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ABSTRACT 

In this study, the electrically conducting fluid flow inside a channel with local symmetric constrictions, in the 
presence of a uniform transverse magnetic field is investigated using Lattice Boltzmann Method (LBM). To 
simulate Magnetohydrodynamics (MHD) flow, the extended model of D2Q9 for MHD has been used. In this 
model, the magnetic induction equation is solved in a similar manner to hydrodynamic flow field which is 
easy for programming. This extended model has a capability of simultaneously solving both magnetic and 
hydrodynamic fields; so that, it is possible to simulate MHD flow for various magnetic Reynolds 
number (Rem). Moreover, the effects of Rem on the flow characteristics are investigated. It is observed that, 
an increase in Rem, while keeping the Hartman number (Ha) constant, can control the separation zone; 
furthermore, comparing to increasing Ha, it doesn't result in a significant pressure drop along the channel. 

Keywords: Lattice Boltzmann method; Magnetohydrodynamics; Constrictions; Magnetic Reynolds number; 
Hartmann number. 

NOMENCLATURE 

a analytical value m average 

B magnetic induction field P local pressure 

B0 constant transverse magnetic field Re  Reynolds number 

b simulated Boltzmann value   Rem magnetic Reynolds number 

BGK Bhatnagar–Gross–Krook u flow velocity

CFD Computational Fluid Dynamics wi weighted factor indirection i 

Cs sound speed  x0 location of minimum cross-section 

e lattice velocity in hydrodynamic field x cartesian coordinate of x-direction 

F uniform forcing in the along-channel direction y cartesian coordinate of y-direction 

f particle mass distribution function 
eq
if equilibrium distribution function δ constriction height 

g vector distribution function η
 magnetic resistivity 

H channel Height ρ local flow density 

Ha Hartmann number τ relaxation time 

k constriction width τm magnetic relaxation time 

L channel Length ν kinematic viscosity 

LBM Lattice Boltzmann Method i lattice velocity in magnetic field 

MHD magnetohydrodynamics Ωi collision operator in direction i 
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1. INTRODUCTION 

Flow in constricted channels and tubes are observed 
in some fluidic devices (orifices, valves) and have 
wide applications in engineering as well as 
physiological applications. Because of such 
industrial and physiological applications, it is of no 
surprise that flow through local constrictions has 
been the subject of many studies in the past, in both 
experimental and numerical domains (Ahmed and 
Giddens, 1981; Deshpande et al., 1976; Lee and 
Fung, 1970; Neren, 1992; Young, 1979; Giddens et 
al., 1993; Lee, 1994; Chouly and Lagree, 2012; 
Bandyopadhyay and Layek, 2011; 2012). Such 
studies have already revealed that normal blood 
flow can be affected by factors such as wall shear 
stress, pressure fluctuations, and local velocities 
(Ahmed and Giddens, 1981; Deshpande et al., 
1976; Lee and Fung, 1970; Neren, 1992; Young, 
1979). The degree of importance of the shape, 
breadth, and height of the constriction has also been 
revealed through such studies (Giddens et al., 1993; 
Lee, 1994; Bandyopadhyay and Layek, 2011).  

The main objective of previous studies has been to 
better understand flow irregularities caused by such 
local constrictions. The Present paper follows 
another objective which is to see if flow separation 
occurring downstream a partially-constricted 
passage can be controlled through the use of an 
external magnetic field. This idea has been 
investigated in several studies (Bandyopadhyay and 
Layek, 2011; Cramer and Pai , 1973; Esmaeili and 
Sadeghy, 2009; Gad-el-Hak and Bushnell, 1991; 
Midya et al., 2004) especially in biology and 
medicine  (Barnothy, 1964; Vardanyan, 1973; 
Ponalagusamy and Tamil, 2013; Sinha and Misra, 
2012; Ikbal et al., 2009; Mustapha et al., 2009; 
Tashtoush and Magableh, 2007; Tzirtzilakis, 2005) 
but the novelty of current study is the application of 
a different numerical method for simulation of the 
mentioned idea.  

