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ABSTRACT 

An asymptotic study of the outer near wake of a long slender body of revolution is carried out. The long slender 
body is a cylinder which is kept parallel to the flow and takes the shape of a simplified geometry such as that 
of an underwater vehicle, a rocket or hull form of a ship model. The wake flow is axisymmetric and the analysis 
has been carried out without any assumption on the eddy viscosity but utilizing the general behaviour of 
turbulent shear stress in the near wake. The governing equations are solved with appropriate boundary 
conditions. Similarity analysis for the mean velocity characteristics is carried out which shows the existence of 
a logarithmic region in the normal direction in the overlap region between the outer near wake and the inner 
near wake. Also shown is the exponential decay of the mean velocity defect as freestream velocity is reached. 
Validation of the results of the analysis is done using available experimental data.  
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1. INTRODUCTION

Understanding of flow past axisymmetric bodies is 
of considerable importance from the point of view of 
both aerospace engineering and hydrodynamics. It is 
a fundamental problem related to lift and drag hence 
posseses both practical and theoretical importance. 
Better understanding of flow behaviour past these 
bodies could drastically minimize cost of design by 
providing efficient and more optimal criteria in 
design modelling. Among many other practical 
problems encouraging this study, include dispersion 
of pollutants from an aircraft, drag reduction of 
autonomous air vehicles, detection of submarines 
and other underwater vehicles, just to name a few. 

The axisymmetric near wake is the region produced 
immediately after the trailing edge of a body of 
revolution after the flow past the body (Agrawal and 
Prasad 2003). It is the region known to greatly affect 
the aerodynamic characteristics of a body. This zone 
has a significant influence on base drag, base heat 
transfer and the configuration of the far wake (Merz 
et al. 1977). The axisymmetric near wake is the most 
complex part of the flow field and its structure 
depends on many parameters such as the geometric 
form of the body, the Reynolds number and the Mach 
number (Atli 1989).  Complexities of the turbulent 
axisymmetric flows include those with non-

homogenous and non-isotropic fluctuation motion. 
The result of this complexity yields in very 
challenging ways of acquiring data and performing 
experiments. Conducting experimental studies of the 
axisymmetric flow have proven to be difficult 
because of the inherent difficulties associated with 
obtaining symmetric wake flow and existence of 
trailing edge tip vibration which is very difficult to 
suppress.  

Most of the analytical work relating to the near wake 
available in the literature is focused on two 
dimensional turbulent near wake flows, for instance, 
(Alber (1980), Prabhu and Patel (1982), Bogucz and 
Walker (1988), Subaschandar and Prabhu (1999) and 
Subaschandar (1988)), or are focused in the far wake 
field of the axisymmetric flow (Bevilaqua and 
Lykoudis (1978), Townsend 1956, Carmody (1964), 
Gibson et al. (1968) and Chevray (1968)). For 
instance, Alber (1980) considered the two 
dimensional near wake problem of a flat plate in 
which the wake was considered to be made of several 
regions. Alber’s (1980) analogy, which relies on a 
specific closure assumption on the equations of 
motion indicates existence of a logarithmic relation 
of the centerline velocity. Prabhu and Patel (1982) 
also applied a closure assumption which was more 
general than the one employed by Alber (1980) to 
study the near wake. Bogucz and Walker (1988), 
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Subaschandar and Prabhu (1999) and Subaschandar 
(1988) studied the two dimensional near wake 
problem in a more rigorous way. Analysis using 
asymptotic expansions were carried out prior to 
adoption of a specific closure turbulence model from 
which they established that the logarithmic 
behaviour mean velocity profile in the overlap layer 
between inner and outer near wake in the normal 
direction.  

