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ABSTRACT 

This work regards the extension of the Miles’ and Jeffreys’ theories of growth of wind-waves in water of finite 
depth. It is divided in two major sections. The first one corresponds to the surface water waves in a linear 
regimes and the second one to the surface water waver considered in a weak nonlinear, dispersive and anti-
dissipative regime. In the linear regime, we extend the Miles’ theory of wind wave amplification to finite depth. 
The dispersion relation provides a wave growth rate depending to depth. A dimensionless water depth 
parameter depending to depth and a characteristic wind speed, induces a family of curves representing the wave 
growth as a function of the wave phase velocity and the wind speed. We obtain a good agreement between our 
theoretical results and the data from the Australian Shallow Water Experiment as well as the data from the Lake 
George experiment. In a weakly nonlinear regime the evolution of wind waves in finite depth is reduced to an 
anti-dissipative Kortewegde Vries-Burgers equation and its solitary wave solution is exhibited. Anti-dissipation 
phenomenon accelerates the solitary wave and increases its amplitude which leads to its blow-up and breaking. 
Blow-up is a nonlinear, dispersive and anti-dissipative phenomenon which occurs in finite time. A consequence 
of anti-dissipation is that any solitary waves’ adjacent planes of constants phases acquire different velocities 
and accelerations and ends to breaking which occurs in finite space and in a finite time prior to the blow-up. It 
worth remarking that the theoretical amplitude growth breaking time are both testable in the usual experimental 
facilities. At the end, in the context of wind forced waves in finite depth, the nonlinear Schrödinger equation is 
derived and for weak wind inputs, the Akhmediev, Peregrine and Kuznetsov-Ma breather solutions are 
obtained. 

Keywords: Surface waves; Wind waves; Interface waves; Rogue waves; Blow-up; Asymptotic models; Miles’s 
mechanism; Jeffreys’ mechanism. 

1. INTRODUCTION

Surface water waves and their generation by wind is 
a fascinating problem. The starting point is the 
Navier-Stoke equation for air and water. This is a 
very interesting problem both from the physical and 
the mathematical point of view. Theoretically, it is 
impossible to find an exact solution to this equation, 
but it is possible to obtain particular solutions by 
using various approximations and assumptions. 

On of the mechanism wave growth is the action of 
wind. The action balance equation represents the 
dynamics of these processes. In deep water it reads 
(Janssen (2004)) 

 .


  


 
gc S

t
N N          (1) 

where N = E/ω is the action density with ω the wave 

frequency and gc


the group velocity observed in the 

moving frame of the wave and the source  

...   in nl dsS S S S   (2) 

, ,in nl dsS S S respectively representing the effects of 

the wind input, non-linear interactions and 
dissipation due to white capping. 

The pioneering surface wind-waves growth theories 
start with Jeffreys (1925; 1926), Phillips (1957) and 
Miles (1997) and continue with modern works of 
Janssen (1991) and Belcher & Hunt (1993). The 
focal point of these works is the computation of the 
term inS in (2). Later, in order to calculate 

, ,in nl dsS S S  (Janssen, 2004) some numerical 

approaches were developed. 

Nonetheless, these theories are not adequate to 
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correctly describe wind generated near-shore waves, 
since they are limited to the deep water domain. 

In finite depth the source S contain more terms 

 ...in nl ds bf triS S S S S S                          (3)  

In this case, inS  is strongly influenced by the finite 

depth h and must be recalculated. bfS  and triS  

represent bottom friction and triad nonlinear wave 
interactions. 

At our knowledge, the only theoretical extensions of 
these theories to finite depth were recently done by 
Montalvo et al. (2013a); (Montalvo, Dorignac, 
Manna, Kharif, and Branger) and Montalvo et al. 
(2013b) (Montalvo, Kraenkel, Manna, and Kharif). 
The aim of those works was to provide a surface 
wind-waves growth theory in finite depth with the 
Euler equations as outset. The purpose was twofold, 
in one hand to provide mathematical laws able to 
qualitatively reproduce some features of the fields 
experiments on growth rate evolution of finite depth 
wind-waves, and in the other hand to supply a 
theoretical basis allowing to go beyond the empirical 
laws. To carry on this task, authors have introduced 
an extension of the well known Miles’ theory (Miles, 
1997) to the finite depth and an adequate 
parametrization to the Jeffreys’ theory (Jeffreys, 
1925; Jeffreys; 1926). In Montalvo et al. (2013b) 
(Montalvo, Kraenkel, Manna, and Kharif) was 
studied the wind action on the evolution of a wave-
packet and in (Manna et al. (2014) (Manna, 
Montalvo, and Kraenkel) was studied the evolution 
in time of a normal Fourier mode k under the coupled 
action of weakly nonlinearity, dispersion and anti-
dissipation. 

This work is based on these last development and is 
devoted to give l’etat de l’art in the field. The paper 
is divided in five sections, Section 2. and Section 4. 
concern respectively the linear and the nonlinear 
approaches. In section 3. we show that the theoretical 
linear laws we derived in Section 2. are able to 
reproduce the known experimental facts. Finally 
section 5. draws the conclusions. 

2. WIND GENERATED SURFACE 
WAVES. THE LINEAR REGIME 

Let a fix rectangular Cartesian frame with origin O 
and axes (x,y,z), where zO is the upward vertical 

direction and let us localize the fluid particles in this 
frame. We will only consider a sheet of fluid parallel 
to the xz plane since we assume a translational 
symmetry along y . The plane of the interface at rest 
is characterized by z = 0 and z = η(x,t) characterizes 
the perturbed airwater interface. Consequently, η(x,t) 
< z < +∞ is the region occupied by the air, and the 
water is located between the bottom at z = −h and the 
interface z = η(x,t). The water as well as the air are 
assumed to be inviscid and incompressible. The 
unperturbed air flow is a prescribed mean shear flow. 
We disregard the air turbulence and assume its 
dynamic to be linear, building a quasi-laminar 
theory. 

2.1   The Linearized Water Dynamics 

In the water domain we consider the Euler equations 
for finite depth. u (x,z,t) is the horizontal and w (x,z,t) 
is the vertical velocity of the fluid. The linearized 
equations of motion and in the water domain read 
(Lighthill, 1925) 

, ,w w
u w

t x t z
    

   
   

                             (4)  

with the reduced pressure P(x,z,t) defined as follows 

    0, , , , ,wx z t P x z t gz P                         (5)  

where P(x,z,t) is the pressure, g the gravitational 
acceleration, w is the water density and 0P , the 

atmospheric pressure. The continuity equation reads 

0
u w

x z

 
 

 
                                                      (6)  

and the boundary conditions at z = −h and at z = η(x,t) 
are w(−h) = 0,  0t w  . The continuity of the 

pressure across the air/water interface 

    0, , , , .a wx t P x t g P                             (7)  

where aP is the air pressure evaluated at z = η. It 

worth remarking that this is a vital assumption for the 
growth mechanism. 

