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ABSTRACT 

A large eddy simulation study was conducted to investigate the turbulent dynamic structure of a fluid flow in 

two staggered tube configurations, one is composed of all circular cylinders and the second is composed of 

circular and square cylinders. The present LES, based on the wall-adapting local eddy viscosity model, has 

been conducted for ReD = 12,858, which match available experiments. The appropriate grid has been selected 

using the grid convergence index method so that the wall-normal coordinate y  value is relevant for walls. 

Streamlines, turbulence kinetic energy contours, instantaneous vorticity contours computed indicate that wake 

patterns are more chaotic. In addition, flow coherent eddies within both configurations are identified via the 

Q -criterion. Based on the obtained findings, it can be stated that the model considered, in addition to being 

physically sound, demonstrated to be suitable for simulating the turbulent flow over circular and mixed 

staggered tube bundles with higher resolution. 

Keywords: Tube bundles; Large eddy simulation; Turbulent flow; WALE model; GCI method; Q-criterion. 

NOMENCLATURE 

Cw WALE constant    absolute error 

D cylinder diameter   Von Karman constant 

e  relative error   inematic viscosity 

GCI grid convergence index t  SGS eddy-viscosity 

h  grid spacing   density 

k  turbulent kinetic energy sgs  deviatoric SGS stress tensor 

p  Pressure Superscripts/subscripts 

Re  Reynolds number , ,i j k  Coordinate alternation index 

S strain rate tensor t  turbulent 
dS  traceless symmetric tensor w wall 

S  norm of strain rate tensor (.)  filtered variable 

SL longitudinal pitch-to-diameter ratio ()  dimensionless quantity 

ST transverse pitch-to-diameter ratio '(.)  fluctuating quantity 

t  Time Abbreviations 

inU  incoming flow velocity CFD computational fluid dynamic 

u  wall friction velocity DNS direct numerical simulation 

, ,x y z  Cartesian coordinate system LES large eddy simulation 
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y  wall units coordinate P/D pitch-to-diameter ratio 

Greek letters RANS 
Reynolds-Averaged Navier-

Stokes 

     ij  Kronecker tensor SGS subgrid scale 

  LES filter length WALE 
wall-adapting local eddy 

viscosity 

1. INTRODUCTION 

Turbulence is a phenomenon that occurs frequently 

in fluid flows, both in nature and in almost all 

industrial flows. In addition, turbulent flows cover 

up a broad range of temporal and spatial scales 

whose numerical resolution requires high grid 

resolution. High resolution and time-dependent 

simulations can supply detailed predictions of the 

flow field with unfortunately a very long CPU run 

time. Currently, efficient numerical simulation 

methods for predicting unsteady turbulent flows 

remain limited. This is mainly due to their three-

dimensional, unsteady and irregular traits. The most 

accurate method for solving such flows is direct 

numerical simulations (DNSs), which handle the 

Navier-Stokes equations without modelling on a 

fine grid using a small time step. They are suitable 

for simple flows, but they become computationally 

expensive in case of complex flows. Thereby, they 

are still limited to simple engineering applications 

or academic studies. The overall cost of a complete 

calculation is proportional to Re, which is not 

suitable for industrial applications where sufficient 

computer resources are lacking. Thereby, Unsteady 

Reynolds Averaged Navier-Stokes (URANS) or 

Large Eddy Simulation (LES) approaches are 

preferred. LES has come to be regarded as an 

effective prediction method for turbulent flows. 

Indeed, it is able to fill gaps URANS approach, as 

up noted, providing more turbulent information than 

the URANS method while requiring less 

computation than the DNS (Duan and Chen, 2015). 

The choice of one of these methods depends on the 

targeted physical precision level and available 

computing resources. This is the LES which is 

adopted when flow separation prediction, a proper 

unsteadiness prediction in wake regions, etc. are 

sought. Such an approach splits flow fields into 

large and small scales via a filtering procedure. In 

other words, large eddies are solved while smaller 

ones (supposed isotropic) are modeled. It is worthy 

to note that, in this approach, large-scale eddies are 

the main ingredients that transport momentum into 

a turbulent flow field. Piomelli (2014) pointed out 

some current and future aspects of this approach. 

The tube bundle geometry gives rise to chaotic and 

unsteady flow phenomena that lend themselves 

simulations via LES. Thereby, numerical simulation 

of such unsteady flows through a tubes bundle is a 

huge computational challenge. It is worthy to recall 

that early knowledge on rod bundle flows has come 

from experimental observations conducted in the 

seventies. Since then, the fluid flow over a tube 

bundle has become a problem of the most studied 

because of its application in many engineering 

applications such as flow across overhead cables, 

flows over skyscrapers, heat exchanger geometries 

and cooling system for nuclear engineering (nuclear 

power plant, nuclear fuel rods, etc.). (Wang and 

Daogang, 2019), Circular cylinders, isolated or in 

bundles, are commonly seen in the offshore and 

ocean engineering structures. Subsea pipelines, 

marine risers and columns of semi-submersibles are 

salient examples. The flows taking place on these 

elements are often turbulent and are thereby 

difficult to handle numerically and experimentally. 

