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ABSTRACT 

The paper investigates the peristaltic pumping of an incompressible non-Newtonian fluid in an elastic tube with 
long wavelengths and low Reynolds number approximations. Carreau fluid model is considered for present 
study to describe the peristaltic flow characteristics of non- Newtonian fluid in an elastic tube. Carreau fluid is 
a generalized Newtonian fluid which exhibits Newtonian behaviour for 1n   and it resembles as a power-law 
model at higher shear rates. For 1n  it exhibits shear-thinning property, i.e., the apparent viscosity reduces 
with increasing shear rate. The equations governing the fluid flow are solved with usual perturbation expansion 
by taking Weissenberg number iW  as a perturbation parameter. The expressions for axial velocity, stream 

function and volume flow rate as function of pressure difference are derived. The effects of various pertinent 
parameters on variation of flux for a Carreau fluid flow through an elastic tube along with peristalsis are 
calculated and interpreted through graphs. The pressure rise per wavelength and shear stress distribution for 
different values of physical parameters are calculated and presented. Trapping phenomenon is presented 
graphically to understand the physical behaviour of various parameters. The difference in flux variation is 
examined by two different models of Rubinow and Keller (1972) and Mazumdar (1992). It is observed that in 
elastic tubes, the flux of Carreau fluid with peristalsis is more when the tension relation is a fifth degree 
polynomial as compared to exponential curve. When the power-law index 1n  or Weissenberg number 0iW 
and without peristalsis, the present results are similar to the observations of Rubinow and Keller (1972). Further, 
the relation between the function ( )g a  and radius of the elastic tube for both Newtonian, non-Newtonian cases 
are discussed graphically and these findings are identical with the investigations of Mazumdar (1992). The 
results observed for the present flow characteristics reports several interesting behaviours that warrant further 
study of physiological fluids in elastic tubes with peristalsis. 

Keywords: Peristaltic flow; Elastic tube; Non-newtonian fluid; Weissenberg number; Power-law index. 

NOMENCLATURE

0a radius of the tube without elasticity 

a change in the tube radius due to 
elasticity nature 

a change in the tube radius due to 
peristaltic nature 

b  amplitude of the wave 
c wave speed
F dimensionless flux in moving frame 
L  length of the tube 
n power-law Index
P  pressure gradient 

0p  external pressure 

1p  inlet pressure 

2p  outlet pressure 

 pressure of the fluid (ݖ)݌
q  dimensional flux in fixed frame 

( , )r z  moving coordinates 

( , )R Z  stationary coordinates 
t time

1 2, , ,t t k A  elastic parameters 

T tension of the tube wall 

iW  weissenberg number 

( , )w u velocity components in moving frame 

( , )W U  velocity components in stationary frame 

ij strain rate tensor 
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  stream function 
 time constant 
  wave length of the peristaltic wave 
  wave number 
  amplitude ratio 

  azimuthal angle 

ij  components of extra stress tensor in 

stationary frame 
  conductivity 
  density 

  infinite-shear-rate viscosity 

0  zero-shear-rate viscosity 

 
1. INTRODUCTION 

Most of the earlier research works were concentrated 
on peristaltic pumping of non-Newtonian fluids 
through channels/tubes to understand the flow 
behaviour of physiological fluids. The present study 
is modelled by considering the flow through an 
elastic tube to describe the rheological characteristics 
of blood flow in a small blood vessel due to their 
elastic nature which has many practical biomedical 
applications.  

In physiological peristalsis, the fluids of practical 
interest are Newtonian and non-Newtonian fluids, 
depending on the various conditions. The analysis of 
peristaltic pumping of non- Newtonian fluids in 
different type of geometries has drawn more 
attention among researchers due to a variety of 
potential applications in biomedical and industrial 
fields. The vasomotion of small blood vessels for 
example, the peristalsis nature is observed in venules, 
arterioles and the motion in the lymphatic vessels. In 
view of such significant physiological and 
engineering applications, a numerous theoretical and 
experimental investigations were attempted to 
understand peristalsis mechanism by various 
researchers for different fluids under different 
conditions. After the first experimental investigation 
of Latham (1966) on peristaltic pumping, Shapiro et 
al. (1969) presented a detailed analysis of peristaltic 
flow of Newtonian fluid along with experimental 
results. 