The linear equations system (4)-(7) can be solved, 
assuming normal mode solutions as 

    
    
    

  0

exp ,

exp ,

exp ,

exp ,

  

 

 

 

z ik x ct

u z ik x ct

w z ik x ct

ik x ct 

P

U

W
                                  (8)  

where k is the wavenumber, c the phase speed and 

0 is a constant. Using equations (4), (6), (7) and (8) 

we obtain 

       0
sinh

, , exp ,
sinh

ikc k z h
w x z t ik x ct

kh


 
 

(9)  

       0
cosh

, , exp ,
sinh

kc k z h
u x z t ik x ct

kh



 

(10)  

       
2

0
cosh

, , exp ,
sinh

wk c k z h
x z t ik x ct

kh





  

(11)  

The phase speed c is unknown in equations (8). To 
determine c we have to consider the continuity 
equation (7), and boundary conditions which yields 

ρwη0 exp(ik(x − ct)) {c2k cothkh − g}  

 0 , , .  aP P x t                                           (12)  

Notice that in the problem without interface (single 
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domain)   0, ,aP x t P  and (12) gives the usual 

expression    2 2
0 / tanhc c g k kh  . But of 

course in the present paper, the determination of c 
needs the use of the air pressure evaluated at z = η. 

2.2   The Linearized Air Dynamics 

Let us consider the linearized equations governing a 
steady air flow, with a prescribed mean horizontal 
velocity U(z) depending only on the vertical 
coordinate z. We are going to study perturbations of 
U(z). From this point, the subscript a stands for air. 
With     0, , , ,a a ax z t P x z t gz P    , we have 

the following equations 

0,a au w

x z

 
 

 
                                               (13)  

   
,a a a

a a
dU zu u

U z w
t x dz x


        
    

   (14)  

  ,a a a
a

w w
U z

t x z


      
   

                       (15)  

which have to be completed with the kinematic 
boundary condition for air, evaluated at the 
aerodynamic sea surface roughness 0z located just 

above the interface. In this work, we consider 0z  

will be a constant, independent from the sea state 
which is a widely used approximation, first proposed 
by (Charnock, 1955). We have to notice that for the 
datasets used in next sections, the wind speed ranges 
are such that the roughness may be seen as a constant 
(Fairall et al. 1996, Fairall, Grachev, Bedard, and 
Nishiyama). The kinematic boundary condition 
reads 

   0 0 .aU z w z
t x

  
 

 
                                (16)  

The common profile of U(z) used to describe the 
vertical distribution of the horizontal mean wind 
speed is a logarithmic profile. This assumption is 
valid within the lowest portion of the airside of the 
marine boundary layer (Garratt et al. 1996; Garratt, 
Hess, Physick, and Bougeault). It can also be 
justified with scaling arguments and solution 
matching between the near-surface air layer and the 
geostrophic air layer (see Tennekes, 1972). 

    *
1 0 1ln / , , 0.41,

u
U z U z z U k

k
                 (17)  

where *u is the friction velocity and κ the Von 

Kármán constant. So, Eq. (16) can be reduced to

 0t aw z  . This equation describes the 

influence of the perturbation of the water surface on 
the vertical profile of wind speed. Then we consider 
normal mode solution as in (8) and we add the 
following boundary conditions on aW and aP , 

0

lim ,


a a
z z

WW                                                          (18)  

lim 0.


a
z

P                                                               (19)  

lim 0,


   
 

a
a

z

d
k

dz

W W                                     (20)  

This means that the vertical component of the wind 
speed is enforced by the wave movement at the sea 
surface and the disturbance plus its derivative vanish 
at infinity. Now, using equations (13)-(15) and (19) 
yields to 

    , , exp , a aw x z t ik x ctW                           (21)  

    , , exp ,


 


a
a

i
u x z t ik x ct

k z

W                  (22)  

       , , exp .a a az
x z t ik ik x ct U c W d 


   

(23)  

Removing the pressure from the Euler equations, we 
find the well-known Rayleigh equation (Rayleigh 
(1880)) 0\z z z    (inviscid Orr-Sommerfeld 

equation) 

 
2 2

2
2 2

0.a
a a

d W d U
U c k W W

dz dz

 
     

 
              (24)  

This equation is singular at */
0 0 0  c u

cz z e z , 

where U( cz ) = c. We recall that this model 

disregards any kind of turbulence, and the critical 
height cz is set above any turbulent eddies or other 

non-linear phenomena. In equations (21)-(24) 
neither  aW z nor c are known. In order to find c, 

we have to calculate  , ,aP x t . We obtain 

 

      
0

0, ,

exp .


 

    
a a

a az

P x t P g

ik ik x ct U z c z dz

  

 W
  (25)  

In the above equation, since we are studying the 
linear problem, the lower integration bound is taken 
at the constant roughness height 0z instead of z = η. 

Using equation (18) to eliminate the term 

  expaik ik x ct  the equation (25) in (12) 

yields 

 

 

2

1
0

2
2

2
0

1

coth 0,

 

     
  

k
g c I

W

k
c I k kh

W




                        (26)  

where /a w   is a small parameter 

 3/ 10a w    and the integrals 1I and 2I are 

defined as follow 

0 0
1 2, .

 
  a az z

I U dz I dzW W                        (27) 
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Equation (26) is the dispersion relation of the 
problem. If h → ∞, we obtain the expression (3.7) of 
the reference (Beji and Nadaoka(2004)). the 
dispersion relation (26) may be approximated as 

 2
0 1 .c c c O                                               (28)  

The explicit form of 1c will be calculated in the next 

section. Therefore, we are going to be able to find 

 a zW by solving (24) by putting 0c c , which 

means that we consider the order zero in ε of c. 