The literature in the far wake includes both 
experimental and theoretical work, (Bevilaqua and 
Lykoudis (1978), Townsend (1956), Carmody 
(1964), Gibson et al. (1968) and Chevray (1968)). In 
the studies mentioned, research on the self similarity 
behaviour of mean velocity profiles behind different 
axisymmetric geometries is presented. From these 
works, it is observed that the self similarity solution 
is obtained for different geometries at different 
streamwise distances. Bevilaqua and Lykoudi’s 
(1978) also made very significant observations when 
they studied the self preservation of the 
axisymmetric wake on a sphere and a porous disc 
with the same drag. They observed that, self 
preservation is a process which develops gradually 
with downstream distances, and first to preserve is 
the mean velocity profile, then the Reynolds stresses 
and later the turbulent moments. Bevilaqua and 
Lykoudi (1978) further challenge the common 
principle of Townsend (1956) that, turbulence 
forgets how it was created. Results from Bevilaqua 
and Lykoudi (1978) indicate that the self similarity 
of mean velocity and Reynolds stress profiles are 
different for different geometries.  Other works in the 
axisymmetric wake, include those concerned with 
the wake produced by axisymmetric bodies with a 
blunt, round or bluff trailing edges. A laminar wake 
developing from a slender blunt-based axisymmetric 
body is studied by Bohorques et al. (2011). 
Bohorques et al. (2011) investigate the stability 
properties and flow regimes of laminar wakes behind 
slender cylindrical bodies with a blunt trailing edge 
at zero angle of attack by experiment, Direct 
numerical simulation and local/ global linear 
stability analyses. Biau (2011) presented an 
analytical solution of the axisymmetric wakes 
produced by the flow past fixed axisymmetric bodies 
such as spheres, disks or bullet shaped bodies valid 
in the development region before the equilibrium 
state. The analysis is carried out on the axisymmetric 
boundary layer equations and focuses on the far 
wake since the region close to the trailing edge of the 
geometries hosted counter rotating vortices. 
Grandemange et al. (2012), experimentally studied 
the sensitivity of a 3D blunt body with a fixed 
axisymmetric flow separation at a Reynolds number 
of 2.1 × 10ସ.  The study carried by Grandemange 
(2012) was focused on the wake developing from 
blunt body. However, in the current study, the 
axisymmetric body of interest, is characterized by a 
sharp trailing edge where flow mixes smoothly with 
relatively no flow separation. 

From a numerical point of view, Lu and Sirviente 
(2005), solved RANS numerically in conjuction with 
a second order Reynolds stress closure to calculate 
the turbulent flow of a swirling axisymmetric 

momentumless wake. The results were compared 
with various experimental and numerical data sets.   

The mathematical problem posed here is that of a 
turbulent flow at a trailing edge of along slender 
cylinder that is aligned to a constant pressure 
uniform mainstream. The primary goal of this study 
is to describe the salient features of the flow structure 
downstream of the trailing edge in the outer near 
wake without adoption of a turbulence model. The 
outer near wake may be described as the near wake 
region normal from the centerline. A method of 
asymptotic expansions as the Reynolds number goes 
to infinity is exploited of which results are obtained 
and validated using available experimental data. 
Reasonable assumptions based on the physical 
behaviour of the Reynolds stress have been useful 
and hence are applied using mathematical 
expansions to describe this behaviour. The following 
results also offer support for the Millikan principle 
of matching of the inner and outer near wake 
solutions at a sufficiently large Reynolds number for 
a turbulent boundary layer problem can also hold for 
a wake problem. 

Pertaining to memory retained by the boundary layer 
at the trailing edge, it is expected that the geometrical 
requirement of the logarithmic relation that is 
observed in the boundary layer between the inner 
layer and the outer layer should also sustain in the 
near wake region for some more distance (Prabhu 
and Patel (1982) and Bogucz and Walker (1988)). 
The equations governing the flow in this region 
mimics the outer layer equations of a boundary layer 
growing on a cylinder of constant radius except that 
the boundary conditions applied for the outer layer 
of the boundary layer and that of the outer wake are 
different. 

