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ABSTRACT 

We evaluate the partially-averaged Navier-Stokes (PANS) methodology of turbulence computations by 

including non-linear eddy viscosity based closures for both turbulent stresses and thermal flux. We extract the 

filtered PANS version of the Shih’s quadratic model (originally proposed for the Reynolds averaged Navier-

Stokes (RANS) paradigm) for arriving at a PANS closure model for the turbulent stress tensor. The unclosed 

thermal flux process is modeled using the gradient diffusion hypothesis, wherein we sensitize the coefficient 

of diffusion to the presence of non-linear stresses in the formulation. The resulting methodology is evaluated 

by simulating flow past a heated square cylinder. Evaluations are performed in terms of both hydrodynamic 

variables and heat transfer characteristics. We find that the non-linear PANS methodology shows improved 

results in terms of hydrodynamic quantities (coefficient of drag, pressure, velocity profiles, and high-order 

statistics). While the predictions of the heat transfer rate on the front face of the cylinder are similar in the 

linear and the non-linear PANS methodologies, in the wake region and parts of the lateral wall where shear 

layer detachment takes place, the non-linear PANS methodology shows improved results. 

Keywords: Non-linear eddy viscosity closure; Scale resolving simulations; Turbulent heat transfer; Separated 

flows, PANS. 

 

1 INTRODUCTION 

Accurate numerical predictions of heat transfer rate 

at a solid-fluid interface is crucial for arriving at 

efficient de-signs of many engineering systems like 

heat exchangers, cooling towers, electronic circuit 

boards, aircraft engines and power turbines. Many 

engineering applications involve forced convective 

heat transfer process wherein the flow field is 

turbulent as well as separated from the solid surface 

giving rise to unsteadiness across all scales of 

motion. These features (turbulence and flow 

separation) exacerbate the complications in the flow 

field making it quite challenging for the 

computational fluid dynamics (CFD) methodologies 

to capture even the most essential flow physics. 

The Reynolds-averaged Navier-Stokes (RANS) 

equation and direct numerical simulations (DNS) 

are two extreme CFD approaches that can be 

employed for prediction of turbulent flows with 

heat transfer. DNS is expected to resolve all scales 

of motion on an adequately fine grid, which could 

be quite accurate but has a prohibitive 

computational demand. The Reynolds-averaged 

Navier-Stokes (RANS) methodology requires less 

computational resources, but requires high-fidelity 

turbulence closure models. Typically, in separated 

turbulent flows, RANS - because of its 

indiscriminate averaging of all scales of motion and 

a consequent over-reliance on turbulence closure 

models, yields inaccurate predictions. In between 

the extremes of the RANS and the DNS methods, 

other computational paradigms exist such as large 

eddy simulations (LES) and the bridging methods 

of turbulence computations (Schiestel and Dejoan 

2005; Girimaji 2006), which can be collectively 

called the scale-resolving simulations. Such 

methodologies use the filtering approach, wherein 

scales of motion larger than the filter are resolved, 

whereas those scales which are smaller than the 

filter cutoff are modeled. The computational 

demand of LES is less than that of the DNS, 

however, it is still large enough to be prohibitive for 

many users. A bridging method, on the other hand, 

allows the user to place the filter cutoff anywhere 

between the largest to the dissipative scales of 

motion commensurating with the computational 
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resource that the user can afford. In this work we 

focus on one such bridging method called the 

partially-averaged Navier-Stokes (PANS) method 

(Girimaji 2006). 

In recent past, the PANS methodology has been 

mostly employed in simulating hydrodynamic 

aspects of various kinds of flow fields (Girimaji 

2006; Abdol-Hamid and Girimaji 2004; Jeong and 

Girimaji 2010; Lakshmipathy and Girimaji 2010; 

Rao et al. 2018; Saroha et al. 2018; Basara and 

Girimaji 2018; Pereira et al. 2018b). Ranjan and 

Dewan (2015) has employed PANS for simulating 

flow past a heated square cylinder. However, all 

these works have employed conventional linear 

Boussinesq approximation (linear eddy viscosity 

closures) for the unclosed turbulent stress as well 

for the unclosed thermal flux. In these studies 

turbulent stresses in the momentum equation are 

assumed to be proportional to the resolved strain-

rate. Similarly, following the gradient diffusion 

hypothesis, the turbulent thermal flux (the unclosed 

term in the filtered energy equation) is assumed to 

be proportional to the filtered temperature gradient 

with the diffusion coefficient dependent on the local 

eddy viscosity. In separated flows, however, these 

simple linear models may not be adequate (see 

Speziale (1987), Shih et al. (1993), Saroha et al. 

(2018)). Indeed Chesnakas et al. (1997), based on 

their experimental measurements of separated flows 

past a prolate spheroid, reported significant 

misalignment between the strain-rate tensor and the 

Reynolds stress tensor and highlighted the prospect 

of improving CFD predictions by using a non-linear 

constitutive relationship. Even though PANS 

inherently is capable of allowing more scales of 

motion to be resolved compared to RANS, the 

limitations of a linear constitutive relationship is 

bound to constrain the performance of PANS like it 

does for RANS. Thus, it is plausible to explore 

further improvement in the performance of PANS 

methodology by using non-linear eddy viscosity 

closure models (NLEVM). 

In our recent work (Saroha et al. 2019), we have 

presented model extraction and some evaluations of 

PANS methodology using a non-linear closure for 

turbulent stresses. Subsequent to model extraction, 

we performed the so-called fixed-point analysis, 

wherein the essential energetics of the closure 

model is examined in the absence of transport 

processes in the governing equations. We clearly 

demonstrated that with a reduction in the cut-off 

determining filter, the non-linear PANS 

methodology indeed releases more scale of motion 

even with the presence of non-linear stresses. 

Further, we examined the influence of non-linear 

eddy viscosity on the extent of misalignment 

between the turbulent stress tensor with the resolved 

strain-rate and its consequent allowance for the 

resolved rotation-rate tensor to influence the 

unclosed stress tensor. In the same work (Saroha et 

al. 2019), some preliminary evaluations were 

performed for the case of flow past a square 

cylinder as well. However, the computational grid 

employed therein used standard wall functions and 

no heat transfer aspects were considered. 

Thus, the goal of this work is to extend the PANS 

methodology in conjugation with the non-linear 

eddy viscosity closure to simulate separated flows 

with heat transfer and compare its performance with 

the conventional PANS methodology, which uses 

the Boussinesq’s linear eddy viscosity model. We 

would like to highlight that, unlike our previous 

work (Saroha et al. 2019), in this work all 

simulations are performed using superior wall-

resolving grids along with the inclusion of low-

Reynolds number near-wall damping effects in the 

closure model. Thus, even from the point of view of 

purely hydrodynamic quantities, the evaluations 

performed in this study can be deemed to be more 

comprehensive than what we presented earlier in 

(Saroha et al. 2019). 

Specifically, we perform the following tasks in this 

study: 

1. Using the quadratic RANS model of Shih et 

al.(1993), we extract the PANS version of the 

closure model for turbulent stress tensor in the 

filtered momentum equation. 

