that, for κ = 0, 
the U-MUSCL scheme reduces to piecewise linear 
reconstruction. 

3.2   Temporal Discretisation 

The general formula of implicit schemes can be 
obtained by linearization of the right hand side by a 
first order Taylor series expansion in time as it is 
illustrated in Eq. (8). 
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In Eq. (8), the flux Jacobian term 
R

Q
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  is a full 

matrix. By using the LGS method this full matrix 
turns into a diagonal matrix. This matrix can be 
written in the form as, 

 
 

 
 

 
 

 
 

 
 

 
 

1

1

2

2

3

3

1

1

2

21

3

3

.
.

0 0

0 0

0 0

0 0

0 0

0 0



    
      

      
 
  
 
 
    
 
 
  

 
 
 
 
 

  
 
 
 
 
  



  




F

i

i

i
i

i

i

i

i

j

N
i

j
j j

i

j

I A R
Q

t Q

RA

t Q

RA
Q

t Q

RA

t Q

R

Q

R
Q

Q

R

Q
 

(9)  

where, i and j terms represents the cell itself and the 
neighboring cells, respectively. 

The flux Jacobian term 
R

Q

 
 
 


  is a 3 × 3 matrix 

which consists of terms representing the variation of 
the RHS with both the computation cell itself and the 
neighbouring cells. Evaluation methods and 
simplifications used for this term varies in different 
implicit schemes. In Point Gauss Seidel (PGS) 
method, the variation of RHS from all neighbouring 
cells are neglected. On the other hand, only some of 
these terms are neglected or approximated in a 
simpler way in line implicit methods. When the Line 
Gauss Seidel (LGS) Scheme is concerned, the cells 
located on the solution bands are taken as unknowns. 
The symbolical representation of the LGS scheme 
which is identical with the ACDI method is given as  

  n 1/n, , . R
n nA B C Q   

 
                         (10)  

The n 1/nR 
term of Eq. (10) refers to the RHS 

evaluated by most recent values of corresponding 
flow variables and [A,B,C]n corresponds to three 

elements of  A,B,C,D,E
n

where these are each of 

the five elements of the flux Jacobian term. When the 
time integration is performed on all cells over a 

solution band, the  A,B,C
n

terms form a 

tridiagonal matrix. Solution of tridiagonal type 
matrices are simple and time efficient when 
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compared with pentadiagonal or sparse matrices. 

3.3   Data Management 

Among a variety of data management schemes, the 
Cell Based Quad Edge approach Sedgewick and 
Flajolet (2013) is suitable for the implementation of 
ACDI as suggested by Çete (2004); Çete et al. (2008). 
In this approach, the flow variables are stored in two 
different arrays named as points group and cells group 
where a separate linked list is used to store the data 
about starting cells and edge values of each solution 
band. It then becomes possible to construct unique 
solution bands in an automated manner using the 
starting indexes stored in linked list. A sample 
unstructured grid portion is shown in Fig. 4. Cells are 
denoted by nc and the edges of a cell by ne . The 

solution bands are then given in terms of cells and the 
involved edges in Table 1 Çete et al. (2008). 
 

 
Fig. 4. A Sample Grid Portion with Cell and 

Edge Data. 

 

 
Fig. 5. 260 × 40 Structured Grid around NACA 

0008 Airfoil Profile. 
 

Table 1 Solution Bands of a Sample 
Unstructured Grid Portion 

e1,c1,e3 e1,c2,e3 

e2,c3,e3 e2,c4,e3 e4,c8,e2 

e1,c6,e3 e1,c7,e3 e1,c8,e3 e1,c9,e3 

e2,c7,e4 e2,c4,e4 e1,c5,e3 

e4,c2,e2 e4,c5,e2 e4,c9,e2 

e4,c1,e2 e4,c3,e2 e4,c6,e2 

4. RESULTS AND DISCUSSION 

Validation of this method is done by using flow over 
NACA 0008 single-element airfoil for a low 
Reynolds number and solution of Euler equation 
over NACA 23012b multi-element airfoil. The 
advantages of ACDI and U-MUSCL schemes are 
shown in the first case for both structured and 
unstructured grids. The second case, being 
geometrically more complex, shows the robustness 
and effectiveness of the new method on flow 
solutions over arbitrary geometries. 