There are several approaches to numerical 
simulation of MHD flow (Afrand, 2017; Afrand et 
al., 2015; Afrand et al., 2015; Afrand et al., 2014; 
Afrand et al., 2014; Afrand et al., 2017;). Among 
them the lattice Boltzmann method (LBM) is a new 
and popular approach (He and Luo, 1997). In 
contrast to traditional computational fluid dynamics 
(CFD) methods which solve Navier–Stokes 
equations and compute macroscopic variables such 
as velocity and pressure in the LBM the particle 
mass distribution function f on the mesoscopic level 
is obtained by an approximation of the kinetic 
equation using the lattice Boltzmann equation (Mei 
et al., 1999). Then macroscopic variables are 
computed by this mass distribution function. 

The simplicity and suitability for parallel 
programming have made the lattice Boltzmann 
algorithms so popular. In addition, they can be 
easily incorporated for simulating fluid flows on 
complex geometries with complicated boundary 
conditions (Agarwal et al., 2009). Among several 
LBM algorithms the Bhatnagar–Gross–Krook 
(BGK) model with a simple scalar relaxation 
parameter and mass distribution function is the 

simplest one. In recent years the LBGK model for 
MHD flow has been developed. The earlier LBGK 
model in this area was presented by Chen et al. 
(1991). This model was an extension of lattice gas 
cellular automata MHD proposed by Chen and 
Matthaeus, 1987 and Chen et al., 1988. In their 
model, a two-index particle distribution function 
was used corresponding to separate microscopic 
velocities for velocity and magnetic field. At 
streaming step each particle moves along with one 
of the two velocity vectors which are chosen 
randomly. Martinez et al. (1994) have proposed 
another model which reduces the number of 
necessary particle states and computation effort as a 
result. Bouchut (1999) has introduced a vector-
valued distribution function instead of the scalar 
probability distribution function. Dellar  (2002) has 
also characterized an approach based on Bouchut 
model. In this model a separate vector-valued 
magnetic distribution function based on a vector 
Boltzmann–BGK equation gives the magnetic field. 
This model can solve induction equation in a 
manner similar to fluid flow so it is appropriate for 
programming. The model proposed by Dellar 
(2002) has been used in the current study. 

The paper has been organized as follows: we will 
start by presenting the computational domain which 
is laminar, incompressible fluid flow between two 
parallel plates containing a Gaussian symmetric, 
local constriction. It is also assumed that the fluid 
flow temperature is constant. We will then proceed 
with describing the lattice Boltzmann method as the 
method of solution. The magnetic induction 
equations which can be solved in a similar manner 
to the hydrodynamic equations (using a vector 
distribution function) are described next in details. 
Typical numerical results will be presented 
demonstrating magnetic field effects on flow 
characteristics in constricted channels. The paper is 
concluded with presenting a brief summary of the 
main findings of the work. 

2. METHOD AND SIMULATION 

We consider laminar flow of an electrically 
conducting fluid flow between two parallel plates 
having an overall length of L which are separated 
by a distance 2H from each other (see Fig. 1). As 
can be seen in Fig. 1, there is a local symmetric 
constriction somewhere between the two plates; it is 
seen to have amplitude of δ (constriction height) 
and a span of 4k (constriction width). The shape of 
constriction, assumes to be Gaussian type; that is 


















 


2

0exp
k

xx
Hy 

                          (1) 

In Eq. (1) x0 is the location of minimum cross-
section (at the throat of channel). 

In this paper we assumed that the minimum cross-
section is located in the middle of channel. Also, 
the ratio of channel length (L) to channel height 
(2H) is 16. For simulation electrically conducting 
fluid flow through constricted channel (above 
mentioned geometry) the LBM is used which is 
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discussed in the following section. 

 

 
Fig. 1. Schematic showing the constricted 
channel shape used in the present study. 