2. We model the unclosed thermal flux process 

incumbent in the filtered temperature equation 

using the gradient diffusion hypothesis, 

wherein we appropriately sensitize the 

coefficient of eddy diffusion to the presence of 

non-linear stresses in the formulation. 

3. We evaluate the non-linear eddy viscosity 

based PANS formulation in flow past a heated 

square cylinder at Reynolds number of 21,400. 

4. To clearly identify the improvements of the 

non-linear PANS methodology, we perform 

simulations using the conventional linear eddy 

viscosity based PANS methodology as well. 

The flow past a heated cylinder has been used by 

several researchers in the past to test new turbulence 

closure models and numerical schemes alike Franke 

and Rodi (1993), Rodi (1997), Kimura and Hosoda 

(2003) , Frendi et al. (2006), Aus der Wiesche 

(2007), Ayyappan and Vengadesan (2008), Liu 

(2010), Moulai et al.(2016). Despite having a 

simple geometry, the flow past a square cylinder 

involves several complex flow phenomena like 

extended stagnation-like region, shear layer 

detachment, instabilities leading to turbulence and 

unsteady vortex shedding- making it an excellent 

test case. Recently, Pereira et al. (2018a) have 

highlighted the importance of addressing these 

challenges in context of scale-resolving simulations. 

Our simulations results are compared against the 

experimental measurements of Igarashi (1985) (for 

heat transfer rates), Lyn et al. (1995) and Igarashi 

(1984) (for hydrodynamics variables). Further, 

recent DNS results of Trias et al. (2015) are also 

included for reference. 

The authors would like to make it clear that the 

intent of this work is not to claim that employing a 

non-linear eddy viscosity in conjugation with PANS 

would necessarily result into the “best” predictions 
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of flow variables. The scope of the present work is 

limited to exploring and evaluating the 

consequences, when given the same two-equation 

model framework (in this work the k-ε frame-

work), closure is allowed to switch from the 

conventional linear eddy viscosity closure to a non-

linear eddy viscosity closure. Further, the authors 

acknowledge that there are several non-linear 

RANS closures available in literature 

(Argyropoulos and Markatos 2015; Hellsten and 

Wallin 2009). Our choice of the Shih’s quadratic 

model is governed by: (i) Its improved performance 

in several flow fields (Shih et al. 1997; Ishihara and 

Hibi 2002; Yang et al. 2005; Colombo et al. 2008), 

and (ii) Its availability in the OpenFOAM library 

(which the authors employ for this study). Indeed, 

the authors believe that this study will motivate 

more users to further explore and evaluate the 

integration of PANS methodology with other non-

linear and even more explicit algebraic Reynolds 

stress models (EARSMs) as well (Wallin and 

Johansson 2000; Girimaji 1997). GitHub link for 

source code is provided here: 

https://github.com/sagarsaroha18/OpenFOAM  

This paper has been organized into six sections. In 

section 2, we provide a brief overview of the PANS 

method. In this section, we first discuss the PANS 

version of the non-linear eddy viscosity closure for 

unclosed stresses. 

Subsequently, we present our modelling strategy for 

the unclosed thermal flux process in the temperature 

equation. In section 3, we present details about our 

computational set up and our plan of study. 

Descriptions of the quantities of interest, time step 

convergence and grid convergence studies are 

included in section 4. In section 5, we compare the 

performance of the non-linear and linear closures of 

PANS methodologies. Section 6 concludes the 

paper with a summary. 

2 PARTIALLY-AVERAGED NAVIER- 
STOKES EQUATIONS (PANS) 

We start with the instantaneous momentum, 

continuity and temperature equation set (1) 

applicable for a constant density flow field. We 

assume that this flow field is at a high Froude 

number and at a low Grashof number. Hence, the 

effects of buoyancy and body forces are neglected. 

1
;
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   (1) 

In these equations, symbols Vi, p, T , xi, t represent 

velocity, pressure, temperature, spatial coordinates 

and time respectively. The symbols ν and Pr 

represent kinematic viscosity and the Prandtl 

number of the fluid medium. Both these quantities 

are assumed to be constant. 

We derive the governing equations of a partially-

averaged field by subjecting equation set (1) to the 

so-called partial-averaging filter. This filter is  

assumed to be constant preserving and commutative 

with spatial and temporal differentiation (Girimaji 

2006). Subjecting equation set (1) to this filter 

results into the governing equations of the filtered 

counterparts of velocity, pressure and temperature 

(
iV , p  and T  respectively): 
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(2) 

The new symbols τ(Vi,Vj) and τ(Vi,T ) appearing in 

equation set (2) are called the generalized central 

moments in accordance with the general filtering 

representation of the Navier-Stokes equations 

proposed by Germano (1992): 

 

 

, ;

, .

i j i j i j

j j j

V V V V V V

V T V T V T





 

 
                 (3) 

The quantity τ(Vi,Vj) represents the turbulent stress 

arising because of the filtering operation of the 

advection process incumbent in the instantaneous 

momentum equation. Similarly, the quantity τ(Vi,T 

) is the turbulent thermal flux process arising 

because of the filtering operation performed on the 

non-linear advection process incumbent in the 

temperature equation. Clearly, both τ(Vi,Vj) and 

τ(Vi,T ) are unclosed terms in the PANS filtered 

equation set (2), and thus appropriate turbulence 

closure models are required to make any 

computation feasible. 

2.1 Conventional Closure of PANS using 

Linear Eddy Viscosity Model 

In his proposal of PANS equations and closures, 

Girimaji (2006) proposed a linear eddy viscosity 

closure (Boussinesq 1877) for the generalized 

central moment of the momentum equation (here 

we present a brief review, the reader is referred to 

Girimaji (2006) for further details): 

 
2

, 2 ;
3

i j u ij u ijV V k v S                    (4) 

In this equation,
ijS   represents the filtered 

strain-rate tensor
   1

2

j i

ij

i j

V V
S

x x

  
  
  
 

 ; ku 

is the unresolved turbulent kinetic energy: ku =  τ 

(Vi,Vi). The symbol νu is the unresolved eddy 

viscosity. In line with the nomenclature adopted by 
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researchers in the RANS paradigm (Argyropoulos 

and Markatos 2015; Hellsten and Wallin 2009), 

equation (4) can be called the linear eddy viscosity 

model for the unclosed stresses, because the 

anisotropic part of the closed stress tensor is 

assumed to be have a linear dependence on the 

resolved strain-rate. Girimaji (2006) derived the 

PANS version of the standard k-ε model of Launder 

and Spalding (1974) and modeled νu as: 

2

,     where ,u i i
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Further, Girimaji (2006) achieved closure for ku and 

εu by including the modelled equations of these 

quantities ku and εu. 
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 (6)  

Here Pu is the unresolved production 

term   i

i j

j

V
V V

x

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. The quantities fk and 

fε appearing in these equations are the implicit filter 

parameter of the PANS methodology. These 

parameters are defined as: fk = (ku/k); fε = (εu/ε); 

where k and ε represent the turbulent kinetic energy 

and its dissipation rate (in RANS sense). Various 

coefficients appearing in equation set (6) are: 
 ;   *

2 1 2 1/e e k e eC C f f C C  

;    2 2/ ; /ku k k u kf f f f         

Ce1 = 1.44, Ce2 = 1.92, σε = 1.3, σk = 1. 