The perturbation solution in powers of amplitude 
ratio was applied by Burns and Parkes (1967) in two 
different cases, one is the peristaltic motion without 
pressure gradient and another one is flow under 
prescribed pressure with sinusoidally varying cross 
section in a fixed channel walls. The periodical 
change in the diameter of vasomotion of blood 
vessels involving peristalsis was considered by Fung 
and Yih (1968).The shear- thinning and shear–
thickening fluid effects on peristaltic pump by 
lubrication analysis are investigated by Rao and 
Mishra (2004).The theoretical analysis of MHD 
peristaltic transport of Jeffrey fluid along with 
endoscope and magnetic effects was presented by 
Hayat et al. (2008).Some investigations on peristaltic 
flow of different physiological fluids are reported in 
earlier studies. (See Radhakrishnamacharya 1982, 
2007, Vajravelu et. al. 2005a, 2005b, Srinivas et al. 
2009, 2011, Hayat et al. 2010, Nadeem and Akbar 
2009) Poiseuille-law is considered in the study of 
Newtonian fluids since it explains the flux and 
pressure difference relationship. This relation is a 
linear in the case of incompressible viscous fluid 

flow through a tube of constant cross section. But in 
the most of the vascular systems, the pressure flow 
relation is always nonlinear due to elastic nature of 
blood vessel. Since most of the physiological 
systems are elastic in nature and non-Newtonian 
fluid flow through such complex geometries has 
drawn some important applications like blood flow 
in a small blood vessel, lymphatic vessel  etc. A 
number of different methods are employed to study 
flow through the tubes having elastic nature under 
different conditions. Roach and Burton (1957) 
conducted an experiment on human external iliac 
artery to study the static pressure-volume relation as 
tension versus length curve and explained the reasons 
for distensibility of shape of arteries. Whirlow and 
Rouleau (1965) considered that tube as a thick-
walled cylinder of visco-elastic material. Rubinow 
and Keller (1972) given the detailed analysis of blood 
flow applications by considering viscous fluid flow 
through elastic tube. Further, an equilibrium 
condition to determine tension as a function of tube 
radius was presented. Pandey and Chaube (2010) 
considered the flexible tube of changing cross section 
to study the Maxwell fluid flow characteristics with 
peristalsis. Takaghi and Balmforth (2011) applied 
lubrication analysis to model the deformation of the 
tube wall and they determined the pumping 
efficiency. Ali et al. (2016) examined the peristaltic 
flow characteristics of bio rheological fluids using 
numerical simulations. 

Most of the earlier investigations were made by 
considering blood as Newtonian fluid that is valid for 
fluids with shear rate more than 100 S-1 which occurs 
in the case of large arteries. The study of variations 
in flow characteristics is of considerable research 
interest due to the non-Newtonian nature of blood 
flow through small arteries. The non-Newtonian 
behaviour of blood at lower shear rates was analysed 
by Pedley (1980).The experimental attempt was 
made by Johnson et al. (2004) that the Carreau fluid 
is appropriate model to understand the nature of 
blood flows in arteries. Modelling the blood flows 
through elastic arteries was presented by (Wang et al. 
1992, Sharma et al. 2004). Akbar and Nadeem 
(2014) considered Carreau fluid model to analyze the 
blood flow through a tapered artery with a stenosis. 
The flow characteristics of Carreau fluid in different 
geometries and elasticity effects of tubes under 
different conditions have been studied. (See Misery 
et al. 1996, Hakeem et al. 2002, Mishra and Ghosh 
2003, Hakeem et al. 2006, Sankara and Jayaraman 
2001) Vajravelu et al. (2011) considered the case of 
inserting a catheter in to an elastic tube to observe the 
variations in blood flow pattern by taking Herschel –
Bulkley fluid. Nahar et al. (2013) presented  
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Fig. 1. Physical Model. 

 
 

experimental results on non – Newtonian flow 
characteristics in collapsible elastic tubes.  Sochi 
(2014) used lubrication approximation to understand 
the flow behaviour of Newtonian fluid and power-
law fluid in elastic tubes by considering the pressure-
area constitutive relation. The effect of peristalsis on 
Herschel –Bulkley fluid flow in an elastic tube was 
discussed by Vajravelu et al. (2014). Sochi (2015) 
derived analytical expressions for the Newtonian 
flow characteristics by considering cylindrically 
shaped elastic tubes. Shen et al. (2016) presented an 
elastic tube model to study the pulsatile flow 
characteristics of blood by taking arterial wall motion 
in to consideration. Further Vajravelu et al. (2016) 
investigated the Casson fluid flow through an elastic 
tube with peristalsis and they analyzed that Rubinow 
and Keller model is better than the Mazumdar model. 

Motivated by the above studies, it is important to 
study the peristaltic pumping of generalized 
Newtonian fluid through elastic tube which has 
significant physiological applications like flow 
through elastic arteries etc. The problem is 
formulated under the assumptions that the wave 
number is very small and flow is to be of inertial free. 
The usual perturbation expansion is applied to solve 
the governing equations. The influence of different 
pertinent parameters on flux are evaluated 
numerically and analyzed through graphs. The 
variations of flux for different physical parameters 
are calculated using two models Rubinow and Keller, 
Mazumdar model. By using the above two models, 
the obtained results are compared graphically. 