 

2.1   Lattice Boltzmann Method  

The LBM is a numerical scheme in mesoscopic 
scale which solves the LB equation for obtaining 
macroscopic flow field properties. Alternatively, 
this method can be used to simulate complex flow 
and transport phenomena especially in cases where 
direct solution of Navier-Stokes equations is not 
feasible (Martinez et al., 1994; Bouchut, 1999; 
Dellar, 2002). The LBM has already been 
successfully used in various fluid flow problems, 
such as multiphase and multicomponent fluid flows 
(Bao and Schaefer, 2012; Yan et al., 2011), thermal 
flow (Attar and Körner, 2011; Chen et al., 2012; 
Lin et al., 2012; Rong et al., 2010), flows through 
porous media (Rong et al., 2010; Hirabayashi et al., 
2012; Boek and Venturoli, 2010), solid particle 
suspensions (Hirabayashi et al., 2012), non-
Newtonian fluids (Chai et al., 2011; Ohta et al., 
2011), reaction diffusion systems (Bresolin and 
Oliveira, 2012), and magneto-hydrodynamics, 
(Chen et al., 1991; Chen and Matthaeus, 1987; 
Chen et al. 1988; Martinezet al., 1994; Bouchut, 
1999; Dellar, 2002;2011; Kefayati et al., 2012). 

To conserve mass and momentum and ensuring that 
the fluid is isotropic, in the LBM the particle 
distribution functions, fi(x, t) at a point x and time t, 
move synchronously on a regular lattice (Boyd and 
Buick, 2007). Fig. 2 shows the D2Q9 lattice model 
used in this paper. Only the five speeds 0, 1, 2, 3, 4, 
shown with thick lines, are used for the magnetic 
field. The distribution functions are given by the 
Lattice Boltzmann equation (Chen and Doolen, 
1998): 

     txtxftttexf iiii ,,, 
         (2) 

Where in the case of D2Q9 lattice  

   0;0,00  ie

                                               (3) 

     4,3,2,1;1
2

sin,1
2

cos 













 






  iiiei



(4)   

   

 8,7,6,5

;
4

1
2

sin,
4

1
2

cos2

















 






 

i

iiei



 

)5( 

 
Fig. 2. The D2Q9 lattice model for MHD flow. 

 

The collision operator Ω is given by the Bhatnagar–
Gross–Krook approximation (Ohta et al., 2011; 
Bhatnagar et al., 1954): 

    txftxf eq
iii ,,

1


                                 (6) 

In the above equation τ is a relaxation time and eq
if  

is the equilibrium distribution function given by the 
local fluid density, ρ, and flow velocity, u, as 
follows: 
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Where the weight factors wi are as below:  

wi=4/9 i=0 (the rest particles) 

wi=1/9 i=1, 2, 3, 4 

wi=1/36 i = 5, 6, 7, 8 

In this model an ideal gas equation of state is used 
(i.e.  2sP c  ) where  2 1/3sc  is the speed of 

sound.  

The fluid density ρ and velocity u can be easily 
obtained by

 
  ii

f  and  i ii
u f e , 

respectively at each node. It is worth mentioning 
that the kinematic viscosity can be expressed 
by   2 1)/ 6( . 

2.2   Magnetohydrodynamics Approach 

Calculation of the magnetic field in MHD flow can 
be done using the magnetic induction equation 
(Moreau, 1990): 

  BBuuB
t

B 2. 

 

                          (8) 

Where B and η represent magnetic induction field 
and magnetic resistivity, respectively. The magnetic 
induction equation can be solved in a similar 
manner to the hydrodynamic equations, using a 
vector distribution function, g. The evolution of this 
function is given by (Dellar, 2002) 
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Where  i is lattice velocity in magnetic field and 

m  is magnetic relaxation time. The five-point 

lattice weight factors Wi used for magnetic field are 
as below:  

Wi=1/3 i=0 (the rest particles) 

Wi=1/6 i=1, 2, 3, 4 

In two space dimensions the magnetic resistivity is 
related to the magnetic relaxation time by 