2. THE AXISYMMETRIC TURBULENT 
BOUNDARY LAYER 

The development of the near wake is dependent upon 
the flow conditions approaching the trailing edge. 
Hence it is necessary to give a brief discussion on 
initial conditions for the wake development upstream 
of the trailing edge which are highly influenced by 
the turbulent boundary layer at the trailing edge. In 
this section we give a brief summary of the turbulent 
boundary layer and some relevant background 
studies on the subject. The axisymmetric turbulent 
boundary layer has been studied extensively both 
analytically and experimentally, for instance Afzal 
and Narasimha (1976), White (1972), Cebeci (1970) 
and Denli and Landweber (1979).  In these works, it 
is reported that the boundary layer consists of two 
distinct layers, an inner layer and an outer layer. Very 
close to the wall, is a very thin viscous layer and 
between the wall and the inner layer is a buffer 
region, and on extending into the inner layer is the 
logarithmic region which eventually graduates into 
the defect layer (defect from the free stream) of the 
outer layer. Basically, the logarithmic layer is the 
overlap region between the outer and the inner layers 
of the boundary layer. 

Although the two dimensional turbulent boundary 
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layer has generally been described well, however the 
axisymmetric turbulent boundary layer has its 
peculiarity which makes it necessary to give it a 
special treatment. Afzal and Narasimha (1976) 
studied the axisymmetric turbulent boundary layer at 
large values of the frictional Reynolds number based 
on the radius of the cylinder, with the boundary layer 
thickness being of the same order as the radius of the 
geometry. They used asymptotic expansions on the 
equations of mean flow to show that the flow can be 
described by the inner and outer layer concepts 
which are also applicable to the two dimensional 
turbulent boundary layers. It is also pointed out in 
studies concerning the turbulent axisymmetric 
boundary layer that for an axisymmetric turbulent 
boundary layer transverse curvature plays a vital role 
in shaping several characteristics of the turbulent 
axisymmetric boundary layer. White (1972) made an 
analysis of the properties of axisymmetric turbulent 
boundary layer over a long cylinder. Through an 
integral analysis, White (1972), showed that the 
curvature increased the skin friction, overall drag and 
the boundary layer thickness. Validation was done 
using several sources of data. A similar study was 
also done by Cebeci (1970) when he studied 
axisymmetric laminar and turbulent incompressible 
boundary layers on a slender body of revolution. 
Cebeci (1970) resolved the problem using finite 
difference method on equations of motion with an 
appropriate eddy viscosity assumption. Cebeci 
(1970) further made an analysis on the deviation of 
the cylinder skin friction from that of a flat plate. 
Denli and Landweber (1979) exploited the known 
fact that the stress moment in the law of the wall 
remain constant and apply their mixing length model 
which accounts for transverse curvature to obtain a 
law of the wall. They further report that skin friction 
on cylinder was greater than that of a flat plate 
corresponding to the same momentum thickness 
Reynolds number.  It is appreciated in these studies 
that, for an axisymmetric boundary layer, transverse 
curvature is key, and the usual empirical relations 
which are applied in the two dimensional turbulent 
boundary layer theory tend to fail in the 
axisymmetric boundary layer, that is, in the two 
dimensional boundary layer problem, closure of 
Reynolds average Navier Stokes equations on ߬ (the 
Reynolds stress) is usually achieved by the law of the 

wall which is the empirical relation  
௎௎ഓ = ଵ௞ ln ାݕ ାݕ where ,ܥ+ = ௬௎ഓఔ .  Afzal and Narasihma (1976) and 

Denli and Landweber (1979) point out that this 
classical relation of the two dimensional law of the 
wall needs modification, particularly in the argument 
of the similarity function, ݕା , but not the function 
itself as refrenced in Afzal and Narasimha (1976), 
White (1972) and Denli and Landweber (1979). 
Furthermore, the constant of the logarithmic 
relation ܥ, in the law of the wall was also debatably 
questioned whether it is a universal constant, as it has 
been in the case of a flat plate, and if it is not, what 
influences its value. Afzal and Narasimha (1976) 
deduced that the constant depends on the radius of 
the body and the boundary layer thickness.  The 
studies pointed by Afzal and Narasimha (1976), 
including Rao (1967) who deduced a different 