2. MATHEMATICAL FORMULATION 

The peristaltic pumping of an incompressible 
steady Carreau fluid through elastic tube with radius 

( )a z  and length L is considered as shown in Fig.1. 
The flow is produced by an infinite sinusoidal wave 
train propagating with constant wave speed c along 
the tube walls. The instantaneous radius of the tube 
at any axial station z is represented as 

0

2
( , ) sin ( )R a z t a b Z ct




                        (2.1) 

where 0a  is tube radius in the absence of elasticity, b

is amplitude of wave, t is the time. Here the 

cylindrical coordinate system ( , , )R Z  is chosen 

where Z  axis is taken along the centre line of the 
tube, R  is the radius of the tube and  is azimuthal 
angle. By considering the approximations that the 
length of the tube is an integral multiple of 
wavelength  , the flow is unsteady in the stationary 
frame and it is assumed to be steady in the moving 
frame of reference. The transformation between 

stationary coordinates ( , )R Z  and moving 
coordinates ( , )r z is given by  

  ;   ; ;  ;w W c u U z Z ct r R              (2.2) 

Here ,U W are the radial and axial velocity 
components in fixed coordinates. ,u w are the radial 
and axial velocity components in moving 
coordinates. 

The continuity equation and equations of motion in 
moving frame are given by 

1 ( )
0

ru w

r r z

 
 

 
                (2.3) 

11 31 221 ( )p r

r r r z r

                                             
(2.4) 

13 331 ( )p r

z r r z

                                                      
(2.5) 

The constitutive equation for Carreau fluid is 
expressed as 

 
( 1)

2 2
0( ) (1 ( )

n

ij ij     


 

 
      

 
 

       

(2.6) 

Here ,  , 1,2,3ij i j   denotes extra stress tensor 

components and   is defined as 

1 1

2 2 ijij ij
i j

       
                                  

(2.7) 
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here   is the second invariant of strain-rate tensor 

ij . 

We consider the case 1   and 0  in Eq. 

(2.6), so the extra stress tensor component is written 
as  

2 2
0

1
1

2ij ij

n         
                               (2.8) 

and the components of strain-rate tensor ij are given 

as 

11 22 33 13 312 ,   2 ,   2 ,  
u u w w u

r r z r z
       

     
   

    

2.9)(
  

 

The appropriate boundary conditions are 

at   0 : 0 
w

r
r


 

            
                                       (2.10a) 

at  :  r a w c  
                                               (2.10b) 

The non-dimensional quantities are 

0 0 0

0 0

0 0

,   Z= ,   ,   ,   ,  ,  

,   ,  ,   ,  ,ij
ij

z Z r R ct u
z r R t u

a a a c

aU w W a
U w W

a c c c c c


  

  


    

    


 

2
0 0

0 0 0 0

0
2

0 0

, ,  ,   ,  ,

= , , ;

ij
ij i

a c a p a a
W p a a

c a c a a

b a q
F

a a c






 
 

       

 




   

(2.11) 

Eqs. (2.3) - (2.5) in a non- dimensional form are 

1 ( )
0

ru w

r r z

 
 

 
             (2.12) 

211 31 221 ( )p r

r r r z r

              
           (2.13) 

13 331 ( )p r

z r r z

          
            (2.14) 

The dimension less boundary conditions are 

at   0 : 0 
w

r
r


 


           (2.15a) 

at  : 1 r a w                             (2.15b) 

The components of rate of strain tensor and extra 
stress tensor are 

11 22

2
33 13 31

2 ,   2 ,    

2 , 

u u

r r
w u w

z z r

   

    


 


  

   
  

 

  
                   

(2.16) 

2 21
1

2ij i ij

n
W       
                (2.17) 

1

2 ij ij
i j

                   (2.18) 

Neglecting the wave number  , the equations of 
motion and extra stress tensor becomes, 

1 ( )
0

ru w

r r z

 
 

 
            (2.19) 

0
p

r





                             (2.20) 

131 ( )p r

z r r

       
             (2.21) 

2
2

13 31

1
1

2 i

n w w
W

r r
 

                   
           (2.22) 

eliminating pressure from Eqs. (2.20) and (2.21), we 
have 

131 ( )
0

r

r r r

      
             (2.23) 

3. SOLUTION 

To obtain the perturbation solution the following 
quantities are expanded in powers of perturbation 

parameter 2
iW as 

2 4
0 1 ( )i iu u W u O W                 (3.1) 

2 4
0 1 ( )i iw w W w O W                 (3.2) 

2 40 1 ( )i i

p p p
W O W

z z z

  
  

  
              (3.3) 

(0) 2 (1) 4
13 13 13 ( )i iW O W                   (3.4) 

2 4
0 1 ( )i iF F W F O W                 (3.5) 

using Eqs. (3.1) - (3.4) in the Eqs. (2.19), (2.21), 
(2.22) and (2.23) results two systems of different 
order. 