  2 1)/ 6( m . Assuming B = (Bx , By , 0), a 

suitable equilibrium distribution is 
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It is worth mentioning that the velocity field is 
coupled with magnetic field using above equation. 
To solve the governing equations, we need to 
impose suitable boundary conditions. At the inlet 
we impose fully developed velocity profile (Eq. 
(15) for MHD problem and a Poiseuille velocity 
profile for Ha=0) according to Zou and He (1997) 
method. Also, for solid walls a mid-grid bounce 
back boundary condition (Succi , 2001) is used. For 
the magnetic boundary conditions, the bounce-back 
method is also used, but with the sign reversed to 
enforce Bx = 0 at the wall boundaries (Dellar, 
2002). 

At the outlet, we assume that the downstream exit 
length is chosen long enough so that the flow 
streamwise variations in the flow will become 
sufficiently small. As a result the zero-derivative 
boundary conditions can be applied. This zero 
gradient condition is based on linear extrapolation 
(Kefayati et al., 2012), as follows: 
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2.3   Hartmann Flow 

Hartmann flow comprises a steady unidirectional 
flow of viscous, electrically conducting fluid 
through a channel containing a constant transverse 
magnetic field. The fluid, assumed incompressible 
and all relevant quantities, except the pressure, are a 
function of only the transverse coordinate, u = 
(u(y), 0, 0), B = (Bx(y), B0, 0) where B0 is the 
constant magnetic field transverse to the channel 
length. A uniform and time independent pressure 
gradient is maintained along the channel direction 

to drive the fluid. The walls are located at y = − H 
and y = H (Martinez et al., 1994). For this case, the 
incompressible MHD equations can be simplified to 
the following linear system (Dellar, 2002) 
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In the above equation F is spatially uniform force 
acting along channel direction, such as a pressure 
gradient. There is an analytical solution for Eq.14 if 
non-slip boundary conditions is applied for the 
velocity field and accompanied by Bx (−H) = Bx (H) 
= 0 for the magnetic field. 
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where Ha is a dimensionless Hartmann number 
which represents the ratio of Lorentz force to 
viscous force  and can be defined by 

00 /HBHa  .  

When the Hartmann number is large, as is typical 
in liquid metal MHD applications, the magnetic 
field maintains a nearly uniform velocity u over 
the bulk of the channel (Dellar, 2002). 
Conversely, for zero Hartmann number which 
means no external magnetic field the solution will 
reduce to the parabolic velocity profile of the 
Poiseuille flow. 

3. VALIDATION 

To examine the validity of the code, the obtained 
velocity profile and axial component of induced 
magnetic field, Bx, in a straight channel are 
compared with analytical solution of Eq. (15) (see 
Fig. 3). The Reynolds number and magnetic 
Reynolds number defined by  Re /mU H   and 

Rem= UmH/η where  Um denotes average velocity at 

inlet of the channel and η denotes magnetic 
resistivity.It is assumed that the Reynolds number 
and magnetic Reynolds number are constant 
(Re=50, Rem=5) along different Hartmann numbers. 
To reduce compressibility error inlet Mach number 
(Main=Um/Cs) set to be equal to 0.026.  

For any given flow rate, a decrease in the velocity 
near the centerline must be accompanied by an 
increase in the velocity near the walls, as can be 
inferred from Fig. 3a. Moreover, in Fig. 3b the axial 
component of induced magnetic field grows from 
zero on the wall to its maximum adjacent to the 
surface and then experiencing a point of inflection 
once again falls to zero in the centerline. The 
mentioned maximum value decreases with 
increasing Ha number.  
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(a) 
 

(b) 
Fig. 3. Comparison between analytical and 

numerical results of (a)Velocity profile  and (b) 
induced magnetic field profiles. 

