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ABSTRACT 

Giesekus viscoelastic fluid is solved analytically for purely tangential flow in a concentric annulus at laminar 
and steady state conditions. Flow is created by a relative rotational motion between the cylinders. The analytical 
expressions for yield dimensionless velocity profile, pressure distribution, Ref  (f and Re are Fanning friction 
factor and Reynolds number) and material functions (viscosity, first and second normal stress difference 
coefficients) are obtained in cylindrical coordinates. Results show that difference between the values of lower 
as well as upper critical limits of the velocity ratio (where the minimum velocity happens) with their 
corresponding Newtonian values increase when mobility factor )( and Deborah number )(De increase. The 
results also show that viscometric functions decrease by increasing elasticity because the viscoelastic fluid 
shows the shear thinning behavior which is strengthened by increasing elasticity. It is found that, for all De  

values, Nff ReRe profiles are symmetrical around k1  (   and k are velocity ratio and radius ratio) 

because no relative motion exists. 
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1. INTRODUCTION

Flow induced in a concentric annulus by a relative 
rotational motion between the cylinders is used in 
many industries and engineering equipment; such 
as swirl nozzles, rotating electrical machines, 
standard commercial viscometers, rotating disks, 
journal bearings and other mechanical, 
biomechanical and chemical mixing equipment 
(Maron and Cohen, 1991). Giesekus (1982) is a 
three-parameters and nonlinear viscoelastic model 
which has been developed by using molecular 
ideas. The advantages of this model induce 
description of power-law regions for normal-stress 
coefficients and viscosity; reasonable complex and 
elongational viscosity. This model also 
incorporates non-exponential stress relaxation; 
shear-thinning shear viscosity; start-up curves and 
finite asymptotic value for extensional viscosity. 
An extensive literature review on the non-
Newtonian fluids flow by inner cylinder rotating 
through concentric and eccentric annuli is given by 
Escudier et al. (2002). Velocity profiles of 
Newtonian fluid between two rotating cylinders for 

different velocity ratios were investigated by 
Mahmud and Fraser (2003). Casson fluid flow was 
investigated between rotating cylinders  by Batra 
and Eissa (1992). Rao (1999) studied Johnson-
Segalman fluid flow between rotating cylinders. 
Beris et al. (1983) analyzed the tangential flow of 
CEF, Maxwell and White-Metzner fluids in 
concentric and eccentric annulus. Analytical 
solution for helical flow of SPTT fluids is derived 
in very thin annuli with inner cylinder rotating by 
Cruz and Pinho. (2004). Also, various 
hydrodynamic investigations were performed for 
tangential flow of viscoelastic fluids in eccentric 
annuli using numerical methods (Germann et 
al.,2011; Beries et al.,1987; Huang et al.,1996). 
The investigation on the annular tangential flow of 
PTT viscoelastic fluid was presented by 
Mirzazadeh et al. (2005). Takht Ravanchi et al. 
(2007) obtained solution for flow by rotating inner 
cylinders in concentric annulus using the Giesekus 
model. It was expected to reproduce the results of 
Takht Ravanchi et al. (2007) by assuming the outer 
cylinder to be stationary, but by reconstruction of 
the aforementioned study the revealed error is 
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observed in the evaluation of *
  and Ref . In this 

study an analytical solution has been presented for 
purely tangential flow of Giesekus viscoelastic 
fluid in a concentric annulus when both cylinders 
are rotated with different angular velocities. This 
problem has not yet been addressed in literature. 
Also, the effect of velocity ratio on velocity profile, 
frictional factor, and pressure distribution has been 
reported.  

2. GOVERNING EQUATIONS 

The consideration of problem is steady state, 
laminar, and purely tangential flow.  The no-slip 
condition is assumed. Ro and Ri are outer and inner 
cylinder radiuses with iiR   and ooR  as boundary 

conditions respectively. Also, the annular gap is 
defined as io RR  . 