2.3   The Wave Growth rate 

 a zW is a complex function and therefore c is 

complex too. Its imaginary part ℑ(c) gives the 
growth rate of η(x,t) defined by 

 .k c                                                            (29)  

For theoretical and numerical results concerning the 
growth rate γ see (Young and Verhagen, 1996a) and 
(Young and Verhagen, 1996b). In these studies, two 
dimensionless parameters δ and dw defined as 

follows 

2
11

1
, .   dw

gh g

U kU
                                            (30)  

The dimensionless parameter δ, measures the 
influence of the finite fluid depth on the growth rate 
of η(x,t). The parameter dw can be seen as a 

theoretical analogous of the deep water wave age. It 
mesures the relative value of the deep water phase 
speed. Now, let us introduce a theoretical analogous 
of the finite depth wave age, let say fd  

 
1

1
tanh ,fd dw

g
kh T

U k
                       (31)  

where T = tanh(δ/ 2
dw

 ). 

The form (31) is a depth weighted parameter. For a 
given finite and constant dw , note that if δ → ∞ 

then we have fd dw  and if δ → 0 then 

1/2 2/fd gh U   . To obtain the growth rate, 

we introduce the following non-dimensional 
variables and scalings, hats stand for dimensionless 
quantities 

1
1 0 1

ˆˆˆ ˆˆ, , , , .    a a
U

U U U W c U c t t
k g

zW W z  

(32)  

Using (30) and (32) in equation (26) and looking 
only at the terms of order one in ε we obtain c, 

 

 

1/2 1/2

3/2
1 2

ˆ ,
2

ˆ ˆ ,
2

 

 

dw dw dw

dw

c T T

TI T I

   

 
                           (33)  

and with 

    2ˆˆ /
,dwc tk c tte e e

                                         (34)  

we have the dimensionless growth rate 

 1ˆ /U g  as, 

   3/2
1 2

2
ˆ .

2 dwdw

T I T I


     
  

                               (35)  

Therefore, ̂ can be computed for a given set of

 , dw  . Since the parameter δ does not appear 

explicitly, it is possible to compute γ for an infinite 
depth, where 1T  . This gives back the Miles’ 
theory. 

The unique curve of wave growth rate in deep water 
is transformed in a family of curves in the case of 

finite depth h indexed by 2
1/gh U  , i.e., a curve 

for each value of δ. Fig. 1 shows a family of six 
values of δ against the fd parameter. The limit δ → 

∞ is included as well. Small finite fd  represents 

short surface waves. This stage corresponds the 
initial growth of the wave field near the shoreline of 
a calm sea. As the time proceeds the surface waves 
reaches moderate fd  corresponding to mild or 

moderate wavelengths, while long waves are found 
for large fd . Of course, wavelengths and 

amplitudes increase together. This means that Fig. 1 
is in fact, a snapshot of the theoretical dynamical 
development of the wave growing in amplitude and 
wavelength with time. The Fig. 1 shows also that for 
small fd  the values of δ does not influence the 

growth rate γ. 

 

 
Fig. 1. Evolution of the growth rate in 

semilogarithmic scale. The six first curves from 
the left represent growth rates in finite depth. 

From left to right, they match δ = 1,4,9,25,49,81. 
Notice that for each depth, there is a fd – limited 

wave growth. The deep water limit (the 
rightmost curve) also computed, corresponds to 

small fd and matches Miles’ results. 

 
 

As fd increases, the finite-depth effects begin to 

appear and for each value of δ, the growth rate 
becomes lower than in the deep water limit. The 
growth rates are scaled with δ: for a given fd , the 
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bigger the δ is, the larger the ̂ will be. As ̂  goes 
to zero, each δ-curve approaches its own theoretical 
θfd -limited growth. At this stage the wave reaches the 
limit of its linear evolution . In other words, one can 
say that at this stage, for a given δ the surface wave 
does not grow older beyond a determined .fd  

In this paper, the analysis of the wind-wave growth 
is done through the dimensionless growth rate ̂ . 
But usually, this is done with the help of β-Miles 
parameter. The relation between β and ̂  is 

3ˆ2
,dw T

 


                                                 (36)  

where β is defined as usually through the straight-
forward definition of Miles’ β in finite depth. 

 
2

1
0

0
.

2

U
c c

c

 
 

   
 

                                        (37)  

Its evolution is shown clearly in Fig. 2 exhibiting the 
correct deep water trends, and the new finite depth 
limits. The effects of depth are critical. β is, as usual, 
almost constant for small fd but it goes 

dramatically to zero when the depth limit is close. 

 

 
Fig. 2. Evolution of Miles’ coefficient β for 
different values of the depth. All curves are 
plotted with the same Charnock constant

0.018c . The finite-depth effect is critical, 

and high values of δ correspond to deep water. 
 

3. THEORETICAL LINEAR LAWS AND 
QUALITATIVE COMPARISONS 
WITH FIELD EXPERIMENTS 

The pioneer experiments and numerical studies for 
the finite depth wave growth were conduced by 
(Thijsse, 1949), (Bretschneider, 1958), (Ijima and 
Tang, 2011) and in particular the experiments in 
Lake George, Australia, described by (Young and 
Verhagen, 1996a). This provides one of the first 
systematic attempts to understand the physics of 
wind generated waves in finite depth. 

In the case of fetch limited growth, the results of the 
field experiments are presented in references (Young 
and Verhagen, 1996a) and (Young and Verhagen, 

1996b). In these papers, we have a very complete 
description of bathymetry, basin geometry, 
experimental designs, experimental 
instrumentations, as well as the adopted scaling 
parameters. The measurements have confirmed the 
water depth dependence of the asymptotic behavior 
of wave growth. 

An empirical relation in terms of appropriate 
dimensionless parameters able to reproduce the 
experimental data of (Young and Verhagen, 
1996a) has been derived in references (Young, 
1997a) and (Young, 1997b). In particular, it has 
been shown that for deep water, the fractional 
energy increases as a function of the inverse of 
wave age. Later (Donelan et al. 2006; Donelan, 
Babanin, Young, and Banner), this result has been 
extended to the finite depth domain. Experimental 
results together with empirical laws, show that 
contrary to the deep water case, the wave age at 
which the growth rate becomes zero (limit of the 
linear behavior) is both wind and depth-
dependent. Therefore, the point of full 
development is warped from the deep water case 
(Pierson and Moskowitz, 1964). Consequently, a 
growth law as a function of the inverse of the wave 
age exists for each value of a parameter including 
the dependences on wind intensity and water 
depth. 

Concerning the evolution of the growth rates, one 
can say that for small wave ages, growth rates are 
comparable to the deep water limit, and for large 
wave ages, the growth rate is lower in shallow water 
than in deep water. Moreover, beyond a limit wave 
age, the growth rate vanishes. 