For purely hydrodynamic problems, wherein it is 

not required to solve the temperature equation, 

equation set (2, 4, 6) form a closed set of equations. 

The filter parameters fk and fε can vary between 0 

and 1, allowing the user to implicitly choose the 

resolved-to-unresolved cutoff length scale. Setting 

fk = 0 and fε = 0 converts the formulation into 

instantaneous Navier-Stokes equation set. On the 

other extreme, setting fk = 1 and fε = 1 converts the 

formulation to the Reynolds-averaged Navier-

Stokes (RANS) equation set. Setting 0 < fk < 1, 0 < 

fε < 1 results into the so-called partially averaged 

Navier-Stokes equation description (Girimaji 2006), 

wherein the filter cutoff is implicitly lying in the 

inertial range of the turbulence kinetic energy 

spectrum. The reader is referred to Girimaji (2006) 

for further details about the filter parameters of 

PANS. 

2.2 Conventional Closure of the 

Temperature Equation 

Girimaji (2006) in his proposal did not include the 

temperature equation. However, recently Ranjan 

and Dewan (2015) extended the conventional 

PANS closure to heat transfer problems. The 

authors made a straight-forward modification of the 

conventional linear gradient diffusion hypothesis of 

the RANS paradigm:; here, 
Pr
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an overbar implies a mean value and a prime 

implies fluctuation (in RANS sense). To model the 

unclosed thermal flux process in the PANS-filtered 

temperature equation as: 

 ,
Pr

u

i

T i

Tv
V T

x



 


                                     (7) 

where PrT is the turbulent Prandtl number. The 

quantity (νu/PrT ) can be called unresolved thermal 

eddy diffusivity. With the equation set (2, 4, 6 and 

7), the conventional PANS closure is achieved for 

simulating incompressible flows with heat transfer. 

We refer to this closed equation set (2, 4, 6 and 7) 

as the linear eddy viscosity model+ PANS (or 

LEVM+PANS) methodology for simulating 

incompressible flows with heat transfer. 

2.3 Closure using Non-Linear Turbulent 

Stresses 

In this subsection, we present an alternate closure of 

the PANS filtered equations invoking the concept of 

the so called non-linear turbulent stresses. The idea 

of non-linear turbulent stresses was originally 

proposed in context of RANS closure as an attempt 

to address the short-comings of the linear eddy 

viscosity model of Boussinesq (1877). In the 

formulation proposed by Lumley (1970) and later 

utilized by Shih et al. (1993), the Reynolds stress 

tensor i jV V
   
 

is expressed as a function of the 

mean strain-rate as well as higher order tensor 

products of the mean strain-rate and the mean 

rotation-rate tensors as well. Such a modeling 

paradigm not only allows the turbulent stresses to 

have potentially more accurate dependence on the 

mean strain-rate tensor but also on the mean 

rotation-rate tensor, the effect of which is entirely 

ignored in the Boussinesq’s linear eddy viscosity 

model. These higher order terms are collectively 

called the non-linear turbulent stresses. Including 

higher order terms in the constitutive equation of 

the turbulent stress tensor allows the turbulent stress 

to break away from the over-simplifying 

assumption of the linear eddy viscosity model 

wherein the anisotropic part of the turbulent stress 

tensor is unconditionally forced to align with the 

local mean strain-rate tensor. Experimental 

evidence does show that this assumption of perfect 
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alignment between the turbulent stress tensor and 

the mean strain-rate tensor indeed breaks down over 

substantial regions in a separated flows past bluff 

bodies (Chesnakas et al. 1997). Recently, Yangaz et 

al. (2019) has employed non-linear eddy viscosity 

model in conjugation with RANS to simulate and 

evaluate performance of various burners designs 

and choice of fuels. 

Over the last three decades, several non-linear 

models have been proposed and tested for closure of 

RANS momentum equations (Speziale 1987; 

Rubinstein and Barton 1990; Craft et al. 1996; 

Apsley et al. 1997; Ramesh et al. 2006; Colombo et 

al. 2008; Gatski and Jongen 2000; Hellsten and 

Wallin 2009; Shih et al. 1993). Among these, 

Shih’s model (Shih et al. 1993) has been employed 

in a variety of flow fields showing significant 

improvements. In this work we focus on the Shih’s 

non-linear model which employs a combination of 

linear and quadratic non-linear stress in conjugation 

with the k-ε model. Since the original version of 

this model is meant for RANS closure, our next task 

in this section is to appropriately extract the PANS 
version of this closure. 

Using the quadratic constitutive relation proposed 

by Shih et al. (1993), in place of Boussinesq’s 

approximation for Reynolds stress, we model 
τ(Vi,Vj) as: 
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The additional coefficients used in equations set (8) 

have the values: Cr1 = −4, Cr2 = 13, Cr3 = −2, A1 = 

1.25, A2 = 1000 and α = 0.09. Note that equation (8) 

when combined with the evolution equations of ku 

and εu (equation set 6) and the filtered continuity 

and the filtered momentum equations set (2) form a 

closed set of equations for the the hydrodynamic 

flow field. In equation (8) the third, fourth and the 

fifth group of terms are collectively called as the 

non-linear turbulent stress. The non-linear stress 

depends on the quadratic tensorial products of the 

resolved strain-rate and the rotation-rate tensors. 

The non-linear stress is added over and above to the 

so-called linear part of the stress (second term in 

equation 8). Due to the inclusion of the non-linear 

stress in equation (8), Argyropoulos and Markatos 

(2015) in their review article recommend calling 

such a closure as a non-linear eddy viscosity model 

(NLEVM). In contrast, we would describe the 

conventional Boussinesq’s closure (equation 4) as a 
linear eddy viscosity model (LEVM). 

2d. An NLEVM-Based Closure of the 

Temperature Equation 

The conventional closure of the filtered temperature 

equation as employed by Ranjan and Dewan (2015) 

in their heat transfer study (using linear eddy 

viscosity closure for both momentum and 

temperature equations) is: 
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Pr
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T i
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x
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                                     (9) 

However, we suggest that in the light of the fact that 

the filtered momentum equation has now been 

closed using a superior representation of turbulent 

stresses equation (8), equation (9) may not be an 

optimal model in the given non-linear framework. 

Thus, with the intention to directly sensitize the 

closure of turbulent thermal flux to the presence of 

non-linear stresses in the formulation, we propose 
to modify equation (9). 