In other words, comprehensive understanding of 

phenomena involved in these flows by experimental 

means has often proved expensive, leading to the 

numerical methods use as a complementary tool to 

explain turbulence phenomena occurring over these 

systems (bundles) (Mikuz and Tiselj, 2016; Salinas-

Vázquez et al. 2011). Among the many numerical 

approaches that can be implemented, we can cite 

the LES method which consists of directly 

simulating large eddies while modeling the smallest 

under appropriate conjectures. In practice, many 

configurations exist yielding the problem very 

complicated while leading to different flow 

patterns. The bundle may consist of purely circular 

tubes, as in heat exchangers, square tubes, as in 

buildings, or a mixture of tubes (circular and 

squares or wavy cylindrical), as in electronic 

component cooling systems and risers and supports 

offshore platform (Tutar and Hold, 2010). The flow 

periodicity present in bundles can cause vibrations 

of the tubes during liquid and acoustic resonance in 

the fluid flows. Balabani and Yianneskis (1996) 

have experimentally studied the development of the 

turbulence structure and mean flow over a bundle 

composed of three circular tube arrays, one an in-

line and two staggered arrays. They established 

turbulence levels, mean velocities, length and time 

scales and dissipation rate from ensemble averaged 

and time resolved laser Doppler anemometry 

(LDA) measurements. They noted that the 

interference of adjacent cylinders is stronger in 

staggered geometries. They also reported that 

turbulence levels generated by the staggered 

configuration were higher compared to inline one. 

Da Silva et al. (2019) conducted an LES numerical 

investigation of a 3D flow on a five-row in-line 

bundle for the same subcritical Reynolds number. 

They stated that, in general, their results match to 

experimental data relating to average velocities and 

fluctuations over time. Benhamadouche and 

Laurence (2003) have used LES and transient 

Reynolds stress transport model (RSTM) in 2D and 

3D, at a Reynolds number of 
39 10  with two grid-

refined, viz. a coarse and a fine one. They 
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concluded that 1) the LES results are more 

consistent with the DNS data and experiments with 

the fine mesh, and 2) a reasonable agreement can 

still be achieved with the coarse mesh. Note that, in 

the latter case, it turned out that the RSTM in 3D 

had no advantage over the LES. 

To our knowledge, few studies on flows past mixed 

tubes bundles have been performed. Fluid flow over 

cubes arrays have been studied by Zhengtong and 

Castro (2006). They performed their computations 

with two Reynolds numbers, viz. 
35 10 and 

65 10  with the LES and RANS methods. They 

concluded that, with overly coarse grids, LES is an 

effective tool for simulating airflow past urban 

obstacles at high Reynolds number. In addition, they 

compared the LES and RANS approaches to state 

that the latter is inadequate, particularly in the 

canopy region. Oengören and Ziada (1998) compiled 

experimental data on vortex shedding in a triangle 

arrangement for the range 2700 Re 52,000D  . 

They found two Strouhal numbers in staggered rows 

cylinders. Kahil et al. (2019) performed a LES of the 

flow past four cylinders based on the dynamic 

Smagorinsky model at a sub-critical Reynolds 

number of 
33 10 and different pitch-to-diameter 

ratios ( LS /D ). Their findings revealed that flow 

structures change with the variation in spacing (P/D) 

and a skewed  flow can be detected for some spacing 

ratios. Chatterjee et al. (2010) have studied 

numerically the flow around five square cylinders. 

The computations were accomplished for four 

separation ratios (ST/D= 1.2, 2, 3 and 4; with S and 

d, are the transverse spacing and cylinder diameter) 

in 2D-unsteady incompressible flow at a Re of 150. 

The squares were arranged in side-by-side and 

normal to the on-coming flow. The aim of their study 

is to investigate and analyze the spacing between 

cylinders’ effect on vortex shedding mechanism and 

the wake structure. They pointed out that the nature 

of drag and lift coefficient signals are sinusoidal 

which ensures that the dominant frequency 

associated to the vortex shedding is the primary 

(Strouhal) frequency and the secondary frequency 

effect is negligible. Furthermore, they reported that, 

from two successive cylinders, the vortex shedding is 

similar and when the distance of separation is more 

than twice the dimension of the cylinders (S/D > 

2.0), the vortices were in an arrangement of phase 

opposition. However, when this distance is less than 

two diameters (S/D = 1.2), they reported that there is 

a deviation of the jets between the cylinders and the 

wakes merge, resulting in clusters formation. Bakosi 

et al. (2013) presented an LES of the flow in a 

simplified PWR assembly with 5 5  rods. They 

compared transverse and axial velocity profiles to 

measures. They found a reorganization of the cross 

flow which is different from that measured. Lakehal 

(2018) reported a detailed simulation analysis of 

turbulent convective flow upward along the heated 

rods of a PWR sub-channel using a highly-resolved 

LES approach. He specified that the secondary-flow 

motion induced by the average flow is responsible 

for a large portion of the wall-to-flow heat transfer. 