3.1   Comparisons With Field Experiments 

In this subsection, it will be shown that our analytical 
and numerical results are able to qualitatively 
reproduce these experimental facts. At this point, we 
have to keep in mind that our study is based on linear 
growth of a normal Fourier mode k and not the 
growth of a wave train as an infinite superposition of 
wave Fourier modes. 

Moreover, given results in field or laboratory 
experiments usually uses the parameter pC , the 

observed phase speed at the peak frequency p . As 

a result, qualitative comparison with field 
observations can only be done using the phase 
velocity c or frequency ω of one mode instead of pC

or p . 

At first, let us show that the theoretical curves for ̂
are in good qualitative agreement with the empirical 
curves corresponding to the increase per radian of the 

dimensionless fractional wave energy ̂ as a 
function of the inverse of wave age 10 / pU C

obtained by (Young, 1997a). In this reference, 

experimental field data for ̂  in the finite depth 
Lake George are adequately represented by the 
empirical relationship 



A. Latifi et al. / JAFM, Vol. 10, No.6, pp. 1829-1843, 2017.  
 

1834 

1ˆ 
  


g

p

C E

E x
  

0,4510 10
0,45

1,25
0,83 tanh ,

  
      

   p p Y

U U
A

C C 
         (38)  

with A constant, 2
10/Y gh U  the non-

dimensional water depth, 10U the wind velocity at 

10 m, and gC and pC the group and phase speeds 

of the components at the spectral peak frequency

p . 

To be able to make a qualitative comparison be-

tween ̂ curves (in function of the inverse wave-age

10 / pU C ) and theoretical ̂ curves (in function of 

1 / fd ), it is necessary to write the empirical ̂  in 

terms of theoretical quantities. So, we will have to 
transform the measured quantities , ,g p pC C  into 

theoretical g,c,ω quantities and put 

1/2
10 10

* 1/
U C

u U
k

                                               (39)  

with 10C the drag coefficient at 10 m (Wu(1982)). 

Then, using   2 ,2 1 2 / sinh 2gc c kh kh   

,(39),(31) and (32) we obtain 

1
2 2

2 2ˆ ˆ 1 sinh .dw

dw dwT

  
 


            

                  (40)  

This expression provides the theoretical equivalent 

of the empirical ̂ in function of, δ and ̂ . The 

values of ̂  for fixed δ’s as a function of 1 / dw are 

numerically obtained from Eqs. (31) (??) and (35) 
and (39) transforms Y and 10/pC U into δ and fd
according to 

 22 1
10 10

10
, .p

fd
C

C C
U                        (41)  

In reference (Young, 1997a) the curves of Γ versus 

10 / pU C  have been presented for the Y  -

intervals δY ∈ [0.1 − 0.2],[0.2 − 0.3],[0.3 − 
0.4],[0.4 − 0.5], rather than for a single value of 

Y  . The intervals were determined from the 

variations in 10U and the depth h nearly constant 

around 2 m. Using (41), we substitute the Y  -

intervals by δ-intervals and we evaluate the mean 

value  . For instance, in Fig. 3 (a), Y  ∈ [0,1 − 

0,2] is transformed into δ = [13,17 − 26,35] with 

 = 19,76. Figs. 3(a), 3(b), 3(c) and 3(d) display a 
fair concordance between the model and the 
experimental data and plots of empirical laws for 
Lake George. The agreement improves as 1 / fd
increases. 

 
 

 
 

 
 

 
Fig. 3. Growth rate ̂ as a function of inverse 

wave age 1 / fd for different values of δ. White 

squares correspond to Lake George experiment 
data, Black squares correspond to the empirical 
relationship found by (Young, 1997a). Present 

results are rep-resented by the symbols +, × and ∗. a: the dataset covers a range of wind speed 
corresponding to Y =0.1−0.2, or using (41) 

δ=13.17−26.35, and an average value<δ>=(13.17 
+ 26.35)/2. b: same as “a” with Y  = 0.2 − 0.3. 

c:same as “a” with Y  = 0.3−0.4. d : same as “a” 

with Y  = 0.4−0.5. 
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In Fig. 4 are plotted, against δ, the critical values of 

the parameter c
fd for which the growth rate γ goes 

to zero, obeying 0,5c
fd  . This relation, found 

numerically, is coherent with the parameter 
formulation (31). It is indeed a limiting value for θf 
d uniquely determined by the water depth. In 
(Young, 1997a) the author has shown from an 
empirical relationship (formula (6) in reference 
above) that Γˆ the growth rate goes to zero as a 
function of the inverse wave age 10 / pU C fo 

0.45

2
10 10

0.8 .
 

   
 

pC gh

U U
                                          (42)  

Choosing a 10C drag coefficient parametrization 

such as (Wu(1982)) 

  3
10 100.065 0.8 10 ,C U                                  (43)  

and taking an average 10 7 /U m s in 

(Young(1997a)), one finds the relation between 1U

and 10U  

10 * 128,3 11,6 ,U u U                                        (44)  

So, this limiting law reads 

0,45

1
1,01 .PC

U
                                                        (45)  

The parameter c
fd allows the calculation of the 

corresponding critical Awave length c . Using (31) 
yields to 

 2 2tanh .   dw dw                                               (46)  

 
Fig. 4. Parameter curves corresponding to zero 

growth rate. The theoretical limit is given 
0,5c

fd  . The AUSWEX data are experimental 

results (Donelan et al.(2006)Donelan, Babanin, 
Young, and Banner) (the sea state is fairly close 

to the finite depth full development). 
 

From the physical point of view, the relation (46) 
means the wave has entered the shallow water 
region. In such a limit  

20
4dw
    ((Fenton, 1979), (Francius and 

Kharif, 2006)). This gives 8c h  . For c  the 

phase velocity is in the long wave limit i.e.,c gh

. Consequently, if c  the wave feels the bottom, 

the amplitude does not grow anymore, the resonance 
wind/phase speed ceases, and the wave reaches its 
utmost state as a progressive plane wave. 

 

 
Fig. 5. Comparison of velocity (triangles), Miche 

(circles) and McCowan (squares) criteria. 
Plotted are the trends for the allowed values of 

dt  , bt  , with ν = 1/10. The breaking time, always 

inferior to the blow-up time, are very closed to 
eac other with the McCowan criterion. The 

Miche and velocity criteria give both breaking 
times of similar order 

 

 
Fig. 6. Same as in Fig. 5 with ν = 1/3. the wave 
velocity criterion is represented by triangles, 
Miche by circles and McCowan above, with 

squares. The higher amplitude yields shorter 
breaking times for McCowan and Miche, and a 

wider range of allowed values for the 
parameters. There is a higher scatter in the 

Miche criterion. 