modified law of the wall (the law of the wall deduced 
by Rao (1967) is applied by White (1972) in 
analyzing the axisymmetric turbulent flow past a 
long cylinder) also propose that the constants of the 
law of the wall depend on the radius of the body and 
the Reynolds number. However, with the 
modifications suggested by Rao (1967), the analysis 
of the boundary layer equations boil down to the 
logarithmic empirical relation as demonstrated by 
Afzal and Narasimha (1976). Hence it could be 
concluded that the logarithmic relation of the 
boundary layer is also observed in the axisymmetric 
boundary layer but the constants of the equation and 
the arguments of the function are subject to the 
special features that shape the axisymmetric 
boundary layer. 

3. ANALYSIS 

Figure 1 depicts a schematic of various flow regions 
including the outer near wake.  The same figure is 
also used in references Yane and Subaschandar 
(2016, 2017). However Yane and Subaschandar 
(2016) was focused on the inner near wake where the 
wake development was described in terms of a linear 
model of Alber (1980) to characterize the eddy 
viscosity. Yane and Subaschandar (2017) was 
focused on the inner near wake and employed a 
general description of the eddy viscosity using 
mathematical expansions. The equations of motion 
are presented in axisymmetric form, where x is the 
streamwise direction, y is the normal direction and 
the origin is at the trailing edge. It should be pointed 
that very close to trailing edge is a laminar sublayer 
wake like, which will be consumed by the mixing 
produced by the eddies of the viscous scale of the 
upstream turbulent boundary layer. The 
axisymmetric flow is of constant density and 
viscosity and the boundary layer is assumed to be 
fully developed with a very negligible pressure 
gradient. The relevant length scale for both 
streamwise and normal direction is ߭ ఛൗݑ  where ߭ is 
the kinematic viscosity and ݑఛ   is the skin friction 
velocity. The governing equations for both the outer 
and inner near are obtained by applying the same 
limiting conditions that lead to the equation for the 
turbulent boundary layer. They are  ௨ഓ௎ಮ → 0  and ఋ௨ഓజ → ∞ where ߜ  denotes the total wake thickness 

and ܷஶ is the freestream velocity. In the outer layer, 

the variables 
௎ಮି௎௨ഓ , ߬ ఛଶൗݑ , ݕ ൗߜ , ݔ ൗܮ  are held fixed. ܮ 

defines the length of the long slender body and  ܷ is 
the mean velocity in the streamwise direction. The 
steady governing equations of motion given in 
Townsend (1956), Denli and Landweber (1979) and 
White (2011) are given as  ߲(ܷݕ)߲ݔ + ݕ߲(ݕܸ)߲ = 0.                                                 (1) 

ܷ ݔ߲ܷ߲ + ܸ ݕ߲ܷ߲ = ߩ1− ݔ߲݌߲ + ݕߩ1 ݕ߲(߬ݕ)߲ .                      (2) 

The boundary conditions for the entire near wake 
region are given by 
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ݕ߲ܷ߲ = 0, ,ݔ)ܸ 0) = 0, ߬ = 0 at ݕ = 0 

And as ݕ → ,ݔ)ܷ  ∞ (ݕ = ܷஶ and ߬ → 0.  ܷ  and ܸ  define the streamwise and normal mean 
velocities, ݔ  and ݕ  denotes the streamwise and 
normal coordinates while ߩ is the fluid density and ߬ 
is the Reynolds stress. It is assumed that the turbulent 
velocity and length scales are still of the same order 
as in the logarithmic portion of the trailing edge 
boundary layer. The diffusion process is assumed 
dominated by turbulent rather than laminar. 

 

 
Fig. 1. Flow regions in the near wake. 

