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ABSTRACT 

A numerical solution for axis-symmetrical fluid flow through a smooth constriction using the alternating 
direction implicit finite volume method and the fractional-step-method is presented. The wall is modelled with 
a smooth contraction mapped by a sinusoidal function and the flow is supposed to be axis-symmetric. A 
pressure boundary condition is set at the inlet and the resulting pressure gradient field drives fluid flow which 
is always in laminar regime. This study presents results for a non-Newtonian fluid using the Ostwaldde Waele 
constitutive model. Moreover, a transient network representing three different microstructures, immersed in the 
fluid, is evolved by viscous dissipation and an isothermal process is considered. The time dependent evolution 
of the transient network is represented by a set of kinetic equations with their respective forward and reversed 
constants. The numerical predictions show that, at a fixed Reynolds number, the viscous dissipation and the 
grade of structure restoration or breakage is influenced by constriction severity due to the energy generated 
during fluid flow. A 50% reduction in transversal section generates secondary flow downstream and vortex 
shedding, whereas a 10% and 25% constrictions presents a thin boundary layer and no secondary flow near the 
constricted wall. 

Keywords: Generalized Newtonian fluid; Transient network; Finite volume method; Fractional-step method. 

Nomenclature 

a pressure at the inlet 
b initial pressure gradient  
c average exit velocity  

iC microstructure concentration i = 0,1,2 

Dmax maximum diameter 
Dmin minimum diameter 
P dynamic pressure  
L tube length  
m consistency parameter  
n power law index 
r(z) variable radius as a function of z 

coordinate 

Re Reynolds number 
R0 characteristic length 
u velocity in z-direction
U characteristic velocity 
v velocity vector 

υ velocity in r-direction 
α angle of attack 
ρ density 
δ constriction ratio 
г total stress tensor 

i microstructure, i = 0,1,2

1. INTRODUCTION

Flow through a contraction or expansion is a 
classical problem in fluid dynamics and its numerical 
modelling has a lot of applications such as nozzles 
(Xiong et al. 2015; Allamaprabhu et al. 2016), 
diffuser (Rosa and Pinho 2006; Mariani et al. 2010) 
and throttling valves (Jin et al. 2013). Other 

applications, with both combined geometries, are 
encountered in Venturi devices (Dong et al. 2012; 
Maqableh et al. 2012) and hemodynamics (Ikbal et 
al. 2009; Ponalagusamy and Selvi 2013; Mandal et 
al. 2011). Regardless of the nature of the problem, 
when a fluid passes a contraction, it experiences a 
loss in pressure but an increase in kinetic energy. In 
contrast, when a fluid passes an expansion, it 
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Fig. 1. Schematic of the tube with a smooth constriction showing microstructure breakage due to 

viscous dissipation. 

 
 

experiences a loss in kinetic energy but and increase 
in pressure. 

In the early 19th century, Prandtl (1904) noted that 
fluid flow near a wall is retarded with respect bulk 
flow and may undergo boundary layer separation. 
This separated region may occur if a surface 
undergoes an adverse pressure gradient over a 
sufficient distance (Sychev 1982). Vortex flow 
appears in both internal and external flows. Pauley et 
al. (1990) determined that a strong adverse pressure 
gradient can create periodic vortex shedding from the 
separation region. In smooth and sudden 
contractions, the generation of secondary flows and 
vortex shedding can be avoided by controlling the 
difference between inlet and outlet pressures, as well 
as constriction ratio  : 

min

max
1

D

D
                                                             (1) 

In regard to complex fluids, the phenomena causing 
secondary flow generation is not much different from 
that of a Newtonian fluid, but, another interesting 
arising phenomenon is microstructure evolution. 
These internal changes make a complex fluid have 
time and shear-rate dependent behaviour. This 
behaviour can be approached via constitutive or 
molecular kinetic models. For instance, Binding et 
al. (2006) numerically determined the flow through 
contraction and expansion of an Oldroyd-B fluid; Mu 
et al. (2014) carried out simulations using FENE-P 
model for flow through a sudden contraction; 
Siddiqui et al. (2016) analyzed theoretically the 
steady flow of a second grade fluid through a 
constricted tube. 

The goal of this work is to present a simple model for 
microstructure distribution. The flow of a 
generalized Newtonian fluid through a constricted 
tube is treated numerically, and a transient network 
is added to evaluate the microstructure evolution 
which depends on the thermal energy generated 
during fluid flow. This thermal energy is due to 
viscous dissipation and it is supposed to be wasted 
by microstructure breakage. Numerical predictions 
are compared and discussed in detail with available 
published in literature for the flow through a 
stenosed vessel. This model can be used for blood 
flow predictions regarding structure kinetics. 
Furthermore, it can be used as an analysis or 

diagnostic tool to interpret complex fluids in 
different geometries subjected to different boundary 
and initial conditions. 