In addition, a Very-Large Eddy Simulation (VLES) 

modeling has been developed and compared to 

traditional RANS and LES for a flow across a tube 

bundle by Labois and Lakehal (2011). It has been 

stated that such an approach is clearly superior to any 

RANS approach and that it well handles three-

dimensional flow unsteadiness. Mikuz and Tiselj 

(2016) performed a LES of the turbulent flow in a 

5 5  bar bundle. Their results corroborated the 

LDV benchmark data pointing that the WALE model 

is well suit to handle such a geometry. 

The present study deals with a large eddy 

simulation of turbulent flow across circular and 

mixed tube bundles using the CFD Ansys Fluent 

18.1 code (2017) in which the LES is implemented 

with improved numerical and spatial resolution. The 

assessment of this simulation is achieved by 

comparison with the experimental data of Balabani 

and Yianneskis (1996). This paper starts by 

summing up research into flow over two different 

staggered tube bundles, with a particular regard for 

previous simulations. Then, the governing equations 

and turbulence modeling are briefly outlined in 

Section 2 including geometry, boundary conditions, 

mesh, and the Grid Convergence Index (GCI) 

method. In Section 3, the main findings are 

presented and commented. Finally, Section 4 recaps 

our conclusions. 

2. GOVERNING EQUATIONS AND 

TURBULENCE MODELING 

2.1 Problem Setting and Boundary 

Conditions 

The computational setup consisting of a tubes 

bundle (cylinders’ system) in a square channel is 

depicted in Fig. 1. The first includes cylinders all of 

circular shape, while the second configuration is 

mixed gathering intercalated circular and square 

cylinders. The mixed bundle consists of six tubes 

rows (circular and square) arranged in staggered 

rows with circular cylinders having an outer 

diameter of 10 mm and square cylinders having a 

side of 8.86 mm. The transverse and longitudinal 

pitch to diameter ratios, TS  and LS , are 3.6 and 

4.2, respectively. The rods length to diameter ratio 

is 7.2. Each row comprises 1 or 2 full tubes, as 

shown in the Fig. 1. Before achieving the targeted 

simulations, we first used the experimental 

conditions of Balabani and Yianneskis (1996) to 

validate our preliminary simulations. The study was 

carried out at a Reynolds number ( Re /D uD  ) 

of 12,858  based on the gap velocity ( 11.29 ms ), 

the cylinder diameter, the working fluid being water 

at 20 C  whose kinematic viscosity is 

-31.003 10  Pa.s    and density is 
3998.2 Kgm  . 

The rods were rigidly fixed to the upper and lower 

walls. Using a Doppler Laser Velocimeter 

technique, the authors measured average velocities 

and turbulence levels. As shown in Fig. 1, the 

geometry used in the LES computations is Cartesian  
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(a) 

 

(b) 

 
(c) 

 

(d) 

Fig. 1. Sketch of the computational domain including boundary conditions (not to scale): (a) circular 

tube bundle, (b)-(d) Cross-sectional views of tubes bundle, and (c) mixed tube bundle. 

 

 

(rectangular). The left and right side of the domain 

are located 4.2D upstream of the first line and 

downstream of the last row, respectively. They are 

set as input and output flow boundaries. For these 

boundaries, a uniform velocity U  (= 0.93 m/s) is 

prescribed at the inlet and a downstream relative 

pressure condition ( 0p Pa ) is imposed. Its 

central zone has a length of 10.5D . The top and 

bottom sides are dealt as stationary no-slip smooth 

walls ( 0U  ), and the cylinders’ height is 7.2D , 

thereby taking up the entire height of the canal. To 

avoid an excessively large computing mesh, a 

square section channel with a total length of 18.9D  

including the 6 rows has been considered herein. It 

should be stressed that our main target is to simulate 

such a bundle flow using the LES technique which 

is briefly described below (see Sub-section 2.2). To 

sum up, the sketch shown in Fig. 1 illustrates the 

complete flow simulation area concerned.

2.2 Turbulence Modeling 

The flow, applied to the problem of a staggered 

tubes bundle consisting of tubes all circular or 

mixed tubes (circular and square) in cross-flow, is 

unsteady, turbulent and three dimensional. The fluid 

is Newtonian and incompressible with constant 

physical properties and without buoyancy effects. 

To alleviate this section, only a brief description of 

the governing equations is provided here. Since the 

dynamic effect is mainly concerned here, the 

governing equations are therefore the continuity and 

momentum equations. 