 
 
It is worth mentioning that a good agreement is 
observed between numerical results and analytical 
solutions. The second order accuracy of MHD 
Lattice Boltzmann method (Dellar, 2002) was also 
investigated. The simulations were finished when 
the following criterion was satisfied. 
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where ε is a small number assumed to be ε=1×10-10. 
The global error can be calculated by Eq. (17). 
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In the Eq.17 the subscript a, denotes results of the 
exact analytic solution while the subscript b refers 
to the obtained results from LBM simulation. 
Results for the global error have been shown in Fig. 

4. The black lines in Fig. 4 represent lines of slope 
−2, indicating second-order behavior. Although, the 
amount of error for axial magnetic field is higher 
than velocity field, it can be seen that for various 
Hartmann number the presented data closely match 
the slope of those lines. These results prove that the 
code can well represent MHD flow in channels. 

 

 
Fig. 4. Global error for MHD Lattice Boltzmann 

Method. 
 

4. RESULTS AND DISCUSSION 

Having found the fully-developed velocity profiles 
in the previous section, one can proceed with 
calculating the velocity profiles in the constriction 
region. To achieve this goal, we used a uniform grid 
consisting 125 nodes along the channel height and 
2000 nodes along the channel length. To produce 
various Reynolds number, we changed viscosity, ν, 
so that the relaxation time would be changed too. 
For Re=50 the relaxation time, , and the inlet 
Mach number, Main is set to be 0.5562 and 0.026  
respectively. To perform various magnetic 
Reynolds number, Rem, the magnetic resistivity, η, 
was changed. For Rem=5, magnetic relaxation time 
is set to be 1.0625.  

Figure 5 illustrates the effect of the constriction 
height, δ, on the streamwise velocity profile at 
x/H=17 (i.e., downstream the throat), a constriction 
with k/H=0.4 for Re=50 and Ha=0. The negative 
values of the velocity imply the recirculating flow 
region. As the height of the constriction increases 
the greater separation zone in the upper and lower 
walls of the channel can be observed. 

Figure 6 shows a history of the development of the 
streamlines inside a constricted channel (with 
δ/H=0.5 and k/H=0.4.) for Ha=0 at Re=25, 50 and 
75. ). A flow reversal (i.e., separation) downstream 
of the throat is obvious in this figure. Evidently, 
once the flow enters the diverging section of the 
channel, it is vulnerable to separation because of the 
influence of the adverse pressure gradient in this 
part of the channel. As expected, separated zone 
grows further with the increase of Reynolds number 
(the inertia forces become more important than the 
viscous forces), and at Re=75 (Fig .6c) it occupies 
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main portion of the channel.  

 

 
Fig. 5. Effect of constriction height,δ , on the 

velocity profiles at x/H = 17 for Re=50 and Ha=0. 
 

Here, the effect of Hartman number on the velocity 
profile at x/H= 17, Re=50 and Rem=5 for a 
constriction with δ/H=0.5 and k/H=0.4 is 
investigated.  

 
Re=25 

 

Re=50 

 

Re=75 

 
 

Fig. 6. Streamline pattern at various Reynolds 
number, Re, at Ha=0. 

 
As can be observed in Fig. 7, the Lorentz force, as 
induced by the magnetic field, is predicted to have a 
retarding effect on fluid elements near the axis of 
the constriction. Close to the wall, however, fluid 
elements accelerate to keep the mass flow rate 
constant. This increase in the fluid velocity near the 
walls with increasing Ha number enables the fluid 
to overcome the influence of any adverse pressure 
gradient (downstream of the constriction) and 
thereby enhances the ability of the fluid to 
withstand flow separation near the wall. 

 
Fig. 7. Velocity profiles at various Hartman 

number for x/H = 17, Re=50 and Rem=5. 

 
The effect of Hartman number on the streamline 
pattern is shown in Fig. 8. As can be seen in this 
figure, with an increase in the magnetic field, the 
flow separation zone becomes smaller in size and 
for greater Hartman numbers; the separation zone is 
vanished totally. These results are in line with the 
velocity profiles presented in Fig. 7. Evidently, the 
accelerating effect of the magnetic field (through 
the action of the Lorentz force) can compensate for 
the decelerating effect of the adverse pressure 
gradient near the wall and downstream the throat 
more. 