2. MATHEMATICAL MODELLING 

In this sections is treated all about governing 
equations, constitutive model, microstate kinetic 
equations, boundary conditions and numerical 
procedure. 

Consider the flow of a generalized Newtonian fluid 
through a constricted tube with some microstructures 
diluted in it, as depicted in Fig. 1. In this case, three 
constricted ratios are selected to evaluate how 
microstructure evolves by the action of viscous 
dissipation and this thermal energy is assumed to be 
totally consumed by the disentanglement process. 
These microstructural changes are analyzed with a 
simplified version of Rincón et al. (2005), model 
where the microstate configuration determines an 
averaged extensibility linked to a spring force law. 
Here, the purpose is just to determine the 
microstructure distribution without considering how 
these ones affect fluid properties. In addition, it is 
analyzed the boundary geometry influence on the 
velocity field. 

2.1   Governing Equations 

Consider two-dimensional flow in a circular 
constricted tube with constant density ρ and strain 
rate dependent viscosity  (d). Here d denotes the 
symmetric part of the velocity gradient tensor. For 
dimensional analysis the following dimensionless 
variables are defined: 

* * * *

2
0 0

, , , ,
x v t U P

x v t P
R U R U

                           (2) 

where x and v are the position and the velocity 
vectors. The scalar quantities t, p, 0R and U are time, 

pressure, characteristic length and mean inlet 
velocity vector, respectively. In this case 

0 max0.5R D . 

Since the fluid is assumed to be incompressible, the 
continuity equation is expressed as follows 

0,  v                                                                     (3) 
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and momentum transfer is defined by the Cauchy 
equation of motion: 

1
,

Re

v
v p

t


      


v                                     (4) 

where  is the total stress tensor. This stress tensor 
takes the form of a generalized Newtonian fluid with 
no temperature dependence. 

1

21
( : ) .
2

n




  d d d                                                   (5) 

The Reynolds number (Re) is defined as: 

0
2

Re
n

n

R

mU


                                                            (6) 

where m is the consistency parameter and n is the 
power law index. 

2.2   Microstructure Kinetic Equations 

Network models are capable to predict fluid flow 
phenomena for concentrated solutions and melts by 
considering temporal physical interactions or 
junctions between structures (Bird et al. 1987). In a 
classical sense, a transient network describes 
polymer-polymer interactions. But in this case, it can 
be thought of as general isolated microstructures 
capable of changing their actual configuration. 
Under the current hypothesis, the microstructures are 
sufficiently separated from each other such that the 
fluid is a very dilute solution. 

When the fluid is at rest, all diluted microstructures 
are in 2 microstate configuration. By action of fluid 

flow and the inherent viscous dissipation, the 
required internal thermal energy is produced and is 
used by the system to break original microstructures 
into simpler microstructures, i.e., 0  and 1  (see 

Fig. 1). Instead of tracking each microstructure and 
their current microstate, it is a better idea to compute 
their concentration iC , where i = 0, 1, 2 and this 

subindex indicates which microstate is being 

represented  0 1 2,   or    . 

The following set of kinetic equations are based on a 
transient network model that can be found in Rincón 
et al. (2005) 

20
1 0: ( ) ( ),

dC
B d C A C

dt
                                    (7) 

2 3 21
2 1 1 0: ( ) ( ),

dC
B d C C A C C

dt
                      (8) 

3 22
1 2( ) : ( ).

dC
A C B d C

dt
                                      (9) 

These equations computes microstructure 
concentrations and are used just to predict their 
variation with time and spatial distribution. The 
parameters A and B are the forward and reverse rate 
constants, respectively. Here, A is related to the 
exponential function which models structure build-
up, and B is related to internal friction dissipation, 

allowing structure breakage. 

2.3   Initial and Boundary Conditions 

The problem is approximated as an axis-symmetrical 
flow through a circular tube. The boundaries 
includes a solid wall at the top, an inlet, an outlet and 
a line of symmetry, as shown in Fig. 1. 

The initial conditions (t = 0) for the momentum 
equation are: 

22(1 )

.

u r

dR
v ru

dz
p

p a z
L

 




 

                                                      (10) 

where the function R(z) defines the geometry of the 
constricted tube as defined in Ikbal et al.(2009) 

1
0

0
( ) 1 cos ,

2

z z
R z R

z

 
  

    
   

                    (11) 

when there is no constriction,   0R z   R and δ is 

the constriction ratio. The value of 1z defines the 

constriction centre with respect z coordinate. The 
parameters a and /p L represent the pressure at 
the inlet and initial pressure gradient per unit 
length. L is the length of the tube section under 
analysis. 