In the LES context, these can be written as follows 

(Nicoud and Ducros, 1999; Mikuz and Tiselj, 2016; 

Bennia et al. 2016; Medaouar et al. 2019) to name a 

few: 

. 0U                     (1) 

  2. / . sgs

U
U U p U

t
  


      


           (2) 

Here ( , , )U u v w  and p  are the filtered velocity and 

pressure, respectively, ρ is the fluid density and ν is 

the fluid’s kinematic viscosity, and (.)  denotes any 

grid-filtered quantity. The small scales influence in 

Equation 2 appears through the sub-grid scale 

(SGS) stress tensor which can be defined as follows 

(Germano et al. 1991; Lilly, 1992): 

ij

sgs
i ji j

u u u u                                                 (3) 

Such a tensor is split into an isotropic part and 

anisotropic part. The second (deviatoric part), 

relevant in incompressible flows and reflecting the 

interaction between resolved and unresolved scales, 

is modeled (approximated) according to the 

Smagorinsky-Lilly closure (Germano et al. 1991; 

Lilly, 1992) as follows: 

22 2( )
ij

sgs
t sS C S S                     (4) 

wherein  1/3, sMin y C V    is the filter length 
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scale,   being the Von Karman constant ( 0.42 ), 

sC  is the parameter that may not be universal (i.e. 

fixed or dependent on the flow), whose value varies 

from 0.1  (for shear flows) to 0.2  (for high 

Reynolds number flows), y  is the closest wall 

distance, V  is the computational cell volume, 

  / 2TS U U                    (5) 

And  
1/ 2

2 :S S S                  (6) 

S  being the resolved-scale strain rate tensor, S  

the Frobenius norm (second invariant) of S , and 

t  is the sub-grid-scale kinematic turbulent 

viscosity ( t k sgsC k , sgsk  being the SGS 

kinetic energy). The SGS stress tensor's trace is 

incorporated in the pressure term, thereby 

modifying the pressure ( / 3kk ijP p   ). 

For more information on the Smagorinski model 

and/or its dynamic variant (DSGM), the reader can 

refer to the ample literature in this area, and in 

particular to Lilly (1992). Unfortunately, such a 

model incorrectly handles the near-wall region by 

providing a non-zero turbulent viscosity at the wall. 

To fix this imperfection, the van Driest's damping 

approach is often used, so that the turbulence near 

the wall has a good parietal behavior, i.e. 
3

t y , 

( / )y yu     being the dimensionless wall 

distance. 

With an appropriate fine mesh, the Large eddy 

simulation method using WALE model is found as 

a pretty accurate tool to simulate turbulent flow in 

the computational domain as confirmed by Mikuz 

and Tiselj, 2016; Xia, 2019; Lee et al. 2018 and 

Bennia et al. 2020, to name a few. The SGS model 

adopted here to perform this study is the WALE 

model (Wall Adapting Local Eddy-Viscosity) in 

which the SGS eddy viscosity is set in terms of 

invariants such as (Nicoud and Ducros, 1999; 

Germano et al. 1991; Lilly, 1992): 

3/2
2

5/2 5/4

( : )
( )

( : ) ( : )

d d

t w d d

S S
C

S S S S

 



              (7) 

where the traceless symmetric tensor 
d

S  reads 

(Labois and Lakehal, 2011): 

2 2 2
( ) / 2 / 3d

ij ijij ji kkS g g g                     (8) 

with /i jijg u x   , 
2

ij ik kjg g g , and ij  is the 

the Kronecker tensor (in terms of components). 

Here, the Einstein summation convention applies. 

The salient points of the relationship (7) are 

threefold: 1) t  involves the strain and rotation 

tensors, thereby allowing to pick up turbulent 

structures relevant for the kinetic energy 

dissipation, 2) t  automatically tends towards zero 

near the wall with appropriate scaling (
3y ), and 

3) t  can be neither negative nor infinite. 

It should be recalled that these equations are those 

of Navier-Stokes, implicitly filtered in space, in 

which the spatial filter is determined by a filtered 

computational cell size (  ). In other words, the 

process consists in filtering out the small eddies 

with size smaller than the filter width so that the 

model can solve only the large scales of the flow 

field while modeling the small scales. 

In our study a value of 0.325wC   is used, 

according to the procedure advised by Nicoud and 

Ducros (1999), which is taken up in the literature 

(see, e.g. Mikuz and Tiselj, 2016; Ansys Fluent 18.1 

code, 2017) to name a few. According to Busco and 

Hassan (2018), the WALE model is able to provide 

a physical insight of secondary flows, and it scales 

the eddy viscosity appropriately near to walls 

avoiding any damping function while being is less 

sensitive to the model coefficient wC . Moreover, it 

behaves well to handle wall-bounded flows, is less 

dissipative, and is able to accurately capture the 

near wall behavior (in thin shear layer). It is worth 

noting that it is this model which has been used in 

this study unless otherwise stated. 

2.3 Meshing Implementation 

It is well accepted that meshing plays a paramount 

role in carrying out accurate simulations, especially 

in LES. For this purpose, the grid is not uniform 

with high density in high gradient zones and low 

density in less interest zones to minimize the 

computational effort while getting sufficient 

accuracy. A structured hexahedral meshing strategy 

is employed in these simulations using the ANSYS 

Meshing ICEM CFD meshing. The hexahedral 

grids are finer in the near-wall regions of the 

cylinder and the channel and slightly coarse 

elsewhere as shown in Figs. 2b-d. The distance 

between the nearest mesh node has been defined 

such that the maximum value of y+ is proper  

(~ 0.87 for the D grid; see Table 2). 