Equation (9) can be expressed as: 

 ,
Pr Pr

u

i

T i u T i

T Tv v v
V T

x v x


   
     

  
 (10) 

In the last term, the factor vu/v has been extracted 

out to underline the modelling philosophy: the 

factor vu/v is expected to capture the eddy-enhanced 

diffusive transport of thermal energy (compared to 

the molecular transport). Note that this factor of vu/v 

is also the ratio of the magnitude of the anisotropic 

portions of the turbulent stress to the filtered 

viscous stress when a linear eddy viscosity model 
like equation (4) is used: 

 , 2

2

anisotropic

i j u ij
u

viscous

pq u pq

V V v S v

vv S




           (11) 

where ij ij ijA A A (magnitude of a second-

order tensor, Ai,j). Clearly, when an LEVM model is 

used to close the filtered momentum equation, vu/v 

also represents the ratio of the magnitude of 

turbulent stresses to that of the filtered viscous 

stresses. Note that it is the ratio of the magnitudes 

of the turbulent to filtered viscous stresses which 

actually model the diffusive effect of turbulent 
eddies in the filtered momentum equation. 

However, in contrast, when an NLEVM (like 

equation 8) is used to close the filtered momentum 

equation, the ratio of the magnitude of the turbulent 

to filtered viscous stresses cannot be written simply 

as the vu/v : 
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Fig. 1. Computational domain (the origin of the working coordinate system lies at the mid-span location 

of the cylinder). 

 

 , 2

2

anisotropic

i j u ij ij
u

viscous

pq u pq

V V v S N v

vv S






  (12) 

where Ni j represents the (i- j)th component of the 

non-linear part of the turbulent stress tensor 

presented in equation (8): 


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  

 
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  

 (13) 

Equation (12) suggests that in the presence of an 

NLEVM model, vu/v is no more an optimal measure 

of the diffusive effects of turbulent stresses in the 

momentum equation. Thus, in the presence of an 

NLEVM model, we propose that the amplification 

of eddy-diffusivity in the filtered temperature 

equation must also be measured not in terms of vu/v  

, but in terms of the actual stress ratio (equation 12). 

Accordingly, we propose the following model for 

the unclosed thermal flux as: 

 ,
Pr

i

T i

Tv
V T

x



  


                                (14) 

where

 , 2

2

anisotropic

i j u ij ij

viscous

pq pq

V V v S N

v S






   . We 

refer to ratio Γ as the stress ratio (SR). This 

quantity, in general, will depend on both space and 

time and allows the thermal flux model to be 

sensitive to the presence of non-linear stresses in the 

flow field. Due to this dependence of the model on 

the non-linear stresses, and in turn on the non-linear 

tensorial products of the resolved strain-rate and 

rotation-rate tensors as well, equations (8) and (14) 

can be described as an implicitly non-linear 

constitutive equation. The authors’ intent is not to 

claim that this model (14) is necessarily the “best 

possible model” of thermal flux. The authors 

acknowledge that possibly a more advanced PANS 

closure can be derived using an anisotropy-based 

approach - like that of Daly and Harlow (1970), 

Abe et al. (1994), Abe et al. (1995)- or even an 

evolution equation based approach (like that of 

Wikstr m et al. (2000)). The intent of this modified 

proposal (14) is merely to propose and explore a 

more appropriate zero-equation model (in 

comparison with equation (9)) for the unclosed 

thermal flux when an NLEVM model is being used 

in the filtered momentum equation. 

The equation set of (2, 6, 8) along with the new 

model (14) is now closed, and we refer to this set as 

the NLEVM+PANS+SR methodology. In contrast, 

we refer to the closed set of equations comprising of 

(2, 6, 8) along with the linear version of the thermal 

flux model (9) as the NLEVM+PANS 

methodology. 

3. COMPUTATIONAL SET-UP 

All our evaluations are performed for the flow past 

a square cylinder at Reynolds number (Re)= 21,400. 

The computational domain used for these 

simulations has dimensions: 27D stream-wise, 14D 

cross-stream-wise and 4D span-wise (where D is 

the length of the base side of the square cylinder). 

The origin of our coordinate system is located at the 

centre of the square cylinder (at location 9D 

downstream from the inlet). A schematic of the 

computational domain is presented in the Fig. 1.  
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Fig. 2. (a) Side view of mid z-plane slice of grid (left), (b) Near surface mesh (zoomed view) on the 

square cylinder (right). 
 

 

This choice of domain is in line with the 

computational studies (Nakayama and Vengadesan 

2002; Song and Park 2009; Jeong and Girimaji 

2010; Ranjan and Dewan 2015; Basara and Girimaji 

2018). The equations (2, 4 or 8, 6 and 7 or 14) are 

solved throughout the computational domain. 

At inlet (left face of domain), the boundary 

conditions are: velocity specified as 1 m/s along x-

direction, zero pressure gradient, temperature as 

300K, turbulent kinetic energy (k) as 6.0e-4 m2/s2 

and turbulent dissipation rate (ε) as 6.9e-5 m2/s3. 

Top and bottom faces have slip boundary condition 

for velocity, zero pressure gradient, and 

temperature, k and ε have the same values as at the 

inlet. The two lateral walls (front and back) are 

given cyclic boundary conditions. At outlet (right 

face of domain) the boundary conditions are: zero 

value of gauge pressure, and zero gradient for 

velocity, temperature, k and ε. The four surfaces of 

the square cylinder have no-slip boundary condition 

for velocity, zero pressure gradient, and temperature 

as 330K. 

A wall-resolved unstructured mesh with uniform 

extrusion in the span-wise direction (prepared using 

ANSYS ICEM software), is employed for our 

study. The near-wall regions are provided with 

inflation layers. The first cell height is chosen to be 

small enough to ensure that it is in the viscous layer 

with y+ value less than unity (and x+ value less than 

20). A conformal interface between the inflation 

layers and the tetrahedral grid cells is ensured. As 

we move away from the cylinder walls, a growth 

ratio of 1.05 is provided. The planar grid consists of 

0.15 million cells. This planar grid is provided an 

extrusion in the z-direction with 32 nodes to obtain 

a three-dimensional grid (z+ value less than 200). 

The resolution in the z-direction is comparable to 

that used by previous works employing PANS 

simulations (Jeong and Girimaji 2010; Ranjan and 

Dewan 2015; Basara and Girimaji 2018) for the 

flow past a square cylinder at the same Reynolds 

number (as the one used in our work). The total cell 

count of this grid is around 5 million. This grid is 

primarily employed for our simulations. A 

representative view of this grid is presented in Fig. 

2. 

All computations are performed using the 

OpenFOAM computational package. Appropriate 

edits and additions in the solver scripts have been 

made to suitably incorporate the LEVM+PANS, 

NLEVM+PANS and NLEVM+PANS+SR 

methodologies. In all our simulations, near wall 

treatment is achieved using the two-layer treatment 

proposed by Chen and Patel (1988). The 

discretization schemes employed in our simulations 

along with other relevant solver settings are 

mentioned in Table 1. 

 

Table 1 Details of schemes and solver 

 Schemes 

Temporal 2nd Order Implicit 

Gradient (default) 2nd Order Linear 

Gradient (pressure) Least-squares 

Divergence Bounded 2nd order upwind 

Laplacian 2nd Order Linear 

Interpolation Linear-corrected 

Surface-normal Gradient Linear 

Residual Tolerances 1e-06 

 
Pressure-Velocity 

coupling 

PISO (Pressure Implicit with 

Splitting of Operators) algorithm 

Variable Solver 

Pressure 
Geometric agglomerated 

Algebraic MultiGrid (GAMG) 

Smoother 
Diagonal based Incomplete Cholesky 

Gauss Siedel (DICGaussSiedel) 

Velocity, k, ε 
and temperature 

Pre-conditioned Bi-Conjugate 

Gradient Stabilized (PBiCGStab) 

Pre-conditioner 
Diagonal based Incomplete LU 

(DILU) 

 

Evaluation of LEVM+PANS, NLEVM+PANS and 

NLEVM+PANS+SR methodologies are performed 

employing unsteady three-dimensional simulations. 