By applying the assumptions, tangential and radial 
momentum equations are given as follows: 
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The Giesekus constitutive equation is as follows: 
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 and  are model parameters representing zero-
shear relaxation time and zero-shear viscosity, 
respectively (Giesekus, 1983). Also Eq.(3) defines 
the alpha parameter (  ) which represents 
anisotropic hydrodynamic drag on the constituent 
polymer molecules and/or anisotropic Brownian 
motion  (Bird et al., 1987) and should be in the range 
of 0-1 ( 10   ) as discussed by Giesekus (1982). 
By putting 0  the model simplifies to the upper 
convected Maxwell.By introducing characteristic 
velocity ( iiC RV  ), the Deborah number (

 CVDe  ) which measures the fluid elasticity 

magnitude , characteristic shear stress )(  CV and




CV

 * , the dimensionless form of constitutive 

equations will be as follows: 
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By integrating Eq.(2) dimensionless shear stress  

(
*
r ) can be obtained as follows: 
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Where *
wi is dimensionless inner wall shear stress, 

*r is oRr and k is the radius ratio ( oi RR ).

 
By solving Eq.(7) in terms of *

rr  as follows: 
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By solving Eq.(7) the positive and negative solution 
obtain which is obvious in Eq.(11).  Schleiniger and 
Weinacht (1991) by using linear stability analysis 
represent the following restrictions when Giesekus 
fluid is considered without solvent. 

For positive solution: 
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For negative solution: 
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As a result of restrictions the positive solution was 
concluded for solving process. 

From Eq.(8), the following expression can be 
obtained: 
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Combining Eqs.(7), (9) and (14) leads to: 
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By substituting Eq.(11) and Eq.(15) into Eq.(14), the 
simplified tangent normal stress can be obtained:  
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By consideration an approximate solution 
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approaches, the term 
22241 *

rDe   in Eqs.(11) 

and (16) can be expressed by a power series. For 

the small amounts of
2224 *

rDe  , the first two 

terms of series are presented and higher order terms 
can be cut off (Moayed Mohseni and Rashidi 
(2015), Takht Ravanchi et al. (2007) and 
Mirzazadeh et al. (2005)): 

222222 2141 *
r

*
r DeDe                  (17) 

The resulting error of this approximate for 
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6%. It should be noted that besides satisfaction of 
validity condition of the approximate, the stability 
condition (Eq. (12) or (13)) should also be 
established.  

Substituting Eq.(17) in Eq.(16) gives: 
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Using a similar approximation, the equation for *
rr  

becomes:                               

2**
 rrr De                 (19) 

Substituting *
 r  and *

rr from Eqs.(10) and (19) in 

to Eq. (15) and integration, the dimensionless 
velocity profile 

is derived as follows: 
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Where  

42)12( kDeA                  (21) 

42kDeB                  (22) 

By imposing the following dimensionless boundary 
conditions, the constant (C) of Eq.(20) can be 
obtained. 

1*V    kr*                (23) 

 *V    1* r               (24) 

The velocity ratio (  ) is defined as iioo RR  . 

Also by introducing the boundary conditions into 
Eq.(20) the following relation is obtained. 
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Now, *
wi can be obtained from the strongly 

nonlinear Eq. (25). Newton-Raphson method was 
used to solve of this equation. 

Torque friction factor is defined below: 
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when torque friction factor is combined with 
rotational Reynolds number )V(Re c  , a recent 

group is created as follows: 

*2Re wif                  (27) 

The pressure variation through the annulus gap is 
evaluated. The dimensionless form of Eq.(1) is as 
follows: 
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The dimensionless pressure is defined as
))//((  cVp . The pressure variation across the 

annulus slot can be obtained by integration of this 

equation. By introducing *
  from Eq. (18), *

rr  

from (19), *
r  from Eq.(10), and *V  from Eq.(20) 

into Eq.(28) and then integrating the analytical 
expression for the radial pressure distribution is 
derived as follows: 
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Where )( *r  is: 

Where )tanh(
*
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B
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Arch
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  and (C) is the constant 

of integration in velocity profile. 

3. MATERIAL FUNCTIONS 

The apparent viscosity for non-Newtonian fluids 
which is depended on the shear rate is defined as 
follows (Bird et al., 1987): 
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*
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By putting Eq. (19) in Eq.(15) a nonlinear equation 

for *
 r  is obtained. By solving it and then some 

mathematical simplification, *
 r  is obtained as a 

function of *  (Eq. (32)). 
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Substituting Eq.(32) into Eq.(31) results in the non-
Newtonian viscosity of Giesekus model. Likewise 
we can define first and second normal stress 

difference coefficients 1  and 2  for tangential 

flow as follows: 
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1  and 2 are determined by putting *
 r  in 

Eqs.(33) and (34). The parameters  , 1  and 2  

are collectively referred to as the viscometric 
functions. 