Figures 2(a) and (c) display structured 

computational grids for the two configurations, 

while Figs. 2(b) and (d) show the grids around 

circular and square tubes, respectively. Near to the 

tube, very fine meshes are required to well resolve 

the flow physics in the near-wall regions (boundary 

layer separation and the shedding process). Note 

that only a reduced number of grid points is 

displayed to make the figure readable. 

2.4 Computational Method and 

Numerical Set-Up 

In the present simulation, the finite volume method 

is applied to compute Eqs. (1)-(2) with appropriate 

boundary conditions using the ANSYS FLUENT 

CFD code 18.1. A bounded central differentiation  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Mesh topology: (a) Computational grid of circular tube bundle, (b) Computational 

domain of mixed tube bundle, (c) grid close-up around the circular tube, (d) grid close-up 

around the square tube. 

 

Table 1 Simulation settings and boundary conditions (BCs) 

Settings parameters 

Simulation type 3D Unsteady 

SGS model Wale model 

Pressure-velocity coupling SIMPLEC 

Momentum discretization scheme Bounded central differencing 

Convergence criterion -510  

Fluid Properties -31.003 10  Pa.s   ; 
3998.2 Kgm  at 20T C   

Cylinder diameter -210  D m  

Re  12,858 

Time step -310 s  

Grid used 4859,712 cells 

CFD code Ansys Fluent 18.1 

BCs 

Inlet 
Inlet velocity: 

10.93 U ms   

Outlet Relative pressure: 0 Pa  

All walls 
No-slip wall: 0U   

 

 

scheme is used for momentum discretization, while 

a second order implicit scheme is involved to 

advance the equations in time. The well-known 

SIMPLEC algorithm is used to handle the pressure-

velocity coupling between momentum and 

continuity equations. A convergence criterion of  

10-5 has been set for the continuity and momentum 

equations residuals with a time step of 10-5 s. To 

sum up, Table 1 gathers further details. 

Four different grids size are used to check the 

solution independency from the grid quality and cell 

size. The details of these grids, which all have a 

hexahedral structure, are settled in Table 2. Some of 

these meshes may seem a bit coarse for traditional 

LES. However, it is worth recalling that the main 

intent here is to assess the model capacity 

considered to handle such flows even if the 

resolution is rather low. 

Simulations have been performed for the first 

configuration where the tubes all have a circular 

shape and validated by comparison with the 

experimental results of Balabani and Yianneskis 

(1996). 
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Table 2 Grid sizes and properties 

Grid Cell size y+ min y+ "average y+ max 

Grid A (coarse) 505,800 0.93 5.23 12.5 

Grid B (medium) 1519,800 0.26 2.35 5 

Grid C (fine) 3618,480 0.23 0.71 1.02 

Grid (very fine) 4859,712 0.14 0.42 0.87 

 

 

 
Fig. 3. Spanwise profiles of the normalized 

average streamwise velocity; grid sensitivity. 

 
The Fig. 3 shows y-variations of the normalized 

average streamwise velocity for four grids at 

x/D=1.25. Computations on the first three grids 

show that the streamwise velocity is getting closer 

to experimental data as the number of cells 

increases. However, the results remain almost 

constant with increasing grid size from grid C to 

grid D without significant change occurring. 

To estimate the uncertainty due to the mesh and to 

quantify the discretization error for the first three 

grids (B, C, D), the Grid Convergence Index (GCI) 

method is performed herein. This is a practical 

method of accounting for numerical uncertainty 

based on the generalized Richardson extrapolation 

(GRE) to estimate the percentage of discretization 

error (Roache, 1997; Coleman and Stern, 1997; 

Salpeter and Hassan, 2012; Karimi et al. 2012; 

Khelil et al. 2016). Its principle takes the following 

steps:  

 rate the grid refinement ratio r and the formal 

convergence order p using the following 

relationships: 

21 2 1/r h h  and 32 3 2/r h h                  (9) 

32 21

21 21 32

1
ln ln

ln( )

p

p

r s
p

r r s

 
   

  




              (10) 

with 32 21( / )s sign   . 

Specify that 21  and 32  are the absolute error 

between two solutions viz 1f , 2f  and 2f , 3f , 

respectively, computed on two different grids with 

uniform discrete spacings, 1h  and 2h , 

corresponding to a fine and coarse grid spacing, 

while r is the grid refinement ratio, and p stands for 

the precision order of the discretization scheme. It is 

worth noting that 1f  being the fine grid solution, 

2f  is the middle grid solution and 3f  is the coarse 

grid solution. 

 Numerical Uncertainty Quantification 

The numerical uncertainty quantification can be 

handled using the Roache's GCI method (Roache, 

1997; Coleman and Stern, 1997; Salpeter and 

Hassan, 2012; Karimi et al. 2012; Khelil et al. 

2016). In this approach, the GCI index can be 

expressed as follow: 

21 21 2

21

10
1

a
ap

C
GCI e

r
 


               (11) 

where 
1/

2 121 ( / )
p dr h h , d being the grid dimension, 

aC  is an adjustment factor that has been set at 1.25, 

and 
21
ae  is the approximate relative error 

( 21 1/ f ). It should be reported that between grids 

2 and 3, the same relationships take place. In 

addition, according to Roache (1997), at least three 

levels of grid refinement (coarse, medium, and fine) 

should be selected to determine the convergence 

appropriate order while ensuring that numerical 

predictions are within an asymptotic range. 
 

