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ABSTRACT 

Wing geometry, kinematics and flexibility are the fundamental components which contribute towards the 

aerodynamics performance of micro aerial vehicles. This research focuses on determining the role of isotropic 

flexibility in the aerodynamic performance of high aspect ratio (AR = 6.0) wings with different shapes in 

hovering flight. Three shapes are chosen, defined by the radius of the first moment of wing area �̅�1, which are 

0.43, 0.53 and 0.63, where low (resp. high) value of �̅�1  corresponds to less (resp. more) spanwise area 

distribution towards the wingtip. The leading edges of flexible wings are modelled as rigid and the wings, 

therefore, predominantly deform in the chordwise direction. Flexible wings are categorized as flexible FX2 and 

more flexible MFX2 for brevity. The governing equations of fluid flow are solved using a sharp interface 

immersed boundary method, coupled with an in-house finite element structure solver for simulations of flexible 

wings. The results indicate that the rigid wings produce one lift peak per stroke during the mid-stroke and its 

magnitude increases with an increase in �̅�1 due to strong leading-edge vortex. For flexible wings, the numbers 

of lift peaks per stroke and their timings during a flapping cycle depend on the deformation that affects the pitch 

angle and pitch rotation rate of the wings. The lift coefficient for a given shape decreases as flexibility increases 

because the pitch angle decreases during the mid-stroke. This decrease in lift coefficient with flexibility is 

pronounced for �̅�1= 0.63 wing (up to 66 % less lift as compared to rigid equivalent) due to pitch down rotation 

at the commencement of the stroke, resulting in vortical structures on the bottom surface of the wing. For more 

flexible wings at high AR considered in this study, a wing with low �̅�1 (= 0.43) may be suitable for the wing 

design of micro-aerial vehicle, as in general, it has better aerodynamic performance (24.5 % more power 

economy and similar lift coefficient) than high �̅�1 (= 0.63) wing.  

Keywords: Flapping wings; Wing shape; Aspect ratio; Fluid-structure interaction; Micro aerial vehicle. 

NOMENCLATURE 

AR aspect ratio  

c mean chord length  

𝐶𝐿 lift coefficient  

𝐶𝑃𝑎 power coefficient  

𝐶𝑝 pressure coefficient  

𝐸∗ non-dimensional young’s modulus  

E young’s modulus  

𝐹𝐿 lift force  

f flapping frequency  

ℎ𝑠 wing thickness  

ℎ∗ non-dimensional thickness  

I bending second moment of plate area  

𝑚∗ mass ratio  

p pressure 

𝑃𝑎 aerodynamic power 

𝑅 wing length  

�̅�1 the radius of the first moment of wing area 

Re Reynolds number  

S wing area  

U reference velocity  

𝑈𝑡𝑖𝑝 mean wingtip velocity 

𝜈 poisson’s ratio 

𝑓𝑛 natural frequency  

𝜋1 effective stiffness  

𝜌∗ density ratio  

𝜌𝑓 fluid density  

𝜌𝑠 structure density  

Φ stroke amplitude  

𝛼 pitch angle  

𝜇 dynamic viscosity 

𝜙 stroke angle  
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1. INTRODUCTION 

Inspired by the flight of insects and birds, there has 

always been a human desire to fly. Building on the 

concepts of George Cayley, a giant leap in this 

direction was taken in 1903 when Orville Wright 

made history by flying a distance of 120 ft in an 

erratic flight of 12 seconds (Anderson, 1989). 

Modern jets flying at high speeds and commercial 

planes carrying tonnes of load over long distances, 

both equipped with sophisticated technologies, 

provide enough evidence that rapid progress in the 

field of aerospace has been made since the first 

flight. However, emulating the enviable flight 

characteristics of small-sized natural fliers such as 

hovering and high manoeuvrability remains a 

farfetched reality. During the First World War, the 

development of pilotless airplanes called unmanned 

aerial vehicles (UAVs) added a new dimension to the 

concept of flying. In 1996, a special class of UAV 

called the micro aerial vehicle (MAV) came into the 

limelight, with a wingspan less than 15 cm and mass 

up to 100g (McMichael and Francis, 1997) as 

defined by US Defense Advanced Research Projects 

Agency (McMichael and Francis, 1997). Since then, 

different applications of MAVs in the military and 

other fields such as sports and agriculture have been 

under consideration. 