Ideal convergence characteristics are satisfied with 
the help of sufficiently large time steps for relaxation 
schemes. This is also true for ACDI method and it is 
verified in Reference Bas¸ (2007). For all the 
calculations presented in this study, the CFL number 

is set to be 610  to prove the stability and efficiency 
of the ACDI scheme. All the present computations 
are done on a 3.2 GHz workstation with Intel Xeon 
processor with 4 GB of RAM. 

 

 
(a) 

 

 
(b) 

Fig. 6. Average Residual versus Number of 
Iteration Steps and CPU Time for 260 × 40 

Structured Grid over NACA 0008 Airfoil Profile. 
 

4.1  Laminar flow Over NACA 0008 Airfoil 
Profile 

For the computation of laminar flow over NACA 
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0008, the Reynolds number is specified as 6000. And 
also the angle of attack of 2 is considered for the 
computations. Two different configurations of 
computational grids are used for this situation. First, 
a 260 × 40 C-type structured grid with 10−3 normal 
grid spacing on the wall is generated using a 
hyperbolic grid generator. The structured 
computational grid is shown in Fig. 5. 

The residual histories for ACDI and PGS solutions 
are given in Fig. 6. As shown, the number of iteration 
steps and the convergence CPU time requirements of 
ACDI method are 28% and 23% more efficient, 
respectively, than the PGS solutions. 

 

 
 

 
Fig. 7. Unstructured Grid Used for Naca 0008 

Airfoil Calculation with 11460 Cells. 

 
When the unstructured grid generation is concerned, 
DELAUNDO grid generator Delaundo (2008) is first 
employed for generating a triangular grid. The 
quadrilateral grid shown in Fig. 7 is produced by 
combining all these triangular cells. The grid has 
11584 points and 11460 cells. 

For the validation of this case, the solution bands 
created on the unstructured grid can be seen in the 
Fig. 8 and after all these solution bands are produced, 
there are two solutions bands for each cell pass 
through them twice. Also the resulting solution 
bands for this unstructured grid are quite different in 
length. The shortest band containing 14 cells and 
longest solution band with 1794 cells is shown on 
Fig. 9 

 
Fig. 8. Solution Bands of the Unstructured Grid 

for NACA 0008 Airfoil Calculation.  

 

 
 

 
Fig. 9. The Shortest and Longest Solution Bands 

for the Unstructured Grid over NACA 0008 
Airfoil Profile. (For each solution bands 

direction is not important and both of them is 
valid for calculation). 

 

The solution on the unstructured grid is computed for 
the same flow conditions. The convergence histories 
are given in Fig. 10. It is seen that ACDI method is 
similarly 25% and 20% more efficient than the PGS 
method in the number of iteration steps and the total 
CPU time, respectively. These computational 
efficiencies of the ACDI method on the structured 
grid (23%) and on the unstructured grid (20%) are 
consistent with the findings of Rogers (1995) who  
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(a)                                                                                          (b) 

Fig. 10. Average Residual versus Number of Iteration Steps and CPU Time for the Unstructured Grid 
over NACA 0008 Airfoil Profile with 11460 Cells. 

 

 

employs three distinct versions of structured grids 
over NACA 4412 airfoil and obtained efficiency 
gains between 14% and 30% by employing LGS 
scheme. 

The same flow fields are computed with piecewise 
constant, piecewise linear and U-MUSCL (κ = 0.5) 
schemes on both structured and unstructured grids by 
using the ACDI method. The diffusive 
characteristics of the U-MUSCL scheme is 
investigated and the accuracy gains are shown 
graphically in Fig. 11 and Fig. 12. The solution of 
INS2D flow solver taken from Reference Kunz and 
Kroo (2000) are also used for validation. As seen, U-
MUSCL scheme captures the suction peak at the 
leading edge more accurately and proves to be less 
dissipative. 