 

The velocity defect in the outer layer is expected to 
be small with reference to the freestream (ܷஶ) and 
mean velocities. It is given by  ܷௗ= ܷஶ − ܷ                                                                     (3) 

Substituting these variables into the continuity and 
momentum equations, we get after simplification 
that,  ܸ = 2ݕ− ݀ ܷஶ݀ݔ .                                                             (4) 

−ܷஶ ߲ ܷௗ߲ݔ − ܷௗ ݀ ܷஶ݀ݔ + 2ݕ ܷ݀ஶ݀ݔ ߲ܷௗ߲ݕ = ݕߩ1 ݕ߲(ݕ߬)߲ .  (5) 

We shall note that in the outer near wake ܷௗ ≪ 1, 
and ܷஶ ௗ௎ಮௗ௫ = − ଵఘ ௗ௣ௗ௫ . As the pressure gradient is 

assumed to be very small, hence we get, −ܷஶ ߲ܷௗ߲ݔ = ݕߩ1 ݕ߲(ݕ߬)߲ .                                              (6) 

The equation is then appropriately normalized as 
follows, ݔା = ఛ߭ݑݔ , ାݕ = ఛ߭ݑݕ , ܷௗതതതത = ܷஶ − ఛݑܷ  , 
after which we obtain  −ܷஶݑఛ ߲ ഥܷௗ߲ݔା = ାݕߩ1 ାݕ߲(ା߬ݕ)߲ .                                   (7) 

 This equation is identical to the shallow wake 
equation for an axisymmetric flow of Townsend 
(1956), Prabhu and Narasimha (1972) and Denli and 
Landweber (1979). Substituting ߟ  =௬శఋశ  where   ߜା = ఋ௨ഓజ   and ߬ =   .ఛଶ ߬ҧݑߩ

−ܷஶߜାݑఛ ߲ ഥܷௗ߲ݔା = ߟ1 ߟ߲(ҧ߬ߟ)߲ .                                            (8) 

We set  ഥܷௗ = .(ାݔ)ݍ ߚ  and  (ߟ)ܨ =  ௎ಮఋశ௨ഓ  

 And on differentiating Eq. (8) with respect to ݔା, we 
get ߜߚାᇱ ାߜݍ ቈݍᇱߜାߜݍܨାᇱ − ᇱ቉ܨߟ = ߟ−1 ߟ߲{ҧ߬ߟ}߲ .                         (9) 

Integrating the above equation we obtain ߜߚାᇱ ାߜݍ ቎ߟܨଶ + ቆݍᇱߜାߜାᇱ ݍ + 2ቇ න ஶߟ݀ߟܨ
ఎ ቏ =  ҧ.     (10)߬ߟ−

And we take ߬ҧ  as ߬ҧ = (ߟ)݌(ାݔ) ̌߬ . To obtain a 
similarity solution for Eq. (10), we should have ߬̌ ߜାߜߚାᇱ ݍ =  ଵ.                                                                (11)ܥ

and   ݍᇱߜାߜାᇱ ݍ + 2 =  ଶ.                                                         (12)ܥ

With these, Eq. (10) becomes 

ଶߟܨ  + ଶܥ න ஶߟ݀ߟܨ
ఎ =  (13)                            .(ߟ)ܲߟ ଵܥ

Differentiating the above equation with respect to ߟ 
we get  ܨᇱߟଶ + (2 − ܨߟ( ଶܥ = ଵܥ ߟ߲((ߟ)ܲߟ)߲  .                (14) 

3.1   Behaviour of Solution for Small િ 

In this section we analyse Eq. (14) for small ߟ. We 
can take ܲ as a series in  ߟ as  ܲ = ܽ଴ + ܽଵ  ߟ + ܽଶ ߟଶ + ⋯.                               (15) 

And substituting for ܲ in Eq. (14) and simplifying 
gives ܨᇱ + (2 − (ଶܥ ߟ ܨ =  − ଶߟ ଵܥ ሾܽ଴ + 2ܽଵ ߟ + ⋯ ሿ .   (16) 

The solution of the above equation is then given by 

ܨ = ଶି஼మߟ ଵܥ− න ஼మఎିߟ  
଴ ሾܽ଴ + 2ܽଵ ߟ + ⋯ ሿ݀ (17)        .ߟ 

To obtain the logarithmic relation on evaluating the 
right hand side integral,  ܥଶ has to equal 2, that is; ܨ = ߟଵ ܽ଴ܥ − 2ܽଵܿଵ ݈݊ ߟ + ⋯.                                (18) 