In Table 2 we include a brief description indicating 

value of parameter (fk) and the methodologies used 

in these simulations. All these simulations are 

performed using the three dimensional grid 

described earlier in section 3 (Fig. 2). For all these 

simulations, the other filter parameter, fε is set to 

unity as the Reynolds number is high enough to 

justify almost all dissipation to be concen trated in 

the smallest (modelled) scales of motion (Girimaji 

2006; Jeong and Girimaji 2010). Note that 

simulations A and D which have fk = 1 are actually 

unsteady RANS simulations. Merely for the sake of 

having uniformity in notation, we refer to these  
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Fig. 3. Temporal variation in < Cd >mean obtained from various simulations. 

 

simulations as LEVM+PANS with fk = 1 and 

NLEVM+PANS with fk = 1. On the other hand, 

simulations B, C, E, F and G are PANS 

simulations, because fk < 1. Results of simulation 

cases A-F are used to evaluate the performance of 

the LEVM+PANS and NLEVM+PANS 

methodologies. Results of simulations F and G are 

compared to identify the improvements in the 

ability to capture heat transfer characteristics with 

the SR-based model of the thermal flux process. 

Even though the PANS methodology allows fk to 

be varied between 1 and 0, our study employs only 

three values of fk (1, 0.8 and 0.5). Since the intent 

of this work is not necessarily to report the best 

predictions by the PANS methodology, but rather 

to demonstrate the similarity and differences in the 

inherent capabilities of the linear and the non-

linear PANS, we deem our PANS simulations up 

to even fk = 0.5 to be adequately serving the 

objectives of this study. 

 

Table 2 Simulation cases 

Case Simulation fk 

A LEVM+PANS 1 

B LEVM+PANS 0.8 

C LEVM+PANS 0.5 

D NLEVM+PANS 1 

E NLEVM+PANS 0.8 

F NLEVM+PANS 0.5 

G NLEVM+PANS+SR 0.5 

 

4. QUANTITIES OF INTEREST AND 

TIME-STEP/GRID SENSITIVITY 

Each simulation starts with a uniformly initialized 

flow field which is then allowed to develop over ten 

flow-through times (tV0/27D, where V0 is the far-

upstream velocity). By this time, the flow attains a 

state after which time-averaging of various 

quantities of interest begins. Subsequently, the 

simulations are continued further for next ten flow-

through times. All mean quantities reported in this 

work are time-averaged values obtained over the 

latter ten flow-through times only. In Fig. 3, we 

present temporal variations in Cd obtained from 

Simulation A-F. Plots are shown from 300 to 350 

flow simulation time. Quantitative evaluations are 

performed using these time-averaged values of 

quantities of interest. Some qualitative comparisons 

and physical explanations are sought using 

instantaneous flow fields as well. 

The mean quantities of our interest are: (i) mean 

Nusselt number on the cylinder surface 

 mean
Nu , (ii) mean coefficient of drag 

 D mean
C , (iii) mean coefficient of pressure 

 p mean
C  along the cylinder surface, (iv) 

recirculation length behind the cylinder (Lr), (b) 

mean stream-wise velocity profiles, and (vii) 

second-order turbulence statistics in the flow field 

 i iu u  . 

   

 

0 0

0

2 2 2

0 0

2

; ;
1 1

4
2 2

wall mean mean

mean

wall wall

x mean mean

D pmean mean

i i i i mean
mean

q D TD
Nu

K T T K T T n

p pF
C C

V D V

u u V V

 


 

  


 

   

 

Note that the symbol 
mean

 means time-averaged 

value (henceforth referred to as “mean values”) of 

the quan-tity in context. The symbols n, K, 
wallq  , 

Fx, p0, V0 and T0 represents wall normal distance, 

thermal conductivity, wall heat flux, net force on 

the cylinder in x-direction, pressure, velocity and 

temperature at far upstream locations respectively. 

In all our simulations, Twall = 330 K and T0=300 K. 

The turbulent Prandtl number (PrT ) is set to be 

unity in all simulations as done in previous 

computational works (Ranjan and Dewan 2015). All 

computations are performed at 

0

D

V D
Re 21,400


  . 

The non-dimensional time step (∆tV0/D) used in 

simulations A-G is in 0.7−1.2x10−3 range, which is 

similar to the time step range (= 1.00−1.67x10−3) 

used by Cao and Tamura (2016) in their LES 

studies of flow past a square cylinder at the same 

Reynolds number. The choice of time-step range is 

made accounting for balance between temporal 

resolution and computational resources from 

engineering point of view - ensuring the maximum 

Courant number is less than 2. To further ascertain 

the adequacy of the time steps employed in our 

simulations, we have performed NLEVM+PANS 

simulation case with Courant number of 4. The < 

CD >mean value obtained from simulation G is 2.25, 

which is merely 1.27% different from the < CD 

>mean = 2.20 value obtained from simulation with 

Courant number of 4. To further scrutinize time step 

sensitivity, we follow the rec dence of Cao and 
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Tamura (2016) and examine the < Cp >mean variation 

over the cylinder surface as well in Fig. 4. 

Evidently, no significant differences are observed 

when Courant number is changed from 2 to 4. Thus, 

based on these results, we deem Courant number = 

2 to be adequate for the rest of the study. 

 

 
 

 
Fig. 4. Locations of points F (mid point of front 

cylinder face), A, T (mid point of top face), D 

and R (mid point of rear face) marked on Fig. 1. 

 
 

The computational grid employed in simulations A-

G has been generated by uniformly extruding 

unstructured grid along the span wise (z) direction. 

The grid in planes parallel to the x-y axes is 

unstructured. To ascertain the adequacy of our grid 

for our study, we have performed two identical 

simulations which differ only in terms of the level 

of the refinement of the planar grids - one of the 

same resolution as discussed above [0.15 million 

(M) cells] and another one with further refinement 

[with 0.30 million (M) cells]. These simulations are 

performed with NLEVM+PANS methodology. In 

Fig. 4 we present the variation of < Cp >mean on the 

cylinder surface in these simulations. Results from 

the two simulations are sufficiently close. 

Further, we have performed the posterori test of 

PANS on the 0.15 million grid with 32 cells in the 

lateral direction following the guidelines prescribed 

by Abdol-Hamid and Girimaji (2004). In the 

posterori test, the probability density function of the 

ratio ku/k is computed after a PANS simulation has 

been completed. Data of ku is obtained from our 

PANS simulation F, whereas the data of k is 

obtained from the corresponding RANS simulation 

(Simulation D). The input fk value for the PANS 

simulation is 0.5. In Fig. 5, we present the PDF of 

ku/k. We find that the PDF peaks close to 0.5, which 

is the input value of fk for Simulation F. This 

suggests that our computational grid is adequate for 

performing a PANS simulation with fk ≥ 0.5. Based 

on these results, we deem the planar grid of 0.15 

million (M) along with 32 nodes in the span-wise 

direction to be adequate for the rest of the study. 