 

Finally in Fig. 4 are also represented data from 
(Donelan et al. 2006) Donelan, Babanin, Young, and 
Banner), from the Australian Shallow Water 
Experiment. A fit is also plotted to show the trend. 
The raw data consists in the water depth h in me-ters, 
the friction velocity *u , the 10 meters wind velocity 

10U and the ratio of the former with the measured 

phase speed pc , 10 / pU c . For example, 
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1
* 0.44 .u m s   and h = 0.32 m gives δ = 2.7 and θf 

d = 1.55, and corresponds to a small relative error. 
All the points give (δ, fd  ) coordinates are closed to 

the theoretical limit. 

3.2 The White-Capping Dissipation 
Influences 

The aim of this subsection is to answer the question: 

why do the ̂ curves seem to be consistent with the 
empirical fits of (Young, 1997a) in spite of the fact 
that bottom friction dissipation bfS and white-

capping dissipation dsS are disregarded It is 

commonly admitted that the bottom friction Sb f 
plays a relatively minor role in depth limited growth 
studies, even though being an important dissipative 
factor for swell propagating in shallow water (Young 
and Babanin, 2006b). Since in finite depth, wind 
waves show significant wave breaking events, the 
white-capping dissipation dsS  is considered to be 

the dominant dissipative term compared to the deep 
water case (Young and Verhagen, 1996a); Young 
and Babanin, 2006b). Now, let us review what can 
be observed in plots 3(a), 3(b), 3(c) and 3(d). 

• For young sea regimes (1 / fd large), it can be 

seen in Figs. 3(a), 3(b), 3(c) and 3(d) that the < δ 

>-curves match the experimental ˆ
Y (in black 

squares) which means that in these regimes 
ˆ ˆ

Y   . Small values of fd correspond to 

wave propagating in deep water, for any < δ >. 
This is in agreement with Fig. 7.1.c in (Young, 
1997b) where dsS tends to zero for large 

frequencies. 

• For mature or old sea regimes ( 1 / fd small) 

both curves ̂  and ˆ
Y vanish. In developed 

finite depth seas, the evolution of the wave 
energy (amplitude) becomes depth limited 
independently from the value of dsS . Therefore, 

the finite depth-limitation phenomenon prevails. 

• For intermediate regimes the ̂  and ˆ
Y  curves 

have similar shapes. Nevertheless, ̂  > ˆ
Y  for 

all the values of < δ >. This is in agreement with 
Fig. 7.1.c in (Young, 1997b) where 0dsS 


for 

intermediate frequencies. Hence, the wave 
growth rate ̂ is overestimated in our model. 
One can see in Figs. 3(a), 3(b), 3(c) and 3(d) that 

the gap between ̂  and ˆ
Y  increases as < δ > 

decreases, because the white-capping Sds is 
larger and wider for small kh in accordance with 
Fig. 7.1.c in (Young(1997b)). 

4. THE NONLINEAR SURFACE 
WAVES REGIME 

4.1 Nonlinear Jeffrey’ approach In Jeffreys’ theory 
(Jeffreys, 1925); Jeffreys, 1926) once again, one 
supposes both the water as and the air to be inviscid, 

incompressible and obeying to linearized equations 
of motion. This theory allows to calculate the linear 
wave growth of wind-generated normal Fourier 
modes of wave-number k. The underlying physical 
mechanism is anti-dissipation. In this mechanism, 
energy passes continuously from the air to the 
surface wave. Consequently the wave amplitude 
η(x,t,k) grows exponentially in time; η(x,t,k) ∼ exp (

J t) more or less quickly according to the 

coefficient γJ , which depends on the wind speed and 
the water depth h. The nonlinear and dispersive 
processes begin to play a role, once the linear 
dispersionless approximation breaks down. Now, the 
question we rise is: how to describe the time 
evolution of a normal mode k, under the competing 
actions of (weak) nonlinearity, dispersion and 
antidissipation? Nonlinearity is likely to balance 
dispersive effects, or to stop exponential time 
evolution of wave amplitude due to dissipation or 
anti-dissipation. Balance between nonlinearity and 
dispersion can evolve in time and end up to solitary 
waves as in the Kortewegde Vries equation 
(Whitham, 1974); Korteweg and de Vries, 1895). 
Equilibrium between dissipation or anti-dissipation 
and nonlinearity creates shock structures as in the 
Burgers equation (Whitham, 1974). And finally the 
standard equation describing competition between 
weak non-linearity, dispersion and dissipation is the 
Korteweg-de Vries-Burgers equation (KdV-B) 
which appears in many physical contexts (see 
(Benney, 1996), (Johnson, 1972), (Grad and Hu, 
1967); Hu, 1972), (Wadati, 1975), (Karahara, 1970). 
In this section, in order to study simultaneous 
competing effects of weakly nonlinearity, dispersion 
and anti-dissipation we derive a KdV-B type 
equation with dissipation turned into anti-
dissipation. 

4.2 Derivation of the Anti-Diffusive 
Korteweg-De Vries-Burger Equation 

In this section, we consider a quasi-linear air/water 
system with the air dynamics linearized and the 
water dynamics seen as nonlinear and irrotational. 
As previously, the system is (2 + 1) dimensional 
(x,z,t) with x and z the vertical and the horizontal 
space coordinates. The aerodynamic air pressure 

 , ,aP x z t evaluated at the free surface z = η(x,t) has 

a component in phase and a component in quadrature 
with the water elevation. To have an energy transfer 
from the wind to the water waves, there must be a 
phase shift between the fluctuating pressure and the 
interface. Therefore, the energy flux is due to the 
component in quadrature with the water surface, or 
in other words in phase with the slope. To simplify 
the problem, following references (Jeffreys, 1926), 
(Miles, 1957) (Kharif et al. 2010) Kharif, Kraenkel, 
Manna, and Thomas), we consider only the pressure 
component in phase with the slope on the interface 
i.e., 

2 1/2
1 10a aP s with U C c

x

  
    


           (47)  

where s < 1 is the sheltering coefficient. This is 
nothing more that Jeffrey’s sheltering mechanisms. 
Now, let us introduce dimensionless primed 
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variables: 0, , / , ,      x lx z hz t lt c a   

0 1 0 1/ ,  gla c U c U  with φ the velocity potential 

and a and l typical wave amplitude and wavelength 

and 0c gh . Let us define two dimensionless 

parameters too ν = a/h < 1 and δ = h/l < 1. So then, 
the complete irrotational Euler equations and 
boundary conditions are (dropping the primes) 

2 2
2

2 2
0, 1 ,for z v

x z

   
    

 
                  (48)  

2

0, 1,for z
z


  


                                            (49)  

2

1
0, ,v for z v

t x x

    


   
   

   
            (50)  

2 2

2

2

2 2

0, ,

               


   


v v

t x z

s for z v
x

   


 

                       (51)  

where, as defined previously, 3/ 10a w     . 