Zero Order System (Newtonian System) 

0 01 ( )
0

ru w

r r z

 
 

 
               (3.6) 

(0)
0 131 ( )p r

z r r

  
    

              (3.7) 

(0) 0
13

w

r
     

                              (3.8) 

(0)
131 ( )

0
r

r r r

  
   

               (3.9) 

with dimensionless boundary conditions 
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0at   0 : 0  
w

r
r


 


          (3.10a) 

0at  : 1  r a w              (3.10b) 

First Order System (Non- Newtonian 
System) 

1 11 ( )
0

ru w

r r z

 
 

 
             (3.11) 

(1)
1 131 ( )p r

z r r

  
     

                                           (3.12) 

3
(1) 1 0
13

1

2

w n w

r r


            
            (3.13) 

(1)
131 ( )

0
r

r r r

  
   

             (3.14) 

with dimensionless boundary conditions 

1at   0 : 0  
w

r
r


 


           (3.15a) 

1at  : 0  r a w             (3.15b) 

solving the Eqs. (3.6) - (3.9) and Eqs. (3.11) - (3.14) 
using the dimensionless boundary conditions Eq. 
(3.10) and Eq. (3.15) results 

 2 20
0

1
1

4

dp
w r a

dz
     
 

                           (3.16) 

 
3 4 4

2 21 0
1

1 1

4 2 32

dp n dp r a
w r a

dz dz

            
       

(3.17) 

using Eq. (3.2) the axial velocity w is given as 

2 2

4 2

32 2 2 2 4 4

4 2

8 8
1

4

( 1) 8 8 ( ) ( )

4 12 16
i

F r a
w

a a

n W F a r a r a

a a

            

               
(3.18) 

From Eq. (3.18), the expression for stream function 

is obtained by using
1 1

,w u
r r r z

                 
and 

0  at  0r    
2 4 2 2

4

32 2 4 2 2

4 2

32 6 5 2

4 2

8 2

2 4 2

( 1) 8 8

48 4 2

( 1) 8 8

64 6 2

i

i

r F r a r

a a

n W a F r a r

a a

n W F r a r

a a


            

             

            

 (3.19) 

The instantaneous volume flow rates for zeroth and 
first order 0F  and 1F through any cross section are  

0 0

0

2  
a

F rw dr


                              (3.20) 

1 1

0

2  
a

F rw dr


               (3.21) 

substituting Eqs. (3.16) and (3.17) in Eqs. (3.20) and 
(3.21), we get 

4
20

0 8

a dp
F a

dz

      
 

                           (3.22) 

34
61 0

1

1

8 96

a dp n dp
F a

dz dz

          
   

           (3.23) 

solving Eq. (3.22) and Eq. (3.23) for 0dp

dz
 and 1dp

dz
 

respectively gives, 

0 0
4 2

8 8dp F

dz a a
  

 
             (3.24) 

3
21 1 0

4

8 1

12

dp F n dp
a

dz a dz

         
           (3.25) 

using Eq. (3.3), the pressure gradient 
dp

dz
is 

expressed by 

   

32 2
20 1 0

4 2 4 4 2

8 8 8 ( 1) 8 8

12
i idp F FW n W F

a
dz a a a a a

              
(3.26) 

replacing 2
0 1iF F W F   in Eq. (3.26) and 

neglecting the terms greater than 2( )iO W , we get 

32
2

4 2 4 2

8 8 ( 1) 8 8

12
idp F n W F

a
dz a a a a

            
  (3.27) 

From Eq. (3.27), we determine the volume flow rate
F  through any cross section by considering only up 
to first order, which is given by  

    

6 2 2
2

2 2 2 2

24 128( 1)

8 128( 1) 24 384( 1)
i

i i

a a n W
F P a

a n W a n W

            
(3.28) 

where 
dp

P
dz

   

Equation (3.28) gives the volume flow rate for 
peristaltic flow of a Carreau fluid through elastic tube 

with radius ( )a z in the absence of elasticity. 

4. THEORETICAL DETERMINATION 
OF FLUX - APPLICATION TO 
BLOOD  FLOW THROUGH 
ARTERY 

In this section, the deformation of the tube wall due 
to elasticity is taken in to consideration along with 
peristalsis to determine the variation of flux. 
Consider the peristaltic pumping of a steady 
incompressible Carreau fluid through an elastic tube 
of length and radius ( )a z a a    as shown in 
Fig.1.  
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Here ( )a z is the varying radius which consisting both 
peristalsis and elasticity effects. To calculate the flux 
of Carreau fluid through the tube having elastic 
nature, we use the Rubinow and Keller (1972) model. 
Let 1p  and 2p  represents the pressure of fluid at the 

entrance and exit respectively and 0p  is the external 

pressure. Here the inlet pressure 1p is assumed to be 

greater than outlet pressure 2.p  As a result of inside 

and outside pressure difference, the tube wall may 
expand or contract. Due to this elastic property of the 
tube wall there exist changes in the shape of cross 
section of tube. Hence, the conductivity  of the 
tube at z depends on the pressure difference. 
Therefore the conductivity  0( )p z p    is a 

function of 0( ( ) )p z p .We assume that flux and the 

pressure gradient are related by the expression  

0( )
dp

F p p
dz

     
 