Simulations A-G employ this grid (snapshots of this 

grid are presented in Fig. 2). 

5. RESULTS AND DISCUSSION 

We begin our discussion with surface-related 

quantities. In Table 3, we present < CD >mean 

values from simulations A-G. When fk is reduced, 

the implicit filter cut-off is supposed to move 

from largest scales to smaller scales, thus 

releasing more scales of motion, and purportedly, 

improving the prediction of mean quantities of a 

flow field. For LEVM+PANS with fk = 1.0 

(simulation A), the< CD >mean value is 1.76. As fk 

is reduced to 0.5, < CD >mean value predicted by 

LEVM+PANS approaches 2.07 which is very 

close to experimental (Lyn et al. 1995) value of 

2.11. On the other hand, NLEVM+PANS 

simulation with fk = 1.0 has the < CD >mean value 

of 2.02 (which is already matching the prediction 

of LEVM+PANS at a lower fk value, 0.8). 

Further, as fk is reduced, NLEVM+PANS (fk=0.5) 

shows improvement and predicts value of 2.25 - 

which lies in the range (< CD >mean = 2.11 to 

2.30), predicted by recent computational works 

(DNS by Trias et al. (2015)). 

 

 

Fig. 5. PDF of 
uk

k
 computed using results from 

Simulations D and F. 

 

In Fig. 6, we plot < CD >mean along segments AFB, 

BC, CRD and DTA (see Fig. 1). Results from DNS 

(Trias et al. 2015), wherever available, are used 

along with experimental results of (Igarashi 1984). 

We observe that on the front face AFB of the 

cylinder, performance of all simulations (A-F) are 

close to the experimental measurements (Igarashi 

1984). There is not much difference between the 

PANS results at fk = 1 and fk = 0.8. Hence, results of 

simulation B and E − both with fk value of 0.8− are 

excluded from plots, to avoid cluttering. 

On the rear (CRD) side, clearly the performance of 

LEVM+PANS with fk = 1.0 is the worst. Both 

NLEVM+PANS (fk = 0.5) and LEVM+PANS (fk = 
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0.5) does better than their fk = 1.0 counterparts. 

However, NLEVM+PANS (fk = 0.5) formulation 

shows distinct improvement over the LEVM 

formulation (fk = 0.5) on the rear face (CRD). On 

face BC, we acknowledge that 

the performance of NLEVM+PANS with fk = 0.5 is 

actually inferior to LEVM+PANS. On face DTA, 

performance of the two methodologies seems 

similar. 
 

 
 

 
Fig. 6. < Cp >mean on cylinder surface: (a) Front 

face ; (b) Bottom face; (c) Rear face; (d) Top face 

[top to bottom]. 
 

In Fig. 7, we present the mean stream-wise velocity 

(<<V1>>mean) along the center-line of the cylinder 

wake. Here, it can be noted that both LEVM+PANS 

and NLEVM+PANS (with fk =1) perform poorly in 

capturing the dip as well as the velocity profile. The 

NLEVM+PANS methodology does exhibit a clear 

shift towards the experimental profile as the value 

of fk is reduced from 1.0 (simulation D) to 0.5 

(simulation F). This trend is most evident in the far 

wake region of x/D > 1.5. For comparison, results 

from DNS (Trias et al. 2015) and experimental 

studies (Lyn et al. 1995) are included. Clearly, 

among our four simulations (A, C, D and F), 

simulation F with NLEVM+PANS methodology 

and fk = 0.5 provides the best prediction of the 

center-line wake velocity. 

Based on the velocity profiles available in Fig. 7, 

we have computed the wake recirculation length 

(Lr/D) in each simulation. These results are included 

in Table 3. The experimental (Lyn et al. 1995) 

value of the recirculation length is 1.37D. DNS 

(Trias et al. 2015) report it to around 1.04. In case 

of Lr/D, we see clear improvement for 

LEVM+PANS with reduction in fk value (Table 3). 

However, LEVM+PANS shows considerable error 

even at fk values of 0.8 and 0.5. NLEVM+PANS 

(fk=1.0) - which is essentially non-linear URANS 

simulation - does better than even LEVM+PANS 

with fk= 0.5. While there is a marginal difference 

between the results of simulations D, E and F (1.35, 

1.28 and 1.27 respectively), overall the performance 

of NLEVM+PANS methodology seems to be 

superior than LEVM+PANS methodology. 

 

 
Fig. 7. Mean stream-wise velocity along wake 

center-line. Exp refers to Lyn et al. (1995). DNS 

results are of Trias et al. (2015). 

 
Table 3 Comparison of mean quantities 

Case Simulation fk <CD>mean Lr/D 

A LEVM+PANS 1 1.76 2.03 

B LEVM+PANS 0.8 2.02 1.20 

C LEVM+PANS 0.5 2.07 1.21 

D NLEVM+PANS 1 1.98 1.35 

E NLEVM+PANS 0.8 2.08 1.28 

F NLEVM+PANS 0.5 2.25 1.27 

G NLEVM+PANS+SR 0.5 2.25 1.27 

 
Experiment(Lyn et 

al. 1995) 
- 2.11 1.37 

 
DNS (Trias et al. 

2015) 
- 2.18 1.04 

 
 

In Fig. 8, variation of < CP >mean along the wake 

center-line behind the square cylinder is presented. 

Experimental data reported by Nakamura and Ohya 

(1984) is used as reference besides that of DNS 

(Trias et al. 2015). Here, LEVM+PANS with fk=1.0 

fails to capture the < CP >mean wake center-line 

profile. Though NLEVM+PANS with fk=1.0 does 

slightly better, but it is also too far off from the 

experimental/DNS profile. There is significant 

improvement in performance of both LEVM+PANS 

and NLEVM+PANS as the filter cut-off value is 

reduced to 0.5. Among these two, NLEVM+PANS 
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( fk=0.5) does better than LEVM+PANS( fk=0.5) 

and predict the wake center-line < CP >mean trend 

close to the one reported by experimental works 

(Nakamura and Ohya 1984) especially in wake after 

x > 1.5. 

We subject the NLEVM+PANS and the 

LEVM+PANS methodologies to further 

comparisons in terms of second-order statistics of 

the velocity field. In Fig. 9 we present 

  1/2

0/u u V  ,   1/2

0/v v V  and   1/2

0/w w V   

along the wake centerline. These results are 

compared against the fluctuations observed 

experimentally by Lyn et al. (1995). We present 

these results following the precedence of Jeong and 

Girimaji (2010) and Ranjan and Dewan (2015), 

who perform similar direct comparisons of the 

fluctuating moments obtained from PANS 

simulations against those obtained in experiments. 

DNS results reported by Trias et al. (2015) are also 

presented for computational perspective. Evidently, 

the performance of NLEVM+PANS at both fk 

values of 1.0 and 0.5 is superior than the 

corresponding results of LEVM+PANS. 