The structure of insect wings is markedly different 

from conventional airplanes. A wing of an insect is 

comparatively stiffer at the root and leading edge 

(LE) than the rest of the wing (Combes and Daniel, 

2003a, Combes and Daniel, 2003b), and there is a 

network of veins with versatile patterns running 

along the span (Combes, 2010). Unlike birds, the 

motion in insects is imparted to the root of the wing 

via the flight muscles, while the rest of the wing 

deforms passively during flight. In the past, 

flapping flight studies have generally been 

conducted on rigid wings (Dickinson et al., 1999; 

Birch and Dickinson, 2001; Birch and Dickinson, 

2003; Luo and Sun, 2005; Harbig et al., 2013; 

Harbig et al., 2014).  

The simplest way to model wing flexibility is to use 

an isotropic material as done in our previous works 

(Shahzad, 2017; Shahzad et al., 2018a). Likewise, 

Aono et al. (2010) performed a numerical study on 

Zimmerman wings in one DoF flapping motion with 

isotropic flexibility defined by 𝜋1  = 1.4×103 and 

35.5×103. They found that the least stiff wing 

produces thrust due to induced positive pitch angle 

and gives more lift due to tip deformation, which 

results in higher wingtip velocity attributable to 

strong vortical structures on the wing surface. Zhao 

et al. (2010) designed isotropic flexible wings with a 

rigid LE to perform experiments at a fixed angle of 

attack (AoA) for a stroke amplitude of 180°. They 

found that the lift and drag decrease with the increase 

in flexibility for low angles of attack (up to 50°). 

However, at high angles of attack, flexible wings 

attain a lift plateau before producing more lift than 

the rigid wing. As compared to the rigid wing with 

maximum lift at an angle of attack of 45°, the 

maximum lift of flexible wings varied with 

flexibility. The lift to drag ratio was insensitive to 

angles of attack between 20° and 60°. Zheng et al. 

(2015) modelled three sets of flexible wings by 

varying the thickness. They observed that a flexible 

wing designed with a thickness of 1 mm generated 

19.4 % more lift than a rigid wing, however, further 

increase in flexibility was unfavourable to lift 

production. For just decreasing the thickness by 0.5 

mm, a 43.7 % decrease in lift was recorded. Kang et 

al. (2011) performed numerical computations to 

study the effects of 𝜌∗ and 𝜋1 on deformation and lift 

generation of Zimmerman wing planform hovering 

at Re of 1.5×103. They observed that a balance 

between 𝜌∗  and 𝜋1  has a significant effect on 

deformation characteristics and lift production. This 

research as well as other works indicate that the wing 

flexibility, if employed appropriately in combination 

with given geometric and kinematic parameters, may 

be beneficial to the aerodynamic performance of 

MAV.     

Shahzad et al. (2018a) carried out numerical 

simulations on rigid and flexible wings with three 

values of �̅�1 and four values of AR to measure the 

aerodynamic performance in hovering flight. At 

mass ratio  𝑚∗ = 4.0, flexible (FX) and more flexible 

(MFX) wings were defined by 𝜋1  = 14 and 6.12, 

respectively for all shapes and ARs. For high AR 

wings (AR = 6.0), it was found that deformation 

resulted in a decrease in 𝐶𝐿 and an increase in power 

economy PE due to smaller 𝛼 during mid-stroke than 

rigid wings. For example, 3.5 % less 𝐶𝐿 and 12.3 % 

more PE of �̅�1= 0.63 MFX wing. At AR = 6.0, there 

was limited deformation at 𝜋1  = 14 and 6.12 

considered in the study, and the frequency ratio 

(𝑓 𝑓𝑛⁄ ) did not exceed 0.14 for any shape. The 

frequency ratio of insect wings can be even higher, 

for example, 0.3 for hawkmoth and about 0.45 for 

cicada. As wings with frequency ratios higher than 

0.14 do exist in nature, for MAV applications, there 

may be a potential benefit of using even higher 

flexible wings than those considered in our previous 

work at AR = 6.0. Hence, there is a need to perform 

further fluid-structure interaction simulations of 

different wings with AR = 6.0 by using 𝜋1  even 

lower than 6.12, which was considered in our 

previous work (Shahzad et al., 2018a).    