                             (4.1) 

from Eqs. (3.28) and (4.1) we have 

6

0 2 2
( )

8 128( 1) i

a
p p

a n W



 

  
                        (4.2) 

By taking elastic property in to consideration in 
addition to the peristaltic movement, the above Eq. 
(4.2) can be written as  

6

0 2 2

( )
( )

8( ) 128( 1) i

a a
p p

a a n W


 
 

   
             (4.3) 

here  and a a   denotes the tube radius with 
peristalsis and elasticity respectively. Since the flow 
is of Poiseuille type, the radius a is a function of 

0( )p p  at each cross section. The tube wall 

deformation due to peristaltic wave is
( ) 1 sin 2a z z    . 

Integrating Eq. (4.1) with respect to z from 0z   
and applying inlet condition 1(0)p p , we get 

  

 

1 0

0

2 2
2

2 2
( )

24 128( 1)
( )

24 384( 1)

p p

i

i p z p

a n W
F a dz p dp

a n W






               
 

(4.4) 

here 0( )p p z p   . The above Eq. (4.4) determines 

( )p z  implicitly in terms of F and z . In Eq. (4.4), 

we take 1z  and 2(1)P p  to find the flux F as 

      
1 0

0

2 2

(1)

32 ( 1)
1 ( )

2 3

p p

i

p p

W n
F p dp

  






       
(4.5) 

substituting Eq. (4.3) in Eq. (4.5) 

1 0

2 0

2 2

6

2 2

32 ( 1)
1

2 3

( )

8( ) 128( 1)

i

p p

ip p

W n
F

a a
dp

a a n W

 







    

  
   

                    (4.6) 

We can evaluate the Eq. (4.6), if the function of the 
form 0( )a p p   is known. 

If the tension in the tube wall ( )T a   is a known 

function of a then ( )a p  can be obtained from the 
equilibrium condition using Rubinow and Keller 
(1972) model. 

0( ) /T a a p p                                  (4.7) 

4.1.   Rubinow and Keller Model 

The static pressure – volume relation is determined 
by Roach and Burton (1957) which is converted in to 
a tension versus length curve. This relation is 
represented by the following equation using 
Rubinow and Keller model (1972) 

5
1 2( ) ( 1) ( 1)T a t a t a                                   (4.8) 

where 1 13t  and 2 300t 
 

Now substituting Eq. (4.7) in Eq. (4.8) we have, 

3 21
22 2

1
4 15 20 10

t
dp t a a a da

a a

                
.9)(4      

  
 

substituting Eq. (4.9) in Eq. (4.6), we evaluated the 
integral numerically from 2 0p p to 1 0p p  using 

Mathematica software and neglecting the terms 
greater than 2( )iO W . 

The flux is given as, 

   
 

2 2

1 2

32 ( 1) 1
1 ( ) ( )

2 3 8
iW n

F g a g a
 


       

(4.10) 

where 

 

6
1 2

2 2

2 2 2 2
1 2

2 2

2
2

1 2 3 4

2 3 4

1 2 2

( )
( )

(16 ( 1) )

8 ( 1) 3 ( ( 1)(8 80 )
2

( 3 5 )

80( ( 1))( 1)
2

10 5

1 60 80 151

3 80 (

i

i i

i

i

t t a
g a

W n a a

t W n a t W n a
a

a a

a W n a a
t a t a

a a

a a a
t t

W n

 
    

      
  
     
      

           

    
 

   
  
 

  

   
    

3

2

2 2

4
2 2 3

2 3

5
2 2

2 2
2

6 7 8
2 2

1) 2 8 3

8 ( 1) 10 15 2

10 30 15

5 40 45 82

5 8 ( 1) 15 8

2
5 16 ( 1) 15 6

3
1 1

15 16
7 2

i

i
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a
a a

W n a a
t a

a a a a

a a a
t a

W n a

t W n a a

a t a a t a

  
   

      
     
  
         

      
  
     

     

      


    

  
5 2 2

1 2

2 2 4

4 24 ( 1) log( )

32 ( 1)

i

i

t t a W n a a

a W n a

     


   

(4.11) 
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We observe that Eq. (4.11) reduces to the 
corresponding results of Rubinow and Keller (1972) 
when 0  or 1iW n  and without peristalsis. 

