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ABSTRACT 

This paper deals with the linear stability analysis and weakly non-linear analysis of Magneto-convection in a 

sparsely packed porous medium with constant vertical Magnetic field and gravity modulation. A linear stability 

analysis reported here and shows that the gravity modulation has significant effect on the stability limits of the 

system. The gravity modulation is know to have effect and is treated by a perturbation expansion in powers of 

the amplitude of modulation. The shift in the critical Rayleigh number is evaluated and depends on the prandtl 

number and frequency of modulation, using the Venezian method. It is also shown that the onset of convection 

can be advance or delay by the regulation of various parameters. Weakly nonlinear analysis is performed based 

on the method of power series, where the disturbance is expressed in terms of power series. A nonlinear 

Ginzburg-Landau equation to investigate the three different types of gravity modulation on heat transfer is 

derived as part of this work. Heat transfer have been shown to depend on Nusselt number, further the effect of 

different types of parameter on heat transport have been studied graphically. Nusselt number graph is also 

shown for different parameter and explain in detail. The effect of magnetic prandtl number and Chandrasekhar 

number are stabilize the system. The control of convection is a major issue in systems with fluids as a working 

media. This is all the more difficult if the fluid system is housed in a porous medium. The paper presents three 

mechanisms of controlling onset of convection and thereby the heat transfer in such fluid systems. In order the 

modulation effect is effective in its role, we have considered the system to be a fluid-saturated porous media. 

Keywords: Magneto-convection; Sparsely packed porous medium; Ginzburg-Landau equation; Gravity 
modulation; Heat transfer. 

NOMENCLATURE