 

Table 3 GCI method results 

Grid 
medium/fine 

(B/C) 

fine/very fine 

(C/D) 

Mesh refinement 

indices 21 1.33
p

r   32 1.10
p

r   

Absolute errors 21 0.25   32 0.021   

Convergence 

order 
3.52p   3.52p   

Extrapolated 

value 
21 1.36extf   

32 1.70extf   

Relative errors 21 16.66ae   
32 1.21ae   

GCI % 21 11.78GCI   32 1.70GCI   

 

Table 3 gathers the results for the drag coefficient 

on the last tubes used as a grid independence check 

variable for such an approach. 
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Fig. 4. Streamwise dimensionless average velocity profiles ( u / U ) compared with experimental data 

and the SST model (Patel, 2010) at selected axial locations and 0z  . 

 

 
From this Table 3, it can be seen that the error due 

to the refinement from the coarse to medium grid is 

of the order of 12%, whereas it is 1.7% (small 

value) for the refinement from medium to fine grid 

indicating that the obtained solution is in a proper 

range. Thereby, the results presented in the 

remainder of this paper are achieved with the very 

finest grid, viz. the D grid. 

3. COMPUTATIONAL RESULTS AND 

DISCUSSION 

Three-dimensional simulations have been 

performed for both configurations on the finest D-

grid using the WALE model. The primary target of 

this study is to simulate the mean flow Balabani and 

Yianneskis (1996) for the circular staggered tubes 

bundle to assess the methodology and subsequently 

the flow features. The results are also compared 

with those of Patel (2010), achieved via a numerical 

simulation with the SST model. After model 

validation, the two configurations are compared in 

terms of velocities, flow patterns and turbulences 

quantities. 

3.1 Velocity Distributions and Flow 

Patterns 

The time-averaged and dimensionless mean 

streamwise and spanwise velocities are compared to 

the measurements taken at locations highlighted in 

Figs. 1b and 1d, viz., x/D = 0.85, 1.25, 3.35, 5.05, 

5.45, and 7.5. Comparisons are made-up between 

our LES predictions, (Patel, 2010) and Balabani and 

Yianneskis (1996) data (see Figs. 4 and 5). As can 

be seen in Fig. 4, it is the WALE model which well 

predicts better the streamwise velocity ( u / U ) 

whatever the location /x D . Note that this velocity 

sometimes becomes negative at some stations, 

indicating that an inverse flow occurs. As for the 

transverse velocity ( v / U ), it is globally better 

predicted by the LES model than the SST model 

(see Fig. 5). It can be seen that, from the third 

station, both models exhibit rather significant 

deviations. At the fifth and sixth rows (x/D = 5.05 

and 5.45), the spanwise velocity is greatly 

overestimated by the SST model. However, at the 

station x/D = 7.55, the LES results agree better with 

Balabani and Yianneskis data compared to SST 

results which yet overestimate this velocity when 

y/D>1. In addition, since the average GCI is small 

(GCI <1.7%, see Table 3), one can state that the 

numerical uncertainty due to a discretization error 

does not contribute significantly to the 

disagreement between the predicted u - and v -

velocities via the WALE model and the 

experimental data. Furthermore, it should be 

stressed that the wall-normal coordinate y  is such 

that 0.14 0.87y  for the cylinders walls and 

0.27 1.08y   for the channel walls. Thereby, 

through these findings, it can be already stated such 

preliminary results support the WALE model. 
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Fig. 5. Transverse dimensionless average velocity profiles ( v / U  ) compared with experimental data 

and the SST model (Patel, 2010) at selected axial locations and 0z  . 

 

 

     
(a)                                                                                         (b) 

Fig. 6. Dimensionless time-averaged streamwise velocity in x y  plane at 0z   (midplane) for circular 

(a) and mixed tubes bundles (b). 

 
 

Figure 6 shows dimensionless time-averaged 

streamwise velocity contours for both 

configurations at the plane 0z  . It is found that 

the interference between the tubes is greater in the 

mixed configuration compared to the purely circular 

configuration. In addition, we observe that the 

introduction of square-row tubes speeds up the flow 

and results in a larger recirculation zone. Inverse 

velocities are higher in the mixed tube bundle and 

the shedding occurs in the tubes wake as expected. 

The highest velocities are between the tubes and the 

lowest are in the tubes wake. At the exit, the flow 

rate is decelerated due to the absence of inhibiting 

flow in the next tubes row. 

Figure 7 shows the vorticity magnitude at the same 

time to better visualize the shedding process. It 

appears clear that the most important rotational 

structures in the flow occur in the mixed 

configuration in which the flow vortex starts from 

the wake up to the adjacent tube. Regions of 

relatively high vorticity magnitude are observed 

behind the first and second rows downstream. 

However, their intensity decreases when the last 

row is reached. 