4.2. Mazumdar model: 

From Mazumdar (1992), the tension relation can be 
expressed as 

( ) ( )ka kT a A e e               (4.12) 

where 0.007435 and 5.2625A k   

Substituting Eq. (4.12) in (4.7), we get 

 0

1 ka kp p p A e e
a

      
           (4.13) 

2 2

1 k
ka k e

dp A e da
a a a

           
           (4.14) 

From Eq. (4.6) and Eq. (4.14), we have  

1

2

2 2

6

2 2 2 2

32 ( 1)
1

2 3

( ) 1

8( ) 128( 1)

i

a k
ka

ia

W n
F

A a a k e
e da

a a n W a a a

 








   

                   


                                                                                               
(4.15) 

The above Eq. (4.15) evaluated numerically to obtain 
the flux for Carreau fluid in elastic tube. 

5. PUMPING CHARACTERISTICS 

The pressure rise per wavelength for Carreau fluid 
flow through elastic tube with peristalsis is calculated 
using the Eqs. (4.1) and (4.3) which is given by  

 

2 21

6
0

8( ) 128( 1) iF a a n Wdp
p dz

dz a a

        
  (5.1) 

The non dimensional shear stress at the tube wall
r a   is calculated using the Eqs. (2.22) and (3.18) 
which is given by 

   

 
   

4 2

3
2 3

4 2

8 8

2

1 ( ) 8 8

24

ij

i

F a a

a a a a

n W a a F

a a a a


                  

      
      

(5.2)      

6. RESULTS AND DISCUSSION 

In the present analysis, the non-Newtonian Carreau 
fluid flow in an elastic tube in the presence of 
peristalsis is investigated. The effects of various 
pertinent parameters like fluid behaviour index n , 
amplitude ratio  , Weissenberg number iW , inlet 

elastic radius 1a  , and outlet elastic radius 2a   on 

volume flow rate F are discussed graphically. For 

numerical computation, the choice of parameters for 
Carreau fluid is considered from Bird et al. (1977) 
and Tanner (1985).The volume flow rate of a non-
Newtonian Carreau fluid flow through an elastic tube 
in the presence of both Peristalsis and elasticity 
nature is calculated from Eq. (4.10) using numerical 
computation. Figs. 2 – 6 describe the variation of flux 
along with z  axis by using the model of Rubinow 
and Keller (1972). It is noticed from Fig. 2 that, the 
flux enhances as the amplitude ratio  increases. The 
variation of flux with z  axis for various values of 
Weissenberg number is illustrated in Fig. 3. It is clear 
that the volume flow rate in elastic tube for Carreau 
fluid is more as compared to Newtonian fluid
( 0)iW  . The variation of flux along the z   axis 

for various values of fluid behaviour index n  is 
illustrated in Fig.4.  
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Fig.2. Flux variation F vs. z  for different values 

of amplitude ratio   with

10.398, 0.03, 13,in W t   2 300,t   1 0.2,a    

2 0.3a    (by Rubinow and Keller model). 
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Fig. 3. Flux variation F vs. z  for different 

values of Weissenberg number iW with

0.398, 0.4,n    1 213, 300,t t   1 0.2,a    

2 0.3a    (by Rubinow and Keller model). 

 

It is noticed that the there is a small variation at the 
maximum value of flux in an elastic tube due to non- 
Newtonian behaviour of Carreau fluid. That is flux is 
more for Carreau fluid as compared to Newtonian 
case ( 1).n  The effects of inlet and outlet elastic 

radius 1 2 and a a  on volume flow rate are presented 

in Figs. 5 and 6 respectively. It is noticed from Fig. 5 
that, with a given fixed value for outlet elastic radius, 
the flux of Carreau fluid in an elastic tube decreases 
with increasing values of inlet elastic radius of the 
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tube. The opposite behaviour is observed in the case 
of increasing outlet elastic radius for fixed given inlet 
elastic radius which is shown in Fig. 6. That is 
increasing outlet radius increases the flux of Carreau 
fluid flow in an elastic tube. 
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Fig. 4. Flux variation F vs. z  for different 

values of power-law index n with 

10.4, 0.03, 13,iW t     2 300,t   1 0.2,a    

2 0.3a    (by Rubinow and Keller Model). 
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Fig. 5. Flux variation F vs. z  for different 

values of inlet elastic radius 1a   with 

10.398, 0.4, 13,n t   2 300, 0.03,it W   

2 0.3a    (Rubinow and Keller model). 
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Fig. 6. Flux variation F vs. z  for different 

values of outlet elastic radius 2a  with 0.4,  

10.03, 13,iW t  2 1300, 0.2, 0.398t a n    

(by Rubinow and Keller model). 
 