Inspired by our findings as mentioned in the 

preceding paragraph, in this research, numerical 

simulations are carried out for wings with different 

radius of the first moment of wing area (𝑟1= 0.43, 

0.53 and 0.63), and 𝜋1 = 1.32 and 0.58 for flexible 

and more flexible wings respectively. The aim is 

to investigate the role of flexibility in the 

aerodynamic performance of a flapping wing for 

MAV application. The flexible and more flexible 

wings, here, are symbolized as FX2 and MFX2 

respectively to distinguish it from our previous 

work. The simulations are carried out at Re of 400, 

based on 𝑈𝑡𝑖𝑝  as a reference velocity and c as a 

reference length, representative of insects and bio-

inspired MAVs (Shyy et al., 2013). The Re of 

insects can be as low as the order O(10) to as high 

as the order O(103). For example, Re is about 10, 

400 and 6000 for thrips, hoverfly and dragonfly, 

respectively. 
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2. WING SHAPES, KINEMATICS AND 

MATERIAL PROPERTIES 

There is extensive variation in wing morphological 

parameters found in nature, and the details of these 

parameters for different insect wings have been 

recorded in the past (Sotavalta, 1952, Weis-Fogh, 

1973, Ellington, 1984). Ellington (1984)  observed 

that most wing shapes of insects could be 

approximated by the radius of the first moment of the 

wing area (�̅�1)  that defines the distribution of the 

wing area along the span. We have used �̅�1= 0.43, 

0.53 and 0.63 to define wing shapes (see Fig. 1(a)), 

and in line with our research objectives mentioned in 

the previous section, only AR = 6.0 is considered in 

this work. As in our previous studies (Shahzad et al., 

2018a; Shahzad et al., 2018b), two degrees of 

freedom (DoF) kinematics have been used, and it is 

defined by the sinusoidal function for stroke angle 𝜙 

and truncated Fourier series for pitch angle 𝛼 (both 

in degrees) as follows: 

   sin 1.579  ,o t      (1) 

   180 (89.1 16cos 46.2cost t       (2) 

     0.06cos 2 0.1sin 2 5.04cos 3t t t       

     0.40sin 3 0.10cos 4 0.14sin 4t t t       

   0.44cos 5 0.53sin 5 )t t     

 

 
Fig. 1. (a) Wing shapes defined by �̅�𝟏and (b) time 

courses of stroke and pitch angles in degrees. 

Grey shaded areas in (b) represent mid-strokes. 

 

The time courses of 𝜙 and 𝛼 are given in Fig. 1(b). 

The stroke refers to azimuth rotation in a horizontal 

plane. The wing pitches about leading edge LE and 

the pitch angle is defined as the angle 𝛼 between a 

horizontal axis and the line joining LE to the trailing 

edge at the mid-span. The readers are referred to 

Shahzad et al. (2018a) for further details about wing 

shapes and kinematics.  

As shown in Fig. 1(a), the leading edge is modelled 

as rigid, and the root up to 0.25c from the leading 

edge is also modelled as rigid. Rest of the wing is a 

membrane modelled with homogenous and isotropic 

Kirchhoff triangular plate elements. Enough number 

of elements were chosen to keep the wing 

deformation properties unchanged with a further 

increase in the number of elements. We have 

assumed Poisson’s ratio as 0.3. Flexibility is 

incorporated by changing Young’s modulus 𝐸∗  of 

plate elements for FX2 and MFX2 wings, which in 

turn leads to a change in effective stiffness 𝜋1. The 

material properties of wings are given in Table 1, and 

the frequency ratios of wings calculated from the 

modal analysis are given in Table 2. It is pertinent to 

mention that the hawkmoth has a frequency ratio of 

around 0.3 (San Ha et al., 2013) and the flexibility 

parameters in Table 1 adequately cover a wide range 

of frequency ratios including 0.3, as shown in Table 

2.  