Figure 8 depicts the velocity vector while showing 

the development of recirculation zones of different 

sizes in the wake region. Explicitly, recirculation 

zones appear at the top and bottom of the square 

cylinders of the second bundle. In total, six 

recirculation zones can be identified behind the first 

squares: one at the top, one at the bottom, two near 

the bottom edge of the square and two others before 

the next square, due to the interference between the 

square tubes. The vortices behind the square  
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(a)                                                                         (b) 

Fig. 7. Instantaneous Vorticity magnitude contours in x y  plane at 0z   for 10t s around circular 

(a) and mixed tubes bundles (b). 

 

 

 

 
Fig. 8. Averaged velocity vector contours around circular and mixed tube bundles in x y  plane at 

0z  . 
 

 

cylinders are stronger and bigger than behind the 

circular cylinders in all rows. Once the flow passes 

the first square cylinders, the upper and lower 

vortices disappear from the next square cylinders. 

In the circular tube bundle, two main vortices 

develop in the wake region without interaction 

between the cylinders. For both configurations, it is 

set up that the flow reversal is more pronounced 

downstream of the first and second rows of 

cylinders. 

Figure 9 shows the distribution of the normalized 

time-averaged velocity along the spanwise direction 

( y z  plane) for both configurations at the position 

of /x D = -1.2 (before any obstacle) , /x D = 2.9 

(behind the first row tubes), /x D = 7.1 (behind the 

second row tubes) and the last stations at 

/x D =11.3 (behind the third row tubes). The first 

streamwise slices contours, without any obstacle, 

are similar, indicating that there is no tubes 

upstream effect on the flow. At the second and third 

stations, the streamwise velocity distribution points 

periodic repeats along the spanwise direction for 

both models. At these stations, compared to the 

purely circular model, the streamwise velocity is 

assessed to be greater in the mixed model, because 

of the different flow separation characteristics for 

the different square cylinders. Further downstream 

of the station /x D  = 11.3, the velocity parallel 

distribution ceases according to the spanwise 

direction, and the flow rate decelerates. 

The streamlines plot of the full flow field shown in 

Figure 10 demonstrate that purely circular cylinder  
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(a) 
 

(b) 

Fig. 9. Dimensionless time-averaged streamwise velocity distributions in y z  plane at different 

locations x/D: (a) circular and (b) mixed tube bundles. 

 
 

 

 
(a) 

 

  
(b) 

Fig. 10. Streamlines colored by time averaged streamwise velocity in x y  plane at 0z   around (a) 

circular and (b) mixed tube bundles. 

 

 

arrays give rise to a more stable and organized flow 

pattern with less fluctuation. However, the 

introduction of square cylinders in the bundle 

results in a more chaotic flow. It is noticed that the 

recirculation regions become gradually small in the 

streamwise direction, and the recirculation length in 

the mixed model is bigger. 
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(a) 

(b) 

Fig. 11. Instantaneous iso-surface vorticity colored with the streamwise velocity around (a) circular and 

(b) mixed tube bundles at 0z    and 10t s . 
 

   

   
Fig. 12. Dimensionless time averaged streamwise velocity comparison between the two bundles.  

 
Figure 11 depicts the iso-surfaces of the 

instantaneous vorticity magnitude in the flow for 

the two models. It can be seen an extremely 

complex flow distribution in the wake flow for the 

mixed configuration. In addition, the turbulent 

structures extent in the mixed model appears to be 

higher. Thereby, the iso-vorticity contours 

demonstrate the LES ability to capture full flow 

motion thus indicating that the adopted LES model 

is suited to handle complex turbulent flow through 

tubes bundles. 

Figure 12 compares the dimensionless time-

averaged streamwise velocity in the two bundles. It 

can be seen that, for the first two locations, the 

streamwise velocity is similar because of the 

presence of the same obstacles and that the flow has 

not yet reached the square cylinders. There is no 

effect upstream of these two sites. At the third and 

fourth stations, the flow is more accelerated 

between mixed tubes and decelerated near the 

square due to the reverse flow. the same phenomena 

are observed at stations /x D  = 5.05 and 5.45. In 

addition, for distant stations (x/D > 5), the 

maximum velocity is higher (almost twice) in the 

mixed configuration compared to the circular tube 

bundle. 

In Fig. 13, the normalized mean transverse velocity 

for the two tube bundles are compared at the same 

selected axial locations as the streamwise velocity. 

For the first three stations, this velocity exhibits 

almost similar profiles. Beyond, profiles differ. 

Explicitly, from /x D  = 3.35 to 5.45, the transverse 

velocity for the mixed bundle is higher than circular 

tubes bundle for /y D <1. When the flow is closed 

to the next cylinder row ( /y D >1), the transverse 

velocity is decreased with a higher gradient in 

mixed configuration. For last two stations,  
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Fig. 13. Dimensionless time averaged transverse velocity comparison between the two bundles. 

 

 

transverse velocity is higher in circular tubes 

bundle. Note that its maximum in the last station is 

≈ 0.15 for the mixed bundle and ≈ 0.4 for the 

circular bundle. 