5.1   Heat Transfer Characteristics 

In context of heat transfer, the most important 

quantity to focus-on is the non-dimensional mean 

heat transfer rate (mean Nusselt number) on the 

cylinder surfaces. In Fig. 10 we present the 

variation of span-wise averaged< Nu >mean on the 

cylinder surface. Segments AFB, BC, CRD and 

DTA form this curve (schematic shown in Fig. 1). 

Since the experimental data is not available at ReD 

of 21,400, for our comparisons we have included 

interpolated data at 21,400 using the measured 

values at ReD of 29,600 and 18,500 (Igarashi 1985). 

Since the measured Nusselt number does show a 

clear monotonically increasing trend (see Fig. 4a of 

Igarashi (1985)) with Reynolds number, the authors 

deem reasonable considering the interpolated values 

for comparisons. 

We observe that on segment AFB, all simulations 

have identical predictions. At the center of the front 

face (stagnation point F), the mean Nusselt number 

values predicted by all simulations almost match the 

experimentally measured value. As one moves 

toward the cylinder corners A and B, all simulations 

tend to over-estimate the heat transfer rate. It is 

plausible to attribute these overestimates to the the 

fact that all PANS simulations assume the flow to be 

turbulent through-out, whereas experiments may 

have laminar flow in the upstream region. Over the 

lateral faces (BC and DTA), LEVM+PANS (fk=0.5) 

seems slightly inferior to NLEVM+PANS (fk=0.5). 

Near point C at bottom face and near point D on top 

face, the performance of the NLEVM+PANS 

methodology shows improvement over the 

corresponding LEVM+PANS cases, especially at 

fk=0.5. Indeed this is the region where shear layer 

detaches and vortex shedding initiates. On surface 

CRD (the rear face of the cylinder), the 

improvement achieved by NLEVM+PANS is most 

distinct. On this face, it is evident that while 

LEVM+PANS shows less sensitivity to a reduced fk 

value, the NLEVM+PANS meets the expectations of 

the PANS framework by improving the predictions 

as the fk value is reduced from 1.0 to 0.5. 

 
Fig. 8. < Cp >mean value along wake center-line. 

Exp refers to Nakamura and Ohya (1984). 
 

 

 

Fig. 9.   1/2

0/u u V   (top),   1/2

0/v v V   

(middle) and   1/2

0/w w V   (bottom) variation 

along the center-line in the wake of the cylinder. 

Exp refers to Lyn et al. (1995). DNS results are 

of Trias et al. (2015). 

 

5.2 NLEVM+PANS+SR vs. NLEVM+PANS 

In Fig. 10, we have presented comparison between 

the results of NLEVM+PANS with fk=0.5 

(simulation F) and NLEVM+PANS+SR with fk=0.5 

(simulation G) methodologies as well. Both these 

simulations use fk = 0.5 (see Table 2) and differ only 

in ways of modeling the thermal flux term. We 

observe that on front face AFB, the SR-based model 

does not show any sufficient change in the 

prediction of mean Nusselt number. However, on 

all other surfaces indeed some improvements are 
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observed in NLEVM+PANS +SR simulation as 

com-pared to the NLEVM+PANS simulation. 

Results of simulation G are closer to the 

experimental results as compared to the results from 

simulation E. Even though these improvements are 

not very substantial in terms of magnitude, still the 

authors deem the overall trend shown by the 

NLEVM+PANS+SR methodology to be 

encouraging. 

 

 

 
Fig. 10. Variation of < Nu >mean on the 

cylinder:(a) Front face; (b) Bottom face; (c) Rear 

face; (d) Top face [top to bottom]. 
 

5.3  Further Analysis and Explanations 

The PANS methodology is expected to release 

more scales of motion, when the filter parameter fk 

is set to have a lower value. A reduction in fk is 

expected to reduce the level of unresolved kinetic 

energy (ku), which in turn should reduce the 

unresolved eddy viscosity, νu (see Eq. 5). A 

reduced value of νu should then reduce the 

strength of the modeled turbulent stresses (4) in 

the filtered momentum equation. This reduction in 

turbulent stresses is expected to reduce the 

effective turbulent eddy-diffusion process in the 

filtered momentum equation, allowing the 

advection process to release more scales of motion 

in the instantaneous filtered flow field. As more 

scales are released, the prediction of flow statistics 

is expected to show improvement over the 

corresponding RANS simulation. This is the 

mechanism of the classical LEVM+PANS 

methodology to realize improved predictions as 

compared to the RANS methodology. 

In the NLEVM+PANS and the NLEVM 

+PANS+SR methodologies that we have 

employed in this work using quadratic model of 

Shih et al. (1993), a similar mechanism is 

expected to improve the prediction of flow 

statistics. However, the important difference 

between the NLEVM+PANS+SR (or the 

NLEVM+PANS) and the classical LEVM+PANS 

methodology is the fact that, in the former, the net 

diffusive effect in the filtered momentum equation 

is now determined by both the linear and the non-

linear parts of the turbulent stresses (8). Similarly, 

the diffusive effect in the filtered temperature 

equation is determined by the ratio νu/ν (in 

LEVM+PANS and NLEVM+PANS 

methodologies) and by the stress ratio (Γ) in the 

NLEVM+PANS+SR methodology. 

We begin our analysis of the instantaneous flow 

fields with a general visualization of the flow fields. 

In Fig. 11 we present contours of the z-component 

of the filtered vorticity vector. As expected, several 

vortex cores can be observed as one moves along 

the wake. 

To gauge the extent of smaller scales of motion in 

the instantaneous filtered fields, we compute the 

magnitude (M) of the filtered velocity gradient in 

the flow field. The quantity M is defined as: 

i i

j j

V V
M

x x

 


 
. As more scales of motion 

are released in the flow field, we expect the quantity 

M to be more amplified. In Fig. 12, we show 

contours of M in the instantaneous flow fields of 

simulations A-F. We observe that, in general, 

simulation C & F (with fk = 0.5) has larger 

magnitudes of M compared to simulations A & D ( 

fk = 1.0). It clearly suggests that the LEVM+PANS 

and NLEVM+PANS simulation with fk = 0.5 

(simulation C & F) release comparatively more 

scales of motion than simulations A and D. 

To gain a better insight into the wake vortical 

structures, iso-surfaces of Q-criterion are presented 

in Fig. 13. Here, the three-dimensional nature of 

flow field (as corroborated in experimental and 

computational studies (Trias et al. 2015; Cao and 

Tamura 2016) is captured by simulations with fk 

values of 0.5 only. At fk value of unity, both (LEVM 

and NLEVM) PANS is able to liberate only 2-D 

scales - which is the familiar expected behaviour of 

URANS simulation. However, at fk = 0.5, three 

dimensional features are evident in the 

instantaneous flow fields. 
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Fig. 11. Instantaneous contours of z-vorticity: (a) LEVM+PANS [fk =1.0], (b) NLEVM+PANS [ fk =1.0] 

(top row, left to right); (c) LEVM+PANS [ fk =0.2], (d) NLEVM+PANS [ fk =0.2] (bottom row, left to 

right). 