We solve the Laplace equation and its boundary 
conditions with an expansion in powers of (z + 1), 

   
0

1 , .
m

m m
m

m

z q x t 



                              (52)  

Substituting in Eq. (48) and using Eq.(49) we obtain 

   
 

2
0,22

0

1
1 .

2 !

mm
m mm

m

qz

m x
 






 

                  (53)  

Using the kinematic and dynamics boundary 
conditions (50), (52) and disregarding terms in O(ν

2 ) and O( 4 ), we find with 0xr q  , the 

following system 

   3
2

3

1 1
0,

6

v r r

t x x

 
  

  
  

                       (54)  

3 2
2 2

2 2

1
0.

2

    
     

     

r r r
vr s

x t x x t x

     

(55)  

The linear wave solution of (54) and (55) moving to 
the right is r(x − t) = η(x − t), with η (or r) an 
arbitrary function of x −t. Now we look for a solution 
with nonlinear corrections to the orders O(ν), O(sδ), 

and O( 2 ). Following the procedure in reference 
(Whitham, 1974) yields 

 

2 2

2
2 2 2 2 4

2

1

4 2

1
, , ,

3


   




 



s
r v

x

O v
x

  

    
                         (56)  

Substituting (56) in (54) and (55) we obtain the anti-
dissipative KdV-B equation 

3 2
2 2

3 2

3 1 3
0.

2 6 2
v s

t x x x x

          
     

    
 

 (57)  

For traveling wave solutions, the action of 
dissipation or anti-dissipation in KdV-B is not of 
great matter except for the sign of the slope (Jeffrey 
and Xu, 1989). But the important fact is that soliton 
solutions under anti-dissipation exhibits a blow-up 
and breaking in finite time. 

4.3 Blow-up and breaking of solitary waves in finite 
time In the usual KdV-B equation the effect of 
(weak) dissipation, for instance through bottom 
friction, is to decrease slowly the amplitude and to 
increase slowly the width of the solitary wave 
solution, eventually flattening it in an infinite time. 
In our case, anti-diffusion increases the soliton 
amplitude and decreases the width of the solitary 
wave solution. In opposite of the diffusive KdV-B 
equation which dissipates energy in time here the 
wave energy grows in time. Multiplying (57) by 
η(x,t), assuming the limit η(±∞,t) = 0 and integrating 
over the x-axis, we obtain 

2
2 2 .

4
dx s dx

t x

  
 

 

                             (58)  

Since the right hand side is positive definite, the 

wave energy 2E dx



  monotonically increases 

in time. In KdV we must have balance between 

nonlinearity and dispersion i.e. O(ν) ∼ O( 2 ). And 
if we assume the dissipative effects to be weaker than 
the dispersive and nonlinear effects, the we have

   2 3s / 2 O   . 

The validity of above hypothesis is checked by 
evaluating typical values of ∆ for reasonable wind 
speed (not higher than 20 m/s). In these conditions 
and after a Galilean transform in order to eliminate 
the term x , an approximate solution of Eq. (57) is 

given by (see reference (Ott and Sudan, 1970) for the 
dissipative case) 

 
 

 2cosh [ ]
2

tv
a t x t t dt

t





 
    
  

     (59)  

with 2 2  3 / 4   and a(t) the time-dependent 
amplitude given by 

 
1

1 ,
b

t
a t

t


 

  
 

                                                   (60)  

where bt is the blow-up time which can be written in 

terms of the system parameters as  

2

5
.

2
bt

s v







                                                        (61)  

 
1

2
, 1 ln(1 ) .

2
b

b b

vtt t
x t x t

t t
 


   

       
   

  (62)  
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As t approaches bt , η → 0 ∀x except for x → +∞ as 

   lim t  t / 2 ln 1  t / tb b
t tb




    . So at x( bt ) → 

+∞ the model presents an x−asymptotic blow-up in 
finite time. This is a nonlinear, dispersive and anti-
dissipative instability analogous to the linear, anti-
dissipative instability in the Jeffreys’ approach: the 
solitary wind-wave replaces the plane-wave and the 
blow-up x( bt ) → +∞ in finite time t = bt  replaces 

the local wave-amplitude divergence in infinite time. 

Obviously, for t = bt  the model breaks down. But 

before t = bt , the model gives an accurate kinematic 

and dynamic description of the route to breaking of 
solitary wind-waves. 

For large t, higher-order nonlinear, dispersive and 
dissipative effects will appear. However, our model 
(57) is of order 3 in δ, hence the longest allowed time 

τ has to be 3  t  , which is of order unity for large 

t, such as 3tb   . In order to be sure of the model 

validity, we have checked that the derivatives of η in 
(57) stayed of order unity when t  tb . 

4.4   Wave Breaking Criteria 

Clearly, the soliton blow-up is impossible to probe 
experimentally. To resolve this problem, an 
interesting approach is to evaluate the breaking time 

dt  of the solitary wave under this specific wind 

forcing (before the blow up). The breaking time, and 
more generally breaking conditions, have been 
subject to many discussions. Determine effective 
criteria of breaking has been an important center of 
interest in the literature. Here, we study three of the 
most widely known effective breaking criteria. Our 
goal is to compare dt with dt as given by (61). 

The first one is the McCowan criterion (Mc-Cowan, 
1894). It is reached for a limiting ratio of the 
maximum wave height maxa and the water depth h 

given by maxa / h  0.78 . 

The second is the Miche criterion (Miche, 1944). It 
regards the limiting wave slope a/λ. Breaking occurs 
for 

max

1 2
tanh( ).

7

a h
 

   
 

                                     (63)  

For the soliton solution, the time-dependent value λ 
is interpreted as an effective wavelength. In 
laboratory variables, it depends only on the water 

depth h and wave height 3; 2 4 / 3a h a  . Of 
course, a still time-dependent. 