The initial microstate corresponds to one in which 

2  structures are present all over the domain and 

there is no probability to find 0  and 1 structures. 

According to Rincón et al. (2005), 0  is made of 

one segment, ω1 of two segments and 2  of three 

segments. Scaling microstructure concentrations, 
using the maximum number of 0  structures that 

can be present in the system, their limiting value per 
control volume are determined by the inverse of 
individual structures of their respective microstate, 
that is, 0 1 2C   1,  C   1 / 2 and C   1 / 3   . For 

initial condition 

0 1 2
1

0; 0.
3

C C C for t                                  (12) 

A pressure inlet boundary condition is set, thus, 
velocities u and v are unknown, except at t = 0 

0 0p at z                                                     (13) 

A convective boundary condition is set at the 
outflow, which allows the propagating vortex 
structure to exit the domain with minimum distortion 

, ,
u u v v

c c at z L
t z t z

   
  

   
                     (14) 

where c can be either the propagation speed of 
vortices or the average exit velocity (Pauley et al. 
1990). 

At the top wall, a no-slip condition is prescribed 
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0, 0 ( ).u v at r R z                                       (15) 

At the symmetry, a Neummann boundary condition 
is used for u and a Dirichlet one for v: 

0, 0 0.
u

v at r
r


  


                                       (16) 

3. Method of Solution 

3.1   Numerical Procedure 

A semi-implicit second-order-accurate alternating 
direction implicit (ADI) finite-volume method was 
used to solve Eq. (4) (Singh and You 2011). Once the 
integral approach of the finite volume method is 
performed the ADI factorization proposed by 
Douglas and Gunn (1964) is applied. Then, the 
resulting equations are solved by means of a 
Newton-iterative method and finally the fractional-
step method is employed to update u, v and p to their 
actual values (Kim and Moin 1985). The strain rate 
dependent viscosity is computed using previous 
time-step information or initial conditions, whatever 
the case. After computing the velocity field and 
pressure distribution, the viscous dissipation is 
calculated and its values is passed to the discrete 
kinetic equations, which correspond to Eqs. (7) to 
(9). This system was solved with a fourth order 
Runge-Kutta method. 

The dimensionless length of computational domain 
is 50 and the dimensionless maximum diameter is 2, 
implying that R0 = 1. The time-step size for all 

simulations is 31  10 . The initial pressure gradient 
in z direction is -0.01. 

3.2   Grid Independence Test 

A grid independence test was conducted using 
four different grid sizes of 251 × 21, 351 × 31, 501 
× 41 and 701 × 61 with a Reynolds number of 200 
and for a Newtonian fluid. The constriction ratio 
is 0.5. It was observed that a further refinement of 
grids from 501×41 to 701×61 do not provide a 
significant improvement over velocity and 
pressure calculations. Based on this information, 
the 501 × 41 grid size was selected to perform 
simulations. 

3.3   Validation of Numerical Formulation 

In order to assess the reliability o the numerical 
algorithm, this is compared with a finite difference 
solution developed by Ikbal et al. (2009) for a 
shear-thinning fluid in a pulsatile stenosed blood 
flow with δ = 0.276. Fig. 2 depicts the finite 
difference and present finite volume (FVM) 
solutions for a non-Newtonian fluid with a power 
law index n = 0.639. The comparison between u 
and v velocity profiles with a Reynolds number of 
300 is shown in Fig. 2(a). In this case the profiles 
are similar but do not match at all. Volumetric 
flow rate for a shear-thinning fluid with a power 
law index of 0.639 and a Reynolds number of 
1000 is compared in Fig. 2(b) and Fig. 2(c). In 
general, contours are in agreement but near the 

inlet they have appreciable differences. To ensure 
code validity, Ikbal numerical finite difference 
procedure was reproduced and showed the same 
performance as the current finite volume method 
procedure. It is important to state that the phase 
angle, used by Ikbal et al. is unknown and was 
estimated. 

 

 
Fig. 2. (a) Velocity profiles at Re=300, z=14 and 

t=50. (b) and (c) volumetric flow contours 
computed in the present work and by Ikbal et al., 

respectively; Re=1000, t=1000 and n=0.639. 
 