 

 
Fig. 12. Instantaneous M-contours: (a) LEVM+PANS [ fk =1.0], (b) NLEVM+PANS [ fk =1.0] (top row, 

left to right); (c) LEVM+PANS [ fk =0.2], (d) NLEVM+PANS [ fk =0.2] (bottom row, left to right). 

 

 
Fig. 13. Iso-surface of Q-criterion: (a) LEVM+PANS [ fk =1.0], (b) NLEVM+PANS [ fk =1.0] (top row, 

left to right); (c) LEVM+PANS [ fk =0.2], (d) NLEVM+PANS [ fk =0.2] (bottom row, left to right). 
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Fig. 14. Variation of Z along wall normal 

direction. 

 

In line with analysis presented earlier (Fig. 10), we 

expect the temperature gradient fields also to be 

more intense in simulations C (LEVM+PANS 

fk=0.5) and F (NLEVM+PANS fk=0.5) as compared 

to those in simulation A, B, D and E. In Fig. 14 we 

present variation of the magnitude of the gradient of 

the span-wise averaged mean temperature field (Z) 

in regions close to faces DTA (top face) and CRD 

(rear face) of the cylin-der. A quantity Z is defined 

as: 

j j

T T
Z

x x

 


 
. In each of these figures, Z 

is plotted along the wall-normal direction starting at 

three specific locations on the cylinder surface. 

Figure 14a shows variation in Z along the x-axis at 

location y/D = 0 (face CRD). Figure 14b shows 

variation in Z along the x-axis at location y/D = 

0.25 (face CRD). Figure 14c shows variation in Z 

versus the y-axis at location x/D = 0.25 on top face 

DTS of the cylinder. We observe that at each 

location, in the near wall regions, 

NLEVM+PANS+SR (simulation G) is indeed 

associated with the highest magnitudes of the 

temperature gradient in the near wall region, 

suggesting the presence of more small scales in the 

temperature field in comparisons to other 

simulations. The highest magnitude in 

NLEVM+PANS+SR is followed next by those of 

NLEVM+PANS (simulation F), which in turn, 

shows higher magnitude of Z than LEVM+PANS 

(simulation C) in the near-wall regions at the same 

level of fk value (=0.5). Simulation with higher fk 

value, like LEVM+PANS and NLEVM+PANS with 

fk=1.0, exhibit lesser magnitude of temperature 

gradient in the near wall region, thus under-

predicting the Nusselt number and near wall thermal 

fluxes. 

In Table 4, we present comparison of the clock 

time(τclock) required to simulate one flow-through 

cycle of various cases utilizing 96 processors. 

Presented comparison is performed on Intel Haswell 

CPUs (2 × 12 core, 2.5 GHz) E5-2680 node cluster. 

Conventional lin-ear PANS cases require less clock 

time of around 12.5 hours to complete one flow-

through cycle. Non-linear PANS cases takes almost 

12% more clock time (14 hours approximately). 

This must be due to additional non-linear terms in 

the turbulent stress tensor.  
 

Table 4 Comparison of computational time 

Case Simulation fk 
τclock 

[in hours] 

A LEVM+PANS 1 12.5 

B LEVM+PANS 0.8 12.5 

C LEVM+PANS 0.5 12.5 

D NLEVM+PANS 1 14 

E NLEVM+PANS 0.8 14 

F NLEVM+PANS 0.5 14 
 

6 CONCLUSIONS 

In recent years, the Partially-averaged Navier-

Stokes (PANS) methodology of turbulence 

computations has emerged as a useful scale-

resolving, accuracy-on-demand method. Like the 
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Reynolds-averaged Navier-Stokes (RANS) 

methodology, PANS too relies on turbulence 

models for the unclosed turbulent stresses in the 

momentum equation and the unclosed thermal flux 

in the temperature equation. 

In literature, almost all previous implementations 

and testing of PANS methodology have been done 

in conjugation with the linear eddy viscosity model 

for the turbulent stresses and a corresponding linear 

eddy viscosity- based gradient diffusion hypothesis 

for the turbulent thermal flux. Thus, the 

performance of PANS has been naturally restricted 

by the limitations of these linear closure models. In 

this work we explore the possibility of further 

improving the capability of the PANS methodology 

in simulating flow fields by including the effects of 

non-linear constitutive equations. 

We first extract the PANS version of the non-linear 

eddy viscosity model of Shih et al. (1993), which 

was originally proposed as a Reynolds-averaged 

Navier-Stokes (RANS) closure. Subsequently, we 

model the thermal flux process using the gradient 

diffusion hypothesis wherein the diffusion 

coefficient is modified and sensitized to the 

presence of non-linear stresses. The resulting non-

linear PANS formulation is evaluated by simulating 

flow past a heated square cylinder at Reynolds 

number of 21,400. To clearly compare and identify 

the advantages/disadvantages of the non-linear 

PANS methodology, simulations are performed 

with the conventional linear PANS methodology as 

well. 

The major conclusions of this study are: 

1. Performance of the PANS methodology in 

conjunction with the non-linear eddy viscosity 

model of Shih is superior than that of the 

PANS methodology using with the 

conventional Boussinesq’s linear eddy 

viscosity model in terms of hydrodynamics 

quantities (drag, pressure coefficient, velocity 

profiles and higher order statistics) over the 

range of filter parameters considered in this 

work. 

2. On the front side of the cylinder, the 

performance of the non-linear and the linear 

PANS methodologies are identical in terms of 

the mean heat transfer rate with both 

formulations showing over estimations in near 

edge zones. It is plausible to attribute these 

overestimates to the fact that the PANS 

simulations assume fully turbulent flow fields, 

while in experiments this region may have 

laminar flow. 

3. On the rear side of the cylinder and over the 

aft region of the lateral wall (where shear 

detachment takes place and vortex shedding 

initiates), the non-linear PANS formulation 

shows some improvements over the linear 

PANS formulation. This improvement is 

further enhanced (on the lateral and the rear 

cylinder surfaces) in the simulation where the 

diffusivity of the modeled thermal flux 

process is directly sensitized to non-linear 

stresses in the flow field (the SR version of 

NLEVM+PANS methodology). Even though 

these improvements are not very substantial 

magnitude wise, the qualitative trend shown 

by the non-linear PANS methodology is 

encouraging. 

Based on the evaluations presented in this study, the 

authors conclude that the non-linear PANS 

methodology seems to have an inherent potential to 

improve the performance of PANS over the 

conventional its linear counterpart on the same 

given grid and identical filter settings. There is a 

need to perform more such comparative studies 

(with more test cases and with more non-linear eddy 

viscosity models) to fully examine and leverage this 

potential for further improving PANS predictions of 

turbulent flow fields. Indeed, it is pertinent to 

mention that we have performed similar evaluations 

for another canonical flow field: flow past a sphere. 

For sphere too, the performance of the 

NLEVM+PANS methodology is found to be 

superior than its LEVM+PANS counterpart. Due to 

page limitations, we have not been able to include 

those results here. Those comparisons will appear in 

detail in our next manuscript. 
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