At low shear rates, viscometric functions approach 
the limiting values of  , 1  and 2  which are 

referred to as the zero shear rate viscosity ( ), the 

zero shear rate first normal stress coefficient ( 0,1 ), 

and the zero shear rate second normal stress 
coefficient ( 0,2 ) respectively (Bird et al., 1987). 
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Figure 1 shows the verification of the results 
obtained from Eqs.(32-34) with the normalized 
experimental data.  

 

 

Fig. 1. comparison of (a) normalized viscosity 
of model with 7% solution of aluminum 

laurate in a mixture of decalin and m-cresol 
(Bird et al., 1987,p. 106)  (b) normalized first 
normal stress difference coefficient of model  

with 1.5% solution of polyacrylamide 
(Separan AP30) in a water glycerin mixture 

(Bird et al., 1987, p.108)  (c) normalized 
second normal stress difference coefficient of 
model with 2.5% solution of polyacrylamide 

in a 50/50 mixture of water and glycerin (Bird 
et al., 1987,p. 110). 
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4. RESULTS AND DISCUSSION  

Figures 2a-c show the effects of shear rate and 
elasticity on the viscometric functions (  , 1  and 

2 ) which are normalized with the limiting values. 

It is seen at low shear rates the normalized 
viscometric functions approach unity. Also, 
viscometric functions decrease with increasing shear 
rate and elasticity because the viscoelastic fluid 
shows the shear thinning behavior which is 
strengthened by increasing elasticity. Fig. 3 shows 
the velocity ratio (  ) effect on velocity profile. The 

shape of velocity profile depends on   value. 
will be positive for the same direction rotation of 
both cylinders and negative for opposite direction 
rotation of them. 0 means that outer wall is at 
rest. As can be seen from this figure, a minimum 
point is shown on the velocity distribution for a range 
of critical velocity ratio ( c ) i.e.

upperclowerc ,,   . The lower and upper values of

c  can be determined by Letting 1*
min r  and 

kr *
min  in Eq.(36), (in this figure for 5.0*

min r and 

1*
min r the lower and upper critical   have been 

obtained respectively as: 0.641732 , lowerc  and

36477.1 upperc,  . Velocity increases along the 

radial direction for upperc,  . Velocity decreases 

for lowerc ,0   , and its value becomes   at 

the outer wall. For 0 , where cylinders are in 
counter-rotating motion, velocity becomes zero 
somewhere in the radial position. 

The minimum velocity location has obvious 
importance in the second law of thermodynamics 
analysis because at this point the entropy generation 
disappears due to fluid friction.  (Mahmud and 
Fraser, 1987). 
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the minimum velocity location is obtained by solving 
Eq. (36). Since this equation is highly nonlinear, 
inevitably, the Newton-Raphson method is employed.  

The location of minimum velocity i.e. )( *
minr , which 

is normalized with the corresponding Newtonian 

value ))/()1(( *
min,   kkkr N , as a function of 

De  number is shown in Fig. 4. As can be seen, 
*
min,

*
min Nrr  departs further from Newtonian fluid by 

increasing fluid elasticity. The effect of Deborah 
number and radius ratio k  on N,clower,c   is shown 

if Fig. 5 where N,c  is Newtonian velocity ratio 

which defined as )k(kN,lowerc
212  . For thin 

annulus (k=0,9), there is only a slight difference 
between c  and the corresponding Newtonian value 

and therefore it is not affected by elasticity. But for 
small radius ratios for example 1.0k , this 
difference is significant.Fig. 6 shows the effect of 
mobility factor ( ) on upperc, which is normalized 

with the corresponding Newtonian value

)2)1(( 2
, kkNupperc  . As can be seen, this value 

increases by increasing   and De . Fig. 7 shows the 
effect of fluid elasticity on normal-stress, which is 
normalized with inner wall shear stress. The existence 
of normal stresses in polymeric systems is due to the 
anisotropy induced in the microstructure because of 
flow. Since the anisotropy of polymer solution 
increases by increasing elasticity therefore, it causes 
high normal stresses, which is clearly seen in Fig. 7. 

Fig. 2. Effect of elasticity on the normalized 
(a) non-Newtonian viscosity, (b) first normal 

stress difference coefficient, (c) second normal 
stress difference coefficient with 

dimensionless shear rate for a Giesekus fluid 
for 1.0 . 
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Fig. 3. Dimensionless velocity profiles with 
varying velocity ratio (  ) for 20. ,

50.k  , 50.De  . 