The variation of flux along the z  axis is calculated 

numerically using the method of Mazumdar for 
different pertinent parameters which are graphically 
described in Figs. 7-11. It is clear that the flux 
enhances in the case of Rubinow and Keller model 
(1972) when compared to the Mazumdar model 
(1992). That is the enhancement of flux is observed 
when the tension relation is a fifth degree polynomial 
rather than that of an exponential curve. 
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Fig. 7. Flux variation F vs. z  for different 

values elastic parameter k  with
0.398, 0.4, 0.007435,n A   0.03,iW 

1 20.2, 0.3a a    (by Mazumdar model). 
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 Fig. 8. Flux variation F vs. z  for different 

values Weissenberg number iW  with

0.4, 0.007435,A    1 20.2, 0.3,a a  
0.398,n   5.2625k   

(by Mazumdar model). 
 

The Eq. (4.11) corresponds to the relationship 
between the function ( )g a  and non-dimensional 
radius of the tube ( )a z with peristalsis and elasticity 
effects. Fig. 12 demonstrates the effect of fluid 
behaviour index n  on the function ( )g a  in the 
absence of peristalsis. We found that the values of the 
function ( )g a  increases as power-law index n
increases. In particular ( )g a  values are higher for 

Newtonian fluid case 1n  when compared to 
Carreau fluid case 0.398,0.496n  . Mazumdar 
(1992) examined the same relationship for a flow of 
a power-law fluid through an elastic tube. Our 
present results are similar to the analysis of 
Mazumdar (1992) in the absence of peristalsis. 
Further, the significant observation is that for 
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Newtonian fluid 1n   without peristalsis, present 
results are in good agreement with the investigations 
of Rubinow and Keller (1972). The variation of 

( )g a for various values of Weissenberg number iW  

in the absence of peristalsis is depicted in Fig. 13. It 
is noticed that the values of ( )g a  reduces with 

increasing values of iW . It is clear that the function 

( )g a takes higher values for Newtonian fluid iW  as 

compared to Carreau fluid 0.03,0.04iW  . 
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Fig. 9. Flux variation F vs. z  for different 

values power - law index n with 5.2625,k   

0.007435,A  0.4,   0.03,iW   1 0.2,a    

2 0.3a    (by Mazumdar model). 
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Fig. 10. Flux variation F vs. z  for different 

values inlet elastic radius 1a   with 0.4, 
0.007435,A   5.2625,k  0.03,iW   

0.398,n  2 0.3a    

(by Mazumdar model). 

 
The effect physical parameters on variation in 
pressure rise p  along with flux for elastic tube are 
calculated using Eq. (5.1) and presented in Figs. 14-
17.  From Fig. 14 it is observed that for a given flux, 
the pressure rise per wavelength increases with 
increasing values of power-law index n  and the 
maximum pressure rise is noticed for Newtonian case
( 1)n  . Also for a given pressure rise, the flux 

increases with increasing n . The variation in 
pressure rise for different values of Weissenberg 
number iW  is shown in Fig. 15. It is clear that for a 

given flux, the pressure rise decreases as iW

increases and it is maximum when ( 0)iW  .  For a 

given pressure rise flux decreases as iW  increases. 

Fig.16. illustrates that for a given flux, the pressure 
rise increases as amplitude ratio   increases. The 
variation in pressure rise for different values of 
elastic radius is shown in Fig.17. It is observed that 
for given flux, the pressure rise decreases with 
increasing values of elastic radius a . 
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Fig. 11. Flux variation F vs. z  for different 

values outlet elastic radius 2a   with

5.2625, 0.4,k   0.007435,A   0.03,iW 

1 0.2, 0.398a n    (by Mazumdar model). 
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Fig. 12. The function ( )g a vs. a for different 

values of power – law index n with 
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Fig. 14. The pressure rise vs. flux for different 
values of power-law index n  with

0.3, 0.03, 0.4ia W     . 
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Fig. 15. The pressure rise vs. flux for different 

values of Weissenberg number iW  with

0.3, 0.398, 0.4a n     . 
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Fig. 16. The pressure rise vs. flux for different 

values of amplitude ratio   with 

0.3, 0.398, 0.03ia n W    . 

 
The shear stress distribution at the wall for different 
physical parameters is presented form Figs. 18-21. 
From Fig. 18 it is observed that shear stress increases 
as power-law index n  increases where the opposite 
behaviour is observe in the case of Weissenberg 
number iW . That is shear stress reduces for 

increasing values of iW  is shown in Fig.19. The 

effect of amplitude ratio  on shear stress 
distribution is illustrated in Fig.20. It is found that 
shear stress increases with increasing values of 
.The variation in shear stress distribution for different 
values of elastic radius is shown in Fig. 21 and it is 
seen that the shear stress decreases as elastic radius 

parameter a increases. 
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Fig. 17. The pressure rise vs. flux for different 
values of elastic radius a  with

0.4, 0.398, 0.03in W    . 
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Fig. 18. The shear stress vs. z for different values 
of power-law index n  with

0.4, 0.3, 0.04.ia W   
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Fig. 19. The shear stress vs. z for different value 

of Weissenberg number iW  with

0.4, 0.3, 0.398a n    . 
 