 

Table 1 Flexibility parameters of wings 

 

 

Table 2 Frequency ratios of wings with f = 20 Hz 

 

 

3. COMPUTATIONAL METHODS 

Following continuity and Navier-Stokes equations 

are solved using an inhouse fluid solver developed 

by Mittal et al. (2008) and based on a 2nd order sharp 

interface immersed boundary method: 
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where 𝒊 = 1, 2, 3 and 𝒋 = 1, 2, 3 in subscripts, 𝒗 is the 

velocity, 𝒕  is the time, and 𝝊  is the kinematic 

viscosity. The flow is assumed as viscous and 

incompressible. Reynolds number of 400 used in this 

study is low enough that we can fairly assume 

laminar flow for computations. The structural 

dynamics is governed by the following equation 

(Tian et al., 2014a): 

Material 

properties 
FX2 MFX2 

𝐸∗ 1.80×109 7.91×108 

ℎ∗ 2.0×10-3 2.0×10-3 

𝐼 6.67×10-10 6.67×10-10 

𝜌∗ 2×103 2×103 

𝜋1 1.32 0.58 

Wing 

shapes 
Flexibility 𝑓𝑛 (in Hz) 𝑓 𝑓𝑛⁄  

�̅�1= 0.43 

FX2 

111.19 0.18 

�̅�1= 0.53 107.55 0.19 

�̅�1= 0.63 66.93 0.30 

�̅�1= 0.43 

MFX2 

73.69 0.27 

�̅�1= 0.53 71.28 0.28 

�̅�1= 0.63 44.36 0.45 
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where 𝒖  is the displacement, 𝜼𝒅  is the damping 

coefficient, 𝝈𝒊𝒋 is the Cauchy stress tensor, 𝒃𝒊 is the 

body force, and (𝒅 𝒅𝒕⁄ )  is the Lagrangian time 

derivative. The structure solver, NONSTAD (non-

linear analysis of statics and dynamics), is a finite 

element analysis tool of solid mechanics developed 

by James F. Doyle (2001, 2008) and it is suitable for 

bio-mimetic structures as it is specifically designed 

for the analysis of thin-walled structures comprising 

membranes, plates, shells, and frames. The details of 

both fluid and structure solvers can be found in Dai 

(2013) and Tian et al. (2014a). In FSI solver, a 

modular iterative partitioned approach is used, and 

both solvers are strongly coupled through no-slip, 

no-penetration and traction boundary conditions.  

A computational domain stretching about 25c in all 

directions is divided into sub-domains; inner and 

outer. The domain consists of a non-uniform 

cartesian mesh as shown in Fig. 2. While the mesh 

density is varied in the inner domain, 50 nodes are 

used in each direction on the outer domain in grid 

independence studies to obtain an appropriate mesh  

 

 

 
Fig. 2. (a) Cartesian mesh around the wing, and 

(b) A cut-out of fluid computational domain 

comprising a fine inner fluid domain and 

relatively course outer fluid domain. The domain 

extents are 25c in each direction (that is, X, Y, 

and Z directions). (Shahzad et al., 2018a). 

 
size for further simulations. Likewise, time 

independence tests have also been carried out to 

adequately capture the flow structures. For details 

about grid and time independence tests, readers are 

referred to Shahzad et al. (2018a). As in our previous 

work (Shahzad et al., 2018a), a mesh of 0.14 million 

is employed in the inner fluid domain. The results of 

the fifth flapping cycle are used for postprocessing, 

with each cycle completed in 2000 timesteps. In 

addition, the validations of fluid solver and FSI 

solver against known experimental results have been 

extensively done in our previous works (Shahzad et 

al., 2014; Shahzad et al., 2016a; Shahzad et al., 

2016b; Shahzad, 2017; Shahzad et al., 2018a; 

Shahzad et al., 2018b), and thus, are not presented 

here for brevity.  

4. RESULTS AND DISCUSSION 

Each computation took 180 hrs/flapping cycle on 8 

cores of Intel Xeon E5-2680 processors and 64 GB 

of memory. A total of five flapping cycles were 

simulated and the results of the last cycle were used 

for post-processing, as the time courses of 𝐶𝐿  and 

𝐶𝑃𝑎 did not vary more than 1.5% between 4th and 5th 

cycle.  

4.1 Time Courses of 𝑪𝑳 and 𝑪𝑷𝒂 𝐨𝐟 𝐑𝐆, F𝐗𝟐 

𝐚𝐧𝐝 M𝐅𝐗𝟐 W𝐢𝐧𝐠𝐬 of D𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 S𝐡𝐚𝐩𝐞𝐬 

The time courses of 𝐶𝐿 and 𝐶𝑃𝑎 for rigid (RG), FX2 

and MFX2 wings are compared in Fig. 3. Both 

strokes during the flapping cycle are similar, hence 

only the first stroke (t/T = 0.0 - 0.5) will be discussed. 

All RG wings produce one 𝐶𝐿  peak and one 𝐶𝑃𝑎 

peak per stroke during the mid-stroke (the grey 

shaded portion between t/T = 0.17 and 0.34 in Fig. 

3(a) and Fig. 3(c) and both peaks increase with an 

increase in �̅�1. The FX2 wings produce considerably 

less 𝐶𝐿  and also consume less 𝐶𝑃𝑎  during the mid-

stroke as compared to RG wing, especially for �̅�1 = 

0.63 wing in which 𝐶𝐿  drops by 34.3 % at t/T = 

0.212, and 𝐶𝑃𝑎 drops by 52.4 % at t/T = 0.34 with the 

introduction of flexibility. In contrast with a single 

peak in RG wing of �̅�1 = 0.63, the flexible equivalent 

(FX2) produces two 𝐶𝐿 and two 𝐶𝑃𝑎 peaks per stroke 

(see Fig. 3(a) and Fig. 3(c)). The values of 𝐶𝐿 in Fig. 

3(b) suggest that the more flexible (MFX2) wings of 

�̅�1 = 0.43 and 0.53 show similar trends as those of 

corresponding RG and FX2 wings in Fig. 3(a). 

However, the MFX2 wing of �̅�1 = 0.63 generates a 

negative lift peak at t/T = 0.06 and one positive peak 

at t/T = 0.22 accompanied by a 𝐶𝐿 plateau after the 

mid-stroke, and this contrasts with a solitary 𝐶𝐿 peak 

in RG equivalent wing. The 𝐶𝑃𝑎 consumed by each 

wing decreases further as the wings are made more 

flexible (see Fig. 3(c) and Fig. 3(d)). 

4.2 Pitch Angles, Pitch Rotation Rates, 

and Flow Features of RG, FX2 and MFX2 

Wings  

The reasons for trends in 𝐶𝐿 and 𝐶𝑃𝑎 of RG, FX2 and 

MFX2 wings observed in Fig. 3 have been explained 

by plotting the variations of pitch angle and pitch 

rotation rates at the mid-span in Fig. 4 accompanied 

by details of flow features using iso-Q surfaces and 

surface pressure coefficients at selected time 

instants. The iso-Q surfaces are based on the vortex 

identification criterion of Hunt et al. (1988) which  
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Fig. 3. Comparison of time courses of coefficients of lift (𝑪𝑳) and aerodynamic power (𝑪𝑷𝒂) of rigid 

(RG), flexible (FX2) and more flexible (MFX2) wings in a flapping cycle. The grey shaded portion 

refers to a region of mid-stroke, where pitch angle does not vary appreciably. 

 

 

Fig. 4. Comparison of time courses of pitch angles and pitch rotation rates of rigid (RG), flexible (FX2) 

and more flexible (MFX2) wings in a flapping cycle. 

 

 

separates fluid motion into strain and shear rates, and 

rigid-body-like rotation rates. For brevity, only the 

flow features of �̅�1  = 0.43 and 0.63 wings are 

compared.    

4.2.1 RG vs. FX2 Wings  

For FX2 with �̅�1  = 0.43, at t/T = 0.2 and 0.3, 𝛼 is 

approximately 3º less than RG wing (Fig. 4(a)), and 

the vortical structures (Fig. 5 (a and b) at t/T = 0.2 

and Fig. 5 (e and f) at t/T = 0.3) and surface pressure 

distribution on the top surface (Fig. 6 (a and b) at t/T 

= 0.2 and Fig. 6 (e and f) at t/T = 0.3) are similar for 

RG and FX2 wings. As a result, both RG and FX2 

wings produce similar lift.  

For �̅�1 = 0.63 FX2, during the mid-stroke at t/T = 0.2 

and 0.3, there is a continuous pitch down rotation and 

𝛼  remains less than RG wing. Hence, the Iso-Q 

surfaces in Fig. 5 (c, d, g and h) shows a stronger 

LEV on RG wings than FX2 wings. Similarly, a large 

negative pressure region on the upper surface of the 

RG wing leads to more lift than the FX2 wing (see 

Fig 6 (c, d, g and h)). 

At t/T = 0.35, the pitch angles of RG wings are 57.4º, 

and �̅�1= 0.43 FX2 and �̅�1= 0.63 FX2 are 51.7º and 

41.6º respectively, as the wings pitch up after the 

mid-stroke. At this point, the LEVs are attached to 

the wing (see Fig. 5 (i, j, k and l)) and RG wings have 

greater strength than FX2 wings in terms of suction 

pressures as presented in Fig. 6. (i, j, k and l).  

However, RG wings of both shapes do not produce 

significantly higher 𝐶𝐿 than FX2 wings. This is due 

to the resultant force contributing more to horizontal 

component (drag) than to vertical component (lift) 

due to high pitch angles (𝛼  > 45º) of the wing. 

Consequently, the 𝐶𝑃𝑎  peak is recorded by all RG 

wings at this instant.  

At t/T = 0.45, the pitch angles of all wings are close 

to 90º and relatively weaker LEVs are mostly 

confined to the region of low flapping velocities 

close to the wing root as illustrated in Figs. 5 and 6 

(m, n, o and p). The wings do not produce lift at this 

stage.  
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Fig. 5. Flow structures (Q = 300) on rigid (RG) and flexible (FX2) wings at different time instants in a 

flapping cycle.

 
 

 
Fig. 6. Pressure coefficient on the surface of rigid (RG) and flexible (FX2) wings at different time 

instants in a flapping cycle. 

 

 

4.2.2 RG vs. MFX2 Wings 

At t/T = 0.05, both RG and MFX2 wings of �̅�1 = 0.43 

and RG wing of �̅�1 = 0.63 give small positive 𝐶𝐿 as 

the wing has just commenced a stroke. The vortical 

structures are mainly confined to a region close to the 

tip and, therefore, suction pressures are also high (see 

Figs. 7 and 8 (a, b and c). On the contrary, �̅�1 = 0.63 

MFX2 records a large negative 𝐶𝐿  at this point 

because 𝛼  of the wing equals 33º and decreases 

further (see Fig. 4(a)) as the wing continues to pitch 

down. Figure 7 shows the pressure distribution on the 

wing’s top surface, which are very low since the 

vortices are present on the wing’s lower surface at 

this instant. 

At t/T = 0.2 and 0.3, the �̅�1 = 0.43 RG wing produces 

slightly more 𝐶𝐿 than MFX2 wing as confirmed by 

higher suction pressures in Fig. 8(e and i). At t/T = 

0.2, although 𝛼  of �̅�1  = 0.63 MFX2 wing is 35 %  
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Fig. 7. Flow structures (Q = 300) on rigid (RG) and more flexible (MFX2) wings at different time 

instants in a flapping cycle. 

 

 

smaller than RG equivalent in Fig. 4(a), the MFX2 

wing is in pitch-up rotation mode and it has 

significantly higher pitch rotation rate in Fig. 4(b). 

Therefore, despite having a smaller value of 𝛼 ,  
�̅�1  = 0.63 MFX2 wing is still able to produce a 

comparable 𝐶𝐿  at t/T = 0.2. In contrast, the 𝐶𝐿  of  
�̅�1 = 0.63 MFX2 drops significantly below the RG 

equivalent because the MFX2 with 32 % smaller 𝛼 

than RG equivalent in Fig. 4(a) starts pitch down 

rotation after approximately t/T = 0.25 resulting into 

relatively weaker LEV in Fig. 7(l) and low suction 

pressures in Fig. 8(l).  

At t/T = 0.4, 𝛼 of RG wing is approaching 90º (𝛼 = 

75º) and the resultant force contributes more to the 

drag. At this point, the LEVs on the wings are 

confined to the region close to the root (see Figs. 7 

and 8 (m, n, o and p)) and do not contribute 

significantly to lift production. However, the trailing 

edge of �̅�1 = 0.63 MFX2 wing is shifted rearward due 

to chordwise deformation and there is presence of a 

trailing edge vortex resulting in high suction 

pressures in Fig. 8(p), which translate into relatively 

more lift in �̅�1 = 0.63 MFX2 wing as compared to RG 

equivalent.  

The above-mentioned flow details on flexible and 

more flexible wings in different phases of the 

flapping cycle clearly indicate that flexibility can 

have both favourable and adverse effect on lift 

production and aerodynamic power depending on the 

deformation characteristics.  

4.3 Comparison of Mean Lift 

Coefficient and Aerodynamic Power 

Coefficient of RG, FX2 and MFX2 Wings   

In this section we discuss the 𝐶𝐿̅̅ ̅ , calculated by 

averaging 𝐶𝐿 over the third, fourth and fifth flapping 

cycles and power economy (PE defined as 𝐶𝐿̅̅ ̅ 𝐶𝑃𝑎̅̅ ̅̅ ̅⁄  ) 

of all wings. The impact of flexibility on hovering 

performance has been evaluated in Fig. 9 by plotting 

PE against 𝐶𝐿̅̅ ̅. Irrespective of wing shape, flexibility 

has a negative effect on 𝐶𝐿̅̅ ̅ and a substantial decrease 

of up to 66 % in 𝐶𝐿̅̅ ̅ is registered for �̅�1 = 0.63 MFX2 

wing attributable to large values of negative 𝐶𝐿 at the 

start of each stroke (see Fig. 3(b)) due to pitch down 

rotation. The PE of �̅�1  = 0.43 and 0.53 wings, for 

both FX2 and MFX2 cases, increases with an 

increased flexibility. However, the MFX2 wing of  �̅�1 

= 0.63 records 12.6 % less PE than the FX2 wing. 

This implies that, at high AR considered in this 

study, if it is desirable to introduce flexibility to 

enhance aerodynamic performance, low �̅�1 (= 0.43) 

wing shape may be preferred, provided it meets the 

minimum lift requirement for hovering.  

5. CONCLUSIONS 

Fluid-structure interaction simulations were 

performed using an in-house solver to evaluate the 

influence of isotropic flexibility on the aerodynamic 

performance of high AR (= 6.0) wings with different 

shapes ( �̅�1  = 0.43, 0.53 and 0.63) and  
𝑚∗  = 4.0. For flexible wings, the leading edge is 

assumed rigid and the flexibility of rest of the wing 

is defined by effective stiffness of 1.32 for flexible 

(FX2) wings and 0.58 for more flexible (MFX2) 

wings. This study is an extension of our previous 

work in which  𝜋1= 14 and 6.12 were used for FX 

and MFX wings.  

The FX2 wings produce less 𝐶𝐿 and 𝐶𝑃𝑎 during most 

of the mid-stroke, as 𝛼 decreases due to flexibility. 

The lift production decreases more appreciably for  
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Fig. 8. Pressure coefficient on the surface of rigid (RG) and more flexible (MFX2) wings at different 

time instants in a flapping cycle. 
 

 
Fig. 9. Comparison of mean coefficient of lift and power economy of rigid (RG), flexible (FX2) and 

more flexible (MFX2) wings in a flapping cycle. 
 

 

high �̅�1 (= 0.63) wing due to higher pitch down 

rotation translating into weaker LEV. The 𝐶𝐿  and 

𝐶𝑃𝑎 of �̅�1 = 0.63 FX2 wing reduces up to 34.3 % and 

52.4 % at different instants during the mid-stroke.  

As the flexibility is increased further, �̅�1 = 0.63 

MFX2 wing generates large negative 𝐶𝐿 at the start 

of stroke because of small 𝛼 and a continuous pitch-

down rotation due to chordwise deformation. 

In general, mean lift coefficient (𝐶�̅� ) decreases by 

introducing flexibility, and it results in better power 

economy (PE) except for 𝑟1̅  = 0.63 MFX2 wing in 

which PE of MFX2 wing is 12.6 % less than FX2 wing.  

If the wings are designed to be highly flexible like 

the MFX2 wings in this study, it is preferable to use 

low  �̅�1(= 0.43) wings as compared to high �̅�1(= 0.63) 

wings since they can give better aerodynamic 

performance with higher PE and similar 𝐶𝐿̅̅ ̅  to an 

equivalent wing of �̅�1= 0.63. For instance, �̅�1= 0.43 

MFX2 wing gives 24.5% more PE and 2.7 % less 𝐶𝐿̅̅ ̅ 
than �̅�1= 0.63 MFX2 wing. 
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