 
Table1 Effect of Hartmann number on the 

overall wall friction 

Ha .RefC  
0 6.195621 

2 6.859182 

4 9.889191 

6 13.14766 

straight channel 6 
 

The effect of Hartmann number on overall wall 
friction (it can be obtained with integrating of Cf.Re 
on the wall surface) is summarized in Table 1. It is 
clear from this table that the overall wall friction 
increases with an increase in the strength of 
magnetic field. An increase of the wall friction with 
an increase of the Hartman number can be 
attributed to the boundary layer becoming thinner 
due to the higher Hartman number resulting in an 
increase in the velocity gradient near the wall (see 
Fig .3a). 

Figure 9 reperesents the effect of Hartman number 
on the pressure variation for Re=50 and Rem=5. It is 
concluded from this figure that by increasing the 
Hartmann number from 0 to 6, the pressure drop 
increases dramatically. This result is attributed to 
increase of wall shear stress due to the increase of 
velocity gradient near the wall. In this connection it 
is important to mention that since in the real 
situations the externally applied pressure gradient 
will need to be adjusted appropriately, we cannot 
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strictly conclude that more increase in Ha number is 
a completely effective way to cause a delay in 
separation. 

 

Ha=0 

 
 
Ha=2 

 
 
Ha=4 

 
 
Ha=6 

 
Fig. 8. Streamline pattern at various Hartmann 

number, Ha, for Re=50 and Rem=5. 
 
 

 
Fig.9. Effect of the Hartmann number, Ha, on 

the dimensionless pressure at the axis of channel 
Re=50 and Rem=5. 

 
Figure 10 shows the effect of magnetic Reynolds 
number on streamline patterns at constant Hartmann 
number (Ha=2). It can be seen that, by increasing 
the magnetic Reynolds number from 5 to 150, the 

diffusion term in Eq. (8) decreases (because of the 
magnetic resistivity, η, reduction) and convection 
term becomes more important. As a result, the 
induced magnetic field increases in comparison 
with the uniform transverse magnetic field and the 
separation zone becomes smaller in size. In Fig. 11 
the variation of magnetic Reynolds number with 
stream wise velocity is depicted at x/H= 17. This 
confirms that, similar to Hartmann number, Rem has 
an increasing effect on velocity of fluid elements 
close to the wall. However, as can be seen in Fig. 
12 the pressure drop due to increasing magnetic 
Reynolds number is not significant. In fact, 
increasing Rem just results in increasing induced 
magnetic field in the constrictions region which 
accelerates fluid flow near wall. So, flow doesn't 
have to tolerate large velocity gradient on the wall 
along the whole channel length which causes 
considerably less pressure drop.   

 
Rem=25 

 
 
Rem=50 

 
 
Rem=75 

 
 

Fig. 10. Streamline pattern at various magnetic 
Reynolds number, Rem, for Re=50 and Ha=2. 

 

 

 
Fig. 11. Velocity profiles at various magnetic 
Reynolds number for x/H = 17 and Re=50. 
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Fig. 12. Effect of the Magnetic Reynolds number, 
Rem, on the dimensionless pressure at the axis of 

channel Re=50 and Ha=2. 

5. CONCLUSION 

In this paper, numerical simulation of electrically 
conducting fluid flow inside a locally constricted 
channel using lattice Boltzmann method is 
investigated. Simultaneously solving magnetic and 
hydrodynamic fields, makes it possible to study the 
effect of various magnetic Reynolds number in the 
simulation. It is observed that flow separates at the 
lee of constriction and this separated zone will be 
larger when the Reynolds number increases. To 
control flow separation, two scenarios are suggested 
which include increasing Ha and Rem. It is viewed 
that increasing Ha can reduce the separated zone in 
downstream of constrictions whereas considerable 
pressure drop along channel length occurs. 
However, while Ha is kept constant, an increase in 
Rem not only could delay the separation phenomena 
but also significant pressure drop does not occur.       
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