 

Trapping is the other interesting phenomenon 
observed in peristalsis mechanism. The effects of 
different pertinent parameters on the size of trapped 
bolus are presented in Figs. 22-26. The variation in 
the size of bolus due to the Weissenberg number iW

 



A. N. S. Srinivas et al. / JAFM, Vol. 10, No.6, pp. 1785-1798, 2017.  
 

1795 

-0.4 -0.2 0.0 0.2 0.4

2

3

4

5

6

7


z

 
 
 

 
Fig. 20. The shear stress vs. z for different values 

of amplitude ratio   with

0.04, 0.3, 0.398iW a n   . 
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Fig. 21. The shear stress vs. z for different values 

of elastic radius a  with

0.04, 0.4, 0.398iW n   . 
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Fig. 22. Streamlines with  1 20.4, 0.496, 0.2, 0.3n a a       and ( ) 0 ( ) 0.03 ( ) 0.04.i i ia W b W c W    
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Fig. 23. Streamlines with  1 20.4, 0.03, 0.2, 0.3iW a a       and ( ) 0.398 ( ) 0.496 ( ) 1.a n b n c n    
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(a)                                        (b)                                                     (c) 

Fig.24. Streamlines with  1 20.398, 0.04, 0.2, 0.3in W a a      and 
( ) 0.4 ( ) 0.5 ( ) 0.6.a b c      
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Fig.25. Streamlines with 20.398, 0.04, 0.4, 0.2in W a      and 1 1 1( ) 0.3 ( ) 0.4 ( ) 0.5.a a b a c a      
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Fig.26. Streamlines with 10.398, 0.04, 0.4, 0.2in W a      and 2 2 2( ) 0.3 ( ) 0.5 ( ) 0.7.a a b a c a      

 

 

for fixed values of inlet and outlet elastic radius is 
illustrated in Fig.22. 

It is clear that the bolus size reduce due to the 
increasing values of iW which means that the bolus 

size decreases due to the non-linearity nature of 
Carreau fluid for 0.03,0.04iW  . The effect of 

power-law index n  for Newtonian fluid 1n   and 
non-Newtonian case 0.398, 0.496n   are analysed 
from Fig. 23. It is clear that the size of the bolus is 
large for Newtonian fluid when compared to the non-
Newtonian case through elastic tube.  

Figure 24 depict the effect of amplitude ratio   on 
size of trapped bolus for fixed given values of 
Weissenberg number iW , power-law index n and 

elastic radius parameters 1 2 and a a  . The size of the 

bolus increases as amplitude ratio increases. The 
bolus size increases with increasing inlet and outlet 
elastic radius are presented in Figs. 25 and 26 
respectively. 

7. CONCLUSIONS 

The present study deals with the peristaltic transport 
of a generalized Newtonian fluid in an elastic tube 
under the approximations of long wavelength and 
low Reynolds number. Carreau fluid model is 
considered as a non-Newtonian fluid due to its shear 
thinning behaviour. The pressure gradient, axial 
velocity, flow rate and shearing stress are expanded 
in a usual perturbation series with a Weissenberg 
number that contained the non-Newtonian 
coefficients appropriate to shear thinning. The effects 
of physical parameters on volume flow rate are 
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calculated by Rubinow and Keller model and 
Mazumdar model. The trapping phenomenon is 
explained graphically. The important observations 
are summarized as follows. 

(i) The flux enhances with increasing values of 
amplitude ratio for fixed values of inlet and outlet 
radius parameters and  flux variation is more for 
Carreau fluid when compared to Newtonian case. 

(ii) For a given fixed value of outlet elastic radius, 
the flux of Carreau fluid in an elastic tube 
decreases with increasing values of inlet elastic 
radius of the tube. The opposite behaviour is 
observed in the case of increasing outlet elastic 
radius for fixed given inlet elastic radius. 

(iii)The variation of flow pattern in the presence of 
peristalsis and elastic nature is observed by two 
different models namely, Rubinow and Keller 
model and Mazumdar model,  that is  the flux is 
much more enhanced in the Rubinow and Keller 
model as compared to Mazumdar model. 

(iv) In the absence of peristalsis, ( )g a as a function 
of elastic tube radius takes the maximum values 
for Newtonian fluid 1 or 0in W  when 

compared to the Carreau fluid. 

(v) For a given flux, The pressure rise increases for 
increasing values of power-law index and 
amplitude ratio where it decreases with 
increasing values of Weissenberg number and 
elastic radius. 

(vi) The shear stress distribution at the wall increases  
with increasing values of power-law index and 
amplitude ratio where the opposite behaviour is 
noticed for  increasing values of Weissenberg 
number and elastic radius parameter. 

(vii) The bolus size is large for Newtonian fluid 
case as compared to Carreau fluid. The size of the 
tapered bolus increases with increasing values of 
amplitude ratio, inlet elastic radius and outlet 
elastic radius. 
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