4. RESULTS AND DISCUSSION 

Results for three different constriction ratios are 
treated in this section, δ = 0.10, 0.25 and 0.50. The 
fluid has a shear-thinning behaviour and its power 
law index is n = 0.639. For the system of kinetic 
equations two couples of forward and reversed 
kinetic constants have been selected. For a weakly 
structured network A = 0.01 and B = 0.1. For a highly 
structured network A = 0.1 and B = 0.01. 

4.1   Fluid Flow Phenomena 

Figure 3 shows fluid flow information for t = 500. 
In this figure, it can be noticed that for δ = 0.1 and 
δ= 0.25 do not exist separation and flow 
instabilities, but for δ= 0.5, secondary flows and 
vortex shedding occurs. When flow separation 
appears, no reattachment is observed since the 
outflow boundary conditions allows nonfully 
developed velocity profiles. Fig. 3(a) shows that 
velocity magnitudes results to be proportional 
before and after the constriction centerline at z = 
15 for δ= 0.1. Fig. 3(b) reveals the existence of a 
wider region of low velocity near the wall after the 
constriction centerline, which is a result of having 
increased the constriction ratio. 

Although in this work, it was considered a symmetric 
flow, it is more probable, that for certain high critical 
Reynolds numbers, instabilities make fluid flow be 
asymmetric with respect the z-axis. In this case, it is 
not clear if vortices start vanishing due to a natural 
subsequent reattachment or because the system is 
trying to comply the imposed symmetric boundary 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 3. From top to bottom: Velocity magnitude and profiles; vorticity Ω, normalized pressure p, and 
streamlines. Constriction ratio (a) δ= 0.1, 

(b) δ =0.25, (c) δ =0.50, Re=500 and t = 500. 
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(a)                                                                                  (b) 

 
 

         
(c)                                                                                       (d) 

Fig. 4. Time evolution of u velocity at dierent longitudinal locations and at r = 0.5. (a) At the inlet.  
(b) At the constriction center. (c) After constriction. (d) At the outlet. 

 
 

condition. Streamlines in Fig. 3, imply that the 
critical Reynolds number of flow separation or 
bifurcation is modified by the constriction ratio. This 
critical values is also modified by the width, in z 
direction, of the constriction (Boghosian and Cassel 
2013). 

Table 1 shows average velocities over area for three 
different positions and each constriction ratio. It can 
be notice that mass is conserved in terms of the 
product between averaged velocity and cross 
sectional area. The averaged velocity out of 
constricted region tends to be lower for higher 
constriction ratios. This is caused because pressure 
was set as a boundary condition but velocity is 
unknown. For the three constriction cases the inlet 
pressure is the same and a reduction in velocity 
(when increasing the constriction ratio) at the inlet 
ensures mass conservation. Attempting to specify a 
fixed velocity profile and pressure, at once, lead to 
physically impossible solutions and numerical 
divergence at high Reynolds numbers. The fluid, for 
δ= 0.10, passes through the constriction with an 
increase of 23% in kinetic energy; for δ = 0.25 is 
78%, and for δ = 0.50 is 296%. Vorticity is higher 

near the constricted wall and for the first half, from 
left to right. Approximately, at z = 15 its value tends 
to decrease and have negative values near the wall. 
The fluid motion is always rotational in counter 
clockwise direction, except for δ = 0.5, where 
vorticity has negative values in the recirculation 
region and shed vortices. These vortices are split 
from the main vortex located at the second half of the 
constriction. 

Table 1 Averaged velocity 

 Position 

 z = 0 z = 15 z = 25 

0.10 1.44 1.60 1.44 

0.25 1.38 1.84 1.38 

0.50 1.08 2.15 1.08 

 
From Fig. 4, it is evident that only when δ = 0.5, there 
exist fluctuations in u velocity due to vortex 
shedding. The other two values of  δ do not exhibit 
this behaviour. The velocities are measured at the 
tube symmetry (r = 0). Fluctuations are weaker at the 
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(a) 

 

 
(b) 

 

Fig. 5. Microstate concentration 0C at three dierent constriction ratios. (a) For a highly structured 

network. (b) For a weakly structured network. 

 
 

inlet and constriction center, and stronger where 
vortex splitting occurs. At the outlet, their amplitude 
is diminished but still higher than at the two first 
aforementioned positions. The dominant Strouhal 
number is tS = 0.1333. This number is defined as

0 /tS fR U , and relates the characteristic 

oscillation frequency f to the inverse of the flow 
residence time, 0U / R . 