The solution given by Eq. (18) is dominated by the 
logarithmic term. The first term on the right hand 
side of equation shows a decay of order ିߟଵ , 
however the behavior of the logarithmic term is more 
rapid and dominates over the contribution of the first 
term. Hence we can conclude that in the outer near 
wake, a logarithmic relation is exhibited for small ߟ 
which matches with the logarithmic overlap  



T. Yane and N. Subaschandar / JAFM, Vol. 10, No.6, pp. 1629-1637, 2017.  
 

1633 

 
Fig. 2. Logarithmic relation of the velocity profiles for the data set of Jimenez et al. (2010). 

; x/d = 6, and      ; x/d= 3 ,         logarithmic line. 

 
 

condition between inner and outer layer.  

Hence it can be concluded that the solution ܨ 
behaves as  ܨ = ߟଵlnܭ− +  ଶ.                                                   (19)ܭ

Where ܭଵ and ܭଶ are constants. 

3.2   Behaviour of Solution for Large િ 

The asymptotic behavior of the velocity defect on 
reaching the free stream velocity is expected to 
follow an exponential decay which tends to zero for 
large η .  Hence for large η  the function ܲ  should 
behave like ܴ଴݁ିோభఎೃమ ( Subaschandar and Prabhu 
(1999) and Prabhu and Patel (1982)), where ܴ଴, ܴଵ, ܴଶ are constants. To facilitate the analysis we 
shall take ܲ = ݁ିఎ. Substituting P into Eq. (14), we 
get ܨᇱߟଶ + (2 − ܨߟ( ଶܥ = ߟ݀݀  (20)                   .{ఎି݁ߟଵܥ}

The solution of the above equation is given by  (ߟ )ܨ = ଵ݁ିఎܥ ൤ ଶܥ1 − 2 − 1)ߟ1 − ଶ)൨ܥ
− ଶି஼మߟଵܥ න ݁ିఎ (ିߟ஼మାଵ1 − ଶܥ

ஶ
ఎ− ஼మ2ߟ −  (21)                        .ߟ݀ (ଶܥ

The two terms on the right hand side of equation give 
the solution to the mean velocity defect for large 
values of the similarity variable  ߟ.  

It is clear from the first term on the right hand side of 
Eq. (21) that, for large values of ߟ, the expression 
will decay to zero. The exponential quantity ݁ିఎ 
decays faster than any of the terms in the first 
expression and hence the expression will decay to 
zero for large values of ߟ. 

The second term on the right hand side of Eq. (21) 
has an integral that will go to zero for large values of 

the similarity variable ߟ . The integral will decay 
faster to zero for large values of η due to the large 
contribution of the exponential expression in the 
expression.  From the above solution it is clear that 
for large ߟ , the mean velocity defect should decay 
exponentially. The exponential decays faster than 
any term in the above solution. The integrand in the 
solution will also decay faster to zero.  

Hence we can conclude that the outer near wake 
solution behaves logarithmically for small values of 
the similarity variable ߟ and decays exponentially to 
zero for large values of ߟ. 

4. RESULTS AND DISCUSSION 

In this section we compare the results of the analysis 
with available experimental data of Jimenez et al. 
(2010), Swanson et al. (1974) and Patel and Lee 
(1977). Jimenez et al. (2010) carried out an 
experimental study of the axisymmetric wake behind 
a body of revolution for Reynolds number ranging 
between 1.1 × 10଺  and 67 × 10଺ . The Reynolds 
number was based on the model length. In this study, 
only the data pertaining to Re= 1.1 × 10଺  is 
considered. Swanson et al. (1974) studies forebody 
shaped cylinders experimentally of pure drag body, 
self propelled by axial fluid injection and self 
propelled with a “well designed” propeller. The data 
set of Swanson et al. (1974) applied in this study is 
of pure drag body since it best describes the 
geometry currently analysed. The Reynolds number 
of Swanson et al. (1974) was 6.18 × 10ହ which was 
based on the diameter (d) of the geometry. Patel and 
Lee (1977) carried out experimental studies in the 
near wake behind an axisymmetric body in which the 
Reynolds number was 1.2 × 10଺, which was based 
on the body length (l) and the freestream velocity.  