The third is the wave horizontal velocity criterion 
(velocity criterion for short, (Shemer, 2013). When 
the horizontal speed r exceeds the speed of the phase 
plane at the crest i.e. r > c matter starts to be ejected 
from the wave, and breaking can appear. r is obtained 
from (56). This third criterion depends directly on 
kinematics of the problem, and is exempt of the 
empirical aspect of the two other laws. Hence, we 

obtain the corresponding breaking time by 
perturbation for the velocity criterion

 3/2t   1.25 t Od b   . Each of these three 

criteria gives a different breaking time dt , which is 

plotted in order to be compared to bt . We took at 

ranges of 10U ∈ [4;22] m/s for the wind, and h ∈ 

[0.1;4] m. The results are shown in Fig. 5 and Fig. 6. 

For ν = 1/10, the highest values of td belongs to 
McCowan criterion , the Miche criterion has a too 
big spread depending on the input parameters to be 
accurate and as one can see, the shortest time 
breaking values belongs to the velocity criterion. In 
Fig. 6, the parameter value is taken to be ν = 1/3. We 
have have check that ν and δ are of same order. But 
of course, we cannot change the value of ε (the air to 
water density ratio). Therefore, in order to keep the 
balance between terms in (57), we have to consider 
higher ∆ which corresponds to strong winds values 
up to  10U   20 m / s . In this context, there is no 

drop of the drag coefficient (Makin, 2004), and 
consequently no foam formation. Therefore, the 
derived KdV-B equation is still valid. In this case, 
the McCowan criterion gives lower values for the 
breaking time dt and an even larger spread for the 

Miche criterion. One can see that the velocity 
criterion gives analogous values of td than in the ν = 
1/10 case. The kinematic criterion is more stable than 
the others with respect to parameter variations, so we 
can consider this criterion to be the most relevant for 
our study. 

4.5 Kinematics Description of Wind-Solitary 
Wave Breaking. 

The phase θ defines a local wave number k = ∂θ/∂x 
and a local frequency ω = −∂θ/∂t, therefore the local 
phase velocity c = ω/k is 

       ,
, 1 .

2 2 b

x t a tv
c x t a t

t




                       (64)  

We have also a local phase acceleration 

         ,1 3
, .

2 4 2b b

a t x ta t
x t va t

t t






 
   
  

     

(65)  

The constant phase planes   0x, t     moves with 

velocitie  0c , t and acceleration  0, t  .It worth 

remarking that, two planes 1 and 2 around a given 

0 (for example the soliton maximum), such that 

1 0 2        have speeds and accelerations in the 

opposite ordering;    1 2c , t   c , t  and

   1 2, t   , t    . This phenomenon destroys the 

soliton symmetry and brings to breaking for 
t  td . 

4.6   Prospect of an Experimental Test 

In this subsection we will show that the theoretical 
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amplitude growth and the of breaking time are both 
testable in the existing experimental facility. 

 

 
Fig. 7. In a 40-meters long wind tunnel, this 

plotted shows at what point and which time a 
certain growth rate is attained. Circles exhibit a 
time t < 10 s, and on the upper part in crosses 

correspond to t ≥ 10 s. The values are computed 
for different constant depths between 0.7 and 1.0 

meters, a reference wind speed 10U < 15 m/s, 

and a wave steepness ka > 0.23. In these 
conditions, the growth rate can be more than 

6%. 
 
 

 
Fig. 8. Same as in Fig.7 with the ranges of wind 
and depth 0.3 m ≤ h ≤ 0.7 m, the reference wind 

speed 15 m/s < 10U  < 20 m/s, and the wave 

steepness ka > 0.23. circles correspond to t < 10 
s, and crosses to t ≥ 10 s. These conditions allow 

a much greater energy transfer and a 
significantly faster growth. The amplitude 

increases by up to 15% within the tunnel length. 

 

The Jeffreys mechanism acts only on waves steep 
enough to shelter the front side from the wind. 
Typically, a steepness parameter ka > 0.3 is 
necessary (Montalvo et al. 2013a) Montalvo, 
Dorignac, Manna, Kharif, and Branger; Montalvo et 
al. 2013b)Montalvo, Kraenkel, Manna, and Kharif). 
But, we can see that at t = 0, (59) is too smooth to 
allow sheltering. Therefore, to have a steep enough 
soliton, setting ν = 1/3 is necessary. In these 

conditions, we define tn , the time taken by the 

maximum amplitude of the soliton solution to grow 
of n %. We have  t   nt / n  1n b  . If we assume 

that the soliton is created in a 40-meters long wind 
tunnel which can be filled up to 1 m of water depth, 
it allows then to evaluate in these conditions what 
would be the rise of the soliton. The results are 
shown in Figs. 7 and 8. Those results show that a fair 
augmentation of the soliton amplitude can be 
measured before the end of the tunnel. This shows 
this model, it is indeed possible to confront the 
measured amplitude increase time to the theoretical 
one. 

4.7 The Anti-Diffusive Nonlinear 
Schrödinger Equation in Finite Depth 

Now, we are going to consider the wind effects via 
the Miles’s mechanism and instead of studying the 
wind action on a single Fourier wave-number k, we 
study its action on a wave packet. We take the β-
Miles parameter as given by expression 36. 

In Miles’s theory of wave generation (Miles, 1957), 
the complex air pressure Pa can be separated into 
two components, one in phase and the other in 
quadrature with the free surface η. A phase shift 
between these two quantities is necessary to 
transfer energy from the air flow to the wave field. 
The transfer is only due to the part of aP in 

quadrature with η. Hence, we will deal only with 
the acting pressure component, that is 

   2
1

,
, .a a

x t
P x t U

x


 





                                (66)  

Let us consider the air/water system from a quasi-
linear point of view. Namely, the water dynamics is 
considered nonlinear and irrotational and, as in 
Miles’ theory, the air flow is kept linear. With this 
assumptions, the complete irrotational Euler 
equations and boundary conditions in terms of the 
velocity potential φ(x,z,t) are 

2 2

2 2
0, ,for h z

x z

   
    

 
                       (67)  

0, ,for z h
z


  


                                            (68)  

0, ,for z
t x x z

       
   

   
                      (69)  

2 21 1 1
,

2 2

,

                 


a
w

g P
t x z

for z

   




          (70)  

Using (66), the modified Bernoulli equation reads 

 

2 2

2
1

1 1

2 2

                


 


g
t x z

s U for z
x

   

 

                         (71)  

From Eqs. (67), (68), (69) and (71) we find a wind-
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forced finite depth NLS equation for η as a function 

of the standard slow space    x  c tg   and 

slow time 2  t  variables (ε << 1) and gc the 

group velocity. The perturbed NLS equation reads 

2
2

2
.i a b id

v

    


 
  

 
                             (72)  

The coeffients gc ,a,b and d are given explicitly at 

the end of the paper, in (Section B). For more 
information about the derivation of these coefficients 
see (Thomas et al. 2012) Thomas, Kharif, and 
Manna). 