4.2   Inviscid Flow Over NACA 23012b Multi 
Element Airfoil 

The second validation case is taken as the high 
Reynolds number flow over the NACA 23012b multi 
element airfoil profile. Flow solutions over Multi 
element airfoils shows the effectiveness of 
unstructured grids. 

 
Fig. 11. Graphical Representation of the 

Accuracy Gain on 260×40 Structured Grid over 
NACA 0008 Airfoil Profile. 

 
Fig. 12. Graphical Representation of the 

Accuracy Gain on Unstructured Grid over 
NACA 0008 Airfoil Profile. 

 

The experimental data is available at a Reynolds 

number of 61.46 10 with an angle of attack of 1.0 
degree for the main airfoil and 10 degrees of flap 
deflection Wenzinger (1938). In this study, the flow 
is assumed inviscid due to the lack of a turbulence 
model. 

An unstructured grid with 12314 points and 12011 
cells is employed as shown in Fig. 13. 

ACDI and PGS solutions are obtained as shown in 
Fig. 14 for this test case. The solutions obtained by 
these two methods overlap as expected. 

For the efficiency consideration, CFL number versus 
convergence iteration number graphs are plotted in 
the Fig. 15 for the PGS and ACDI methods for 
structured and unstructured grids, respectively. It can 
be seen clearly from the figures that ACDI method 
has better convergence characteristic than PGS 
method for the same CFL number. In other words, 
PGS methods require more number of iterations 
when compared to the ACDI method for both 
structured and unstructured grids. 
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Fig. 13. Unstructured Grid Used for NACA 23012b Multi Element Airfoil Calculation with 12011 Cells. 

 

 
Fig. 14. The Pressure Distribution as Flood Contours over the NACA 23012b Multi Element Airfoil. 

 

 

         
(a)                                                                                      (b) 

Fig. 15. Variation of Convergence Iteration Time with CFL Number on 260x40 Structured Grid and 
Unstructured Grid with 11584 Points. 

 

 
The residual histories similarly reveal the efficiency 
gains of the ACDI method over the PGS method 
(Fig. 16): the ACDI method is 23% in iteration 
number and 18% in total CPU time is more efficient 
than the PGS method. It is seen from this test case 
that, ACDI method results in similar efficiency gains 
on different cases, independent of the geometric 
complexity. In Reference Rogers (1995), severe 
convergence problems observed on multi element 
airfoil validation cases. 

The improved accuracy of the U-MUSCL scheme in 
inviscid flows is also shown in Fig. 17. 

5. CONCLUSION 

The primary objective of this study is to take 
advantage of both the computational efficiency of 
line implicit methods and the unstructured grids for 
the computation of incompressible flow over 
complex geometries. It is achieved by employing an 
Alternating Cell Directions Implicit method over 
unstructured quadrilateral grids. The flow fields 
computed compare well with experimental data and 
other numerical methods for validation. It is shown 
that the new method developed is robust, accurate,  
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(a)                                                                               (b) 

Fig. 16. Average Residual versus Number of Iteration Steps and CPU Time for Unstructured Grid over 
NACA 23012b Multi Element Airfoil. 

 

 

efficient and flexible, and can handle complex 
unstructured grids with equal ease as with the 
structured grids. The ACDI method provides 
between 18% and 23% efficiency over PGS 
method.Based on the obtained encouraging results, 
extension of the ACDI method to more efficient 
implicit algorithms such as Approximate 
Factorization Pulliam and Chaussee (1981) and LU-
decomposition Jameson and Turkel (1981) using 
ACDI as preconditioner are under way. 
 

 

 
Fig. 17. Graphical Representation of the 

Accuracy Gain on Unstructured Grid over 
NACA 23012b Multi Element Airfoil. 
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