Figures 2, 3 and 4 show the variation of mean 
velocity profiles in the outer near wake, in the outer 
near wake variables. These figures show the mean 
velocity profiles from the experimental studies of  



T. Yane and N. Subaschandar / JAFM, Vol. 10, No.6, pp. 1629-1637, 2017.  
 

1634 

 
Fig. 3. Logarithmic relation of the velocity profile for the data of Swanson et al. (1974). 

; x/d = 5,       ; x/d= 2,           logarithmic line. 
 
 

 
Fig. 4. Logarithmic relation of the velocity profile for the data of Patel and Lee (1977). 

; x/l = 1.3,    ; x/l= 1.06,     ;x/l= 1.02        logarithmic line. 
 

 
Fig. 5. Exponential decay of the velocity profiles for the data of Jimenez et al. (2010). 

; x/d = 6,      ; x/d= 3 ,         exponential line. 

 

 

Jimenez et al. (2010), Swanson et al. (1974) and 
Patel and Lee (1977) and show also the logarithmic 
line. These figures show that the mean velocity 
defect varies logarithmically with the outer near 
wake variable ߟ for small values of  ߟ. It can be seen 

from these figures that the logarithmic behavior of 
mean velocity is gradually destroyed as the 
streamwise distance increases.  

Figures 5, 6 and 7 show the mean velocity variation  
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Fig. 6. Exponential decay of the velocity profiles for the data of Swanson et al. (1974). 

; x/d = 2,      ; x/d= 5,       exponential line. 
 

 

 
Fig. 7. Exponential decay of the velocity profiles for the data of Patel and Lee (1977). 

; x/l = 1.30,      ; x/l= 1.06,     ; x/l=1.02,       exponential line. 
 

 

with the outer near wake variable ߟ , for large ߟ 
values. These figures also present the mean velocity 
profiles from the experimental studies of Jimenez et 
al. (2010), Swanson et al. (1974) and Patel and Lee 
(1977) and also the exponential curve. These 
figures show the exponential decay of mean 
velocity defect in the outer near wake for large 
values of ߟ. From the above figures we can see that 
the mean velocity profile varies logarithmically for 
small values of the outer near wake similarity 
variable ߟ  and the mean velocity defect decays 
exponentially for large values of the outer near 
wake similarity variable ߟ , thus validating the 
results of the analysis given earlier.  

5. CONCLUSIONS 

The turbulent outer near wake layer of a long 
slender cylinder developing from a fully 
developed zero pressure gradient turbulent 
axisymmetric boundary layers is analyzed using 
asymptotic expansions method. The focus is made 
on a specific region of the near wake called the 
outer near wake. The analysis has been carried out 

using the general characteristics and behavior of 
the turbulent shear stress near the centerline and 
near the wake edge. It is known that in the near 
wake when approaching the freestream, the eddy 
viscosity is expected to narrow down to a very 
small quantity while on approaching the center 
line from the outer layer of the wake, the Reynolds 
stress asymptotically approaches a very small 
quantity. Only mathematical expansions relying 
on the behavior of the stress term are applied 
without engaging a closure hypothesis on the 
mean equations. It is observed that the mean 
velocity profile varies logarithmically for small 
values of the outer near wake similarity variable ߟ. The mean velocity defect decays exponentially 
as the outer near wake similarity variable 
increases. Both these characteristics are 
established on the basis of the dependence of the 
upstream conditions of the axisymmetric turbulent 
boundary layer at the trailing edge. Results of the 
analysis have been validated using available 
experimental data which gives credence to the 
analysis presented in this study.  
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