To derive a dimensionless wind-forced NLS 
equation we use (32). In the original laboratory 
variables x and t (after a Galilean transformation in 
or-der to eliminate the linear term cg x and 

dropping the hats), we have 

2
2

2
i A B iD

t x

     
  

 
                             (73)  

The coefficients gc ,A,B, and D are given explicitly 

at the end of the paper, in (Section B). 

Equation (73) is a wind-forced finite depth NLS 
equation in dimensionless variables. 

4.8 The Akhmediev, Peregrine and Ma 
Solutions for Weak Wind Inputs in Finite 
Depth 

The classical nonlinear Schrödinger equation 
provides a model for freak waves, see for instance 
(Touboul and Kharif, 2006); Touboul et al. 2008) 
Touboul, Kharif, Pelinovsky, and Giovanangeli; 
Kharif et al. 2008; Kharif, Giovanangeli, Touboul, 
Grade, and Pelinovsky). The wind-forced nonlinear 
Schrödinger equation allows the study of the wind 
influence on the freak waves dynamics (Touboul and 
Kharif, 2006; Touboul et al. 2008) Touboul, Kharif, 
Pelinovsky, and Giovanangeli; Kharif et al. 2008) 
Kharif, Giovanangeli, Touboul, Grade, and 
Pelinovsky; Onorato and Proment, 2012). These 
authors have carried out their studies in deep water. 
The present work allows, similar studies in finite 
depth with the right Miles’ growth rates. In this work, 
we consider the so called focusing NLS equation i.e. 

positives A and B. Introducing B   and

/x x A  . Then the Eq. (73) transforms, 
dropping the primes, into 

2
2

2
i iD

t x

     
  

 
                                   (74)  

Introducing a function M(x,t) = η(x,t)exp(−Dt), we 
obtain from (74) 

 
2

2
2

exp 2 0.
M

i Dt M M
t x

 
  

 
                (75)  

In order to reduce Eq. (74) into the standard form 

of the NLS (with constant coefficients), we apply 
the following steps. First, we consider the wind 
forcing 2Dt to be weak, so the exponential can be 
approximated by exp(−2Dt) ∼ 1 − 2Dt which 
yields 

 
2

2
2

0, 1 2 .
M

i n M M n n t Dt
t x

 
     

 
  

(76)  

Then we apply the change of coordinates from (x,t) 
to (z,τ) defined by z(x,t) = xn(t) and τ(x,t) = xn(t). 
Finally by scaling the wave envelope as (Onorato 
and Proment, 2012) 

     
2

, , ( ) exp ,
 

   
  

iDz
M z z n

n
  


                (77)  

we reduce (76) to the standard focusing Eq. 

2
2

2
0.i

x
  

    
 

                                  (78)  

Eq. (78) admits the well known breather solutions 
that are simple analytical prototypes for rogue wave 
events. There are the Akhmediev (ΨA)(Akhmediev 
et al. 1987) Akhmediev, Eleonskii, and Kulagin), the 
Peregrine ( p ) (Peregrine, 1983) and the 

Kuznetsov-Ma ( M ) (Ma, 1979) breather 

solutions. 

(Dysthe and Trulsen, 1999) investigated whether 
freak waves in deep water could be modeled by A

, p or by M . (Onorato and Proment, 2012) 

considered the influence of weak wind forcing and 
dissipation on A , p , M  solutions in deep 

water. The present work allows to exhibit 
expressions for A , p  and M  under the 

influence of weak wind in finite depth h given by the 
extended Miles mechanism. These solutions read 
(Dysthe and Trulsen, 1999): 

     
       cosh 2 cos cos

cosh cos cosA
i qz

P
qz

  
 

 
  


 

  (79)  

with q = 2sin(ω), Ω = 2sin(2ω) ω real and q related 
to the spatial period 2π/q 
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                             (80)  
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  
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(81)  

with q  = 2sinh(ω), Ω = 2sinh(2ω) and Ω real and 
related to the time period 2π/Ω and  

       
2

exp exp 2
Dz

P n i i
n

  


 
  

  
 



A. Latifi et al. / JAFM, Vol. 10, No.6, pp. 1829-1843, 2017.  
 

1841 

5. CONCLUSIONS 

In the first part of the paper, we have derived a 
linear Miles’ theory for waves propagating on 
finite depth h. The well known Miles’ theory has 
been extended to the finite depth under breeze to 
moderate winds conditions. The equations of 
motion governing the dynamics of the air/water 
interface in finite depth have been linearized and 
we have studied the linear time instability of a 
normal Fourier mode k. The prediction of 
exponential growth of wave amplitude (or energy) 
is well confirmed by field and laboratory 
experiments (the wind-to-waves energy transfer 
rates predictions are smaller than the observations, 
although their order of magnitude is the same). In 
the second part we have derived, two wind-forced 
finite depth model equations: an anti-diffusive 
Korteweg-de Vries-Burger equation and an anti-
diffusive nonlinear Schrödinger equation in finite 
depth. For KdV-B the blow-up time and the 
breaking time of wind soliton solutions have been 
established in terms of physical parameters. For 
the anti-diffusive nonlinear Schrödinger equation 
in finite depth we have exhibited the Akhmediev 
the Peregrine and the Ma solutions for weak wind 
inputs in finite depth. There are many other 
parameters such as variations of wind speed and 
direction, coastal geometry and bathymetry, 
bottom friction, surface drift, boundary layer 
turbulence, non-linear waves interactions, that 
influence the growth of wind-waves in finite 
depth. Taking into account these phenomena 
represents a work that cannot be handled 
analytically. Our study is highly idealized, 
however it may provide a valuable insight about 
the effect of depth on the mechanism of water 
wave amplification by wind and be useful in 
theoretical forecast of wind-wave growth rates in 
finite depth. 

 

Annexe A : Summary table 

 

Summary table of linear, quasi-linear and 
nonlinear approaches 
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KdV-Burger 
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Annexe B : Coefficients of equations (73) and (74) 

The coefficients gc ,a,b and d of the perturbed NLS 

Eq. (72) are 
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The coefficients gc ,A,B, and D of the dimensionless 

wind-forced NLS Eq. (73) are 
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