 

Fig. 4. 
*

Nmin,
*
min rr  versus Deborah number 

(De) for 2.0 , 5.0k and 1 . 

 
Fig. 5. N,clower,c  versus Deborah number 

(De) and radius ratio )(k  for 2.0 . 

A similar convex pattern is observed in Fig. 8. For 

each k  value, profile is again symmetrical around

k1 , when the cylinders are stationary relative 

to each other, i.e. io   . Figs. 9a-c shows 

pressure variations with elasticity and centrifugal 

force. For low values of Re  (e.g. 1Re ) the 

centrifugal force is negligible. Therefore, in Fig. 9a 

only the effect of elasticity becomes important. By 
rewriting Eq.(1) can be derive Eq.(37) as follows 
(Mirzazadeh et al.,2007): 


 


r

rr
rrrV

r

p








2)(
ln

2          (37) 

 

 
Fig. 6. N,cupper,c  versus Deborah number 

(De) and mobility factor )(  for 5.0k . 

 
Fig. 7. Normalized dimensionless normal stress 
profile with varying De for 2.0 , 5.0k

and 0 . 

 
Fig. 8. NRefRe/f versus velocity ratio (�) for

2.0 , 1De  and different 
values of k . 

 
For Newtonian fluids the first and second normal 
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stress differences are both zero in shear flow and 
therefore, pressure increases with the increase of 
radius as can be seen in Fig.9a.  

 

 

 
Fig. 9. Pressure variations versus Deborah 

number (De) with 5.0k , 2.0 and  
0 : (a) Re = 1 (b) Re = 100 (c) Re = 10. 

 
For viscoelastic fluids first normal stress differences 
is practically always negative with an absolute value 
much larger than second normal stress differences. 
For this case pressure decreases in the radial 
direction as shown in Fig. 9a. Also, as can be seen in 
Fig. 7 by increasing the fluid elasticity the normal 
stresses increase. Hence, increasing fluid elasticity 
increases pressure variation across the annulus slot. 

Figure 9b shows the effect of centrifugal force on 
pressure profile for high range of Re  number (e.g.

100Re ). In this case centrifugal force dominates 

therefore first and second normal stress differences will 
be negligible, similar to Newtonian fluid and only the 

first term of Eq.(37) remains. It is seen that increasing 
the elasticity reduces the pressure variation across the 
annulus slot because increasing elasticity decreases 
velocity in each location of annular space. 

In Fig. 9c )10(Re   centrifugal force and normal 

stress are both important. The results of Fig. 9c for 
low and high fluid elasticity are similar to Fig. 9b and 
Fig. 9a, respectively. For intermediate Deborah 
number (e.g. 52.De  ), the combination of normal 

stress difference and centrifugal force causes a 
maximum.  

 

 

 
Fig. 10. Pressure variations versus velocity ratio 

(  ) with 2.0 , 1De and 5.0k  (a) 

Re = 1 (b) Re = 100 (c) Re = 10. 
 

Figures 10a-c presents the effect of velocity ratio 
)(  on the pressure variations within the annulus 

slot. Fig. 10a shows that for 1Re   the pressure 

distribution has a minimum for upperclowerc ,,  

. Also, for Lowerc,   pressure variation across 

the annulus slot is decreased but this trend is reversed 
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for upper,c  . The Figs. 10-a and 10-b show that 

increasing radial pressure difference is always 
occurred expected for 0  and 10Re . 

5. CONCLUSIONS  

The flow of Giesekus viscoelastic fluid model inside 
a laminar, steady state and tangential flow through an 
annulus by a relative rotational motion between the 
cylinders has been studied analytically. Results show 
that: 

 Increasing shear rate and elasticity cause 
decreasing viscometric functions which 
indicates the shear thinning behavior of the 
viscoelastic fluid.  

 Velocity profiles for upperc,   have positive 

slope, while they have negative slope for

lowerc ,  . 

 For upperclowerc ,,    the velocity profile 

has a minimum, along the radius. 

 The value of critical velocity ratio compared to 
their Newtonian counterparts increases by 
increasing fluid elasticity. 

 Normal stress increases by increasing fluid 
elasticity due to the anisotropic microstructure. 

 For k/1 , no relative angular motion exist. 

As a result, Nff ReRe shows a symmetrical 

shape. 

 By increasing fluid elasticity, Nff ReRe  

decreases for different values of  . 

REFERENCES 

Batra, R. L. and B. Das (1992). Flow of Casson fluid 
between two rotating cylinder. Fluid Dynamics 
Research 7(1-3), 133–141. 