The computed pressure is normalized and recast with 
the following expression: 

min

max min

p p
p

p p





                                               (17) 

All cases show a decrease in pressure in the 
constricted zone, and this decrement is proportional 
to the increase in kinetic energy. In Figs. 3(a) and 
3(b) the pressure is gradually reduced at the 
constricted region. Then, the fluid leaves this region 
and pressure is increase due to the expansion. Far 
downstream, the pressure decreases again. When the 
constriction ratio is changed from δ = 0.1 to δ = 0.25, 
the same behaviour is observed, except that the 
lowest pressure values are located at the outlet in the 
first case, whereas they are located in the constriction 
for the second case. Pressure distribution, in Fig. 
3(c), give rise to adverse pressure gradients which 
help to maintain vortical structures. 

4.2   Microstructure Evolution 

Rincón et al. (2005) considered five different 
microstructures and suggested that these are the basic 
microstates. Although there could be other 
individual structures describing the same microstate, 
but, those with lower energy are preferred. As an 
extension to this work, Manero et al. (2015) 
considered individual structure self-entanglement, 
which increase the number of microstructures to be 
modeled. Both models can predict shear banding in 
complex fluids. In the current work, it is computed 
the spatial distribution of three microstructures 
without considering their effect in fluid properties. 

Figure 5 and Fig. 6 depict microstructure 
concentration results for highly and weakly 
structured networks. Concentration distributions of 

0 are shown in Fig. 5 for three different constriction 

ratios. Near the line of symmetry, low viscous 
dissipation does not allow structure breakage, thus, 

0C is approximately zero. The higher microstructure 

destruction occurs near the constricted wall for all 
cases. This fact is more noticeable for highly 
structured networks. 

A comparison between Fig. 5(a) with Fig. 5(b), 
makes it evident that for weakly structured networks 
the concentrations are more uniformly distributed. 
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An Increase in constriction ratio, reduces uniform 
distribution of single element structures due to low 
viscous dissipation in the regions of lower vorticity. 
In parabolic-like velocity profiles, the viscous 
dissipation always is lower near the axis of symmetry 
that near the walls. Referring to viscous dissipation 
as low or high, is relative to the necessary energy 
promoting structure breakage. It is very interesting 
that the fluid reach a periodic equilibrium state, but 
microstructures do not reach any equilibrium at the 
given energy dissipation rate (Fig. 6). The only 
microstructure reaching an equilibrium 
concentration is ω1 for a weakly structured network 
and a constriction ratio of 0.5, as depicted in Fig. 6b. 
Microstructure concentration results for δ = 0.1 are 
omitted since there is no remarkable difference 
between them and those for δ= 0.25. This 
information suggests that other structures need more 
time to reach equilibrium, and this time depends on 
wether the network is weakly or highly structured. 
Equilibrium concentrations can be locally obtained 
at discrete points of the domain, but their global 
average do not reflect this, at least, up to a time 
t=500. 
 

 
(a) 

 

 

 
(b) 

Fig. 6. Time evolution of normalized 
microstructure concentrations for a constriction 

ratio δ = 0.5. (a) For a highly structured 
network. (b) For a weakly structured network. 

The present work only considers microstructure 

evolution. In this case the fluid is non-Newtonian and 
its viscosity depends on shear rate but not time. The 
issue is when microstructure concentrations become 
sufficiently large, such that they are capable of 
modifying fluid properties. Structure breakage will 
result in thixotropy and structure build-up in anti-
thixotropy (Ferrer et al. 2017; Mewis and Wagner 
2009; Quemada 1999). 

5. CONCLUSIONS 

A 2-D numerical model has been presented to 
addressed axis-symmetrical fluid flow through a 
constriction of a generalized Newtonian fluid with 
microstructures. The selected power law index is n = 
0.639. The method of solution is based on an 
alternating direction implicit finite volume method 
for spatial integration and the fractional-step method 
for time integration. The extension of this model to 
3-D and none-symmetric cases is straightforward. 
Blood Flow numerical model through a stenosed 
vessel was compared with numerical results from the 
literature, and a good match has been found in terms 
of the volumetric flow rate and velocity profiles. The 
influences of the constriction ratio on the 
microstructure distribution, at a given Reynolds 
number, have been assessed. This study showed that 
reducing the transversal area, increase the 
microstructure breakage in the regions of higher 
vorticity. Two types of behaviour were selected for 
microstructures; the first corresponds to weakly 
structured networks and is represented by kinetic 
constants A less than B, and the second one by A 
greater than B. The microstructure distribution for a 
weakly structure network showed to be more 
homogeneous than for a highly structure network. 

The procedure presented in this paper, would be used 
to model a complex fluid taking into account 
microstate kinetics coupled with a stochastic or 
constitutive model, for instance, micellar or 
flocculant systems. Another application would be in 
blood flow considering the kinetics of red and white 
cells and/or low and high density lipoproteins. 
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