3.1.1 Turbulence Kinetic Energy, 

Anisotropy Degree and Eddies 

Identification 

The normalized resolved turbulent kinetic energy 

(tke) is defined in terms of the SGS stress tensor 

trace as (Jahrul and Luke, 2018) to cite a few: 

' ' 2 20.5 / 0.5 /sgs
sgs i i iik u u U U

                (12) 

using summation notation, and 
'
iu  is the SGS part 

of the non-filtered velocity iu . Note that a transport 

equation for k  can then be derived via the trace of 

the transport equation for the SGS stress tensor, 

while modeling the diffusion and dissipation terms. 

Figure 14 presents the normalized turbulence 

kinetic energy contours in mid-plane z. It appears 

that in both configurations, the distribution of 

turbulent energy is very different in the last rows, 

involving more vortices in the mixed configuration. 

This energy is generated in the wake regions and 

then dissipated gradually in the mainstream flow. 

Downstream of the first two rows of cylinders, the 

tke is very low, then is increased downstream of the 

other rows due to the strongest eddies to reach its 

maximum value found downstream of fourth and 

fifth rows. The intensity of the turbulent flow 

structures being greater in the mixed model, a 

vibration could occur. 

 

 
(a) 

 

 
(b) 

Fig. 14. Dimensionless resolved tke contours 

around circular tube bundle (a) and mixed tube 

bundle (b) in x y  plane at 0z  . 

 

Figure 15 depicts the dimensionless distribution of 

|v’-u’|. These contours provide an indication of the  
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(a) (b) 

Fig. 15. Turbulence anisotropy via |v’-u’|-dimensionless contours around circular tube bundle (a) and 

mixed tube bundle (b) in x y  plane at 0z  . 

 

 

 

 

Circular tube bundle Mixed tube bundle 

 
 

 

 

Fig. 16. Coherent eddies via the Q  criterion's iso-surface within both configurations at 10t s  

coloring by the velocity magnitude. 

 

 

turbulence anisotropy degree. Downstream of the 

first two lines, the anisotropy is weak, whereas it 

increases downstream of the other rows, except for 

the last one. To sum up, the mixed arrangement 

exhibits a larger gap between the two velocities root 

mean square (rms) pointing out that the flow is 

more anisotropic than in the purely circular model. 

In what follows, the coherent three-dimensional 

vortices can be identified via the criterion Q  which 

is none other than the second invariant of the 

gradient tensor ( U ) defined as follows: 

 2 2
/ 2Q S                  (13) 

It provides the relative dominance of either the 

rotation rate or the strain rate while advisedly 

involving the smallest resolved scales in an LES. In 

other words, 0Q   indicates the region where the 

vorticity magnitude outweighs that of the strain-

rate, while 0Q   indicates the opposite. In 

addition, The Q-size typifies the eddies energy. 

Note that Dubief and Delcayre (2000) pointed out 

its superiority on the low-pressure criterion in wall-

bounded turbulent flows. 

The iso-surfaces plot of coherent eddies is depicted 

in Fig. 16 for both configurations at various 

instants. It shows different structures educed via the 

Q-criterion and colored by the velocity magnitude. 

It reveals a set of coherent eddies in the flow 

evolving irregularly throughout the tubes bundle, 

stretching due to high velocity gradients and 

Q = 2.0x104 s-2 Q = 2.0x104 s-2 

Q = 3.0x104 s-2 Q = 3.0x104 s-2 
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distorting in hairpin and/or horseshoe shapes from 

the first and second rows. It appears that the mixed 

configuration involves many and strong eddies with 

higher density, especially for the larger Q  value 

( 4 23x10 s ). From the third row, the density and 

distortion degree of the iso-vortex surfaces increase 

in both configurations, highlighting the strongly 

turbulent character of these areas, and thereby, 

confirming the unveiling of Figs. 14 and 15. 

4. CONCLUSION 

The present study deals with the time-dependent 

computations of the flow through a staggered purely 

circular and mixed tubes bundle using large eddy 

simulation. Moreover, the GCI method is used to 

assess the grid refinement influence on the solution. 

It turned out that the adopted LES demonstrates that 

mean streamwise and transverse velocities predicted 

reasonably corroborate the available experimental 

data. In addition, the quantities obtained with the 

LES-WALE model are in better agreement with the 

experimental data compared with those of the SST 

model. For the two configurations, a reverse flow 

occurs in the wake region and flow perturbations, 

due to the unsteady nature of the vortex shedding, 

are more prominent in the square than circular 

cylinders. Furthermore, the analysis of the flow 

features demonstrates that the mixing between the 

circular and square tubes results in instable and 

disorganized flow pattern with interference between 

tubes while exhibiting a more chaotic flow. In 

addition, the velocity increases in the mixed 

configuration compared to that with circular tubes. 

Finally, among the two arrangements, it is the 

mixed which exhibits a more anisotropic flow with 

many and more intense eddies. From the stability 

point of view, it is the circular tube bundle that is 

often advised. However, to better generate coherent 

structures which are generally associated with heat 

transfer, the mixed bundle can be used to improve 

cooling efficiency. The latter deserves further study. 
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