Beris, A. N., R. C. Armstrong and R. A. Brown 
(1983). Perturbation theory for viscoelastic 
fluids between eccentric rotating cylinders. 
Journal of Non-Newtonian Fluid Mechanics 
13(2), 109–143. 

Beris, A. N., R. C. Armstrong and R. A. Brown 
(1987). Spectral/finite-element calculations of 
the flow of a Maxwell fluid between eccentric 
rotating cylinders. Journal of Non-Newtonian 
Fluid Mechanics  22(2), 129-167. 

Bird, R. B., R. C. Armstorng, O. Hassager (1987). 
Dynamics of polymeric liquids, second ed. Fluid 
Dynamics, vol. 1, John Wiley, New York, USA. 

Cruz, D. O. A. and F. T. Pinho (2004). Skewed 
Poiseuille–Couette low of SPTT fluids in 
concentric annuli and channels.  Journal of 
Non-Newtonian Fluid Mechanics 121(1), 1–14. 

Escudier, M. P., P. J. Oliveira and F. T. Pinho (2002). 
Fully developed laminar flow of purely viscous 
non-Newtonian liquids through annuli 

including the effects of eccentricity and inner 
cylinder rotation. International Journal of Heat 
and Fluid Flow 23(1), 52–73. 

Germann, N., M. Dressler and E. J. Windhab (2011). 
Numerical solution of an extended White–
Metzner model for eccentric Taylor–Couette 
flow. Journal of Computational Physics 
230(21), 7853–7866. 

Giesekus, H. (1982). A simple constitutive equation 
for polymer fluids based on the concept of 
deformation-dependent tonsorial mobility. 
Journal of Non-Newtonian Fluid Mechanics 11, 
69–109. 

Giesekus, H. (1983). Stressing behavior in simple 
shear flow as predicted by a new consecutive 
model for polymer fluids. Journal of Non- 
Newtonian Fluid Mechanics 12, 367–374. 

Huang, X. and N. Phan-Thien (1996). Viscoelastic 
flow between eccentric rotating cylinders: 
unstructured control volume method. Journal of 
Non-Newtonian Fluid Mechanics 64(1), 71-92. 

Jouyandeh, M., M. Moayed Mohseni and F. Rashidi 
(2014). Forced Convection Heat Transfer of 
Giesekus Viscoelastic Fluid in Concentric 
Annulus with both Cylinders Rotation. Journal 
of Petroleum Science and Technology 4(2), 1–
9. 

Mahmud, S. and R. A. Fraser (2003). Analysis of 
entropy generation inside cylindrical annuli 
with relative rotation. International Journal of 
Thermal Science 42(5), 513–521. 

Maron, D. M. and S. Cohen (1991). Hydrodynamics 
and heat/mass transfer near rotating surfaces. 
Advances in Heat Transfer 21, 141–183. 

Mirzazadeh, M., F. Rashidi and S. H. Hashemabadi 
(2005). Purely tangential flow of a PTT-
viscoelastic fluid within a concentric annulus. 
Journal of Non-Newtonian Fluid Mechanics 
129(2), 88–97. 

Moayed Mohseni, M. and F. Rashidi (2010). 
Viscoelastic fluid behavior in annulus using 
Giesekus model. Journal of Non-Newtonian 
Fluid Mechanics 165(21-22), 1550–1553. 

Mohseni, M., Rashidi, F. (2015). Axial annular flow 
of a Giesekus fluid with wall slip above the 
critical shear stress. Journal of Non-Newtonian 
Fluid Mechanics 223, 20–27 

Rao, I. J. (1999). Flow of a Johnson–Segalman fluid 
between rotating coaxial cylinders with and 
without suction. International Journal of Non-
Linear Mechanics 34(1), 63–70. 

Schleiniger, G. and R. Weinacht (1991). Steady 
Poiseuille flows for a Giesekus fluid. Journal of 
Non-Newtonian Fluid Mechanics  40(1), 79–
102. 

Takht Ravanchi, M., M. Mirzazadeh and F. Rashidi 
(2007). Flow of Giesekus viscoelastic fluid in a 
concentric annulus with inner cylinder rotation. 
International Journal of Heat and Fluid Flow 
28(4), 838–845.



M. Jouyandeh et al. / JAFM, Vol. 10, No.6, pp. 1721-1728, 2017.  
 

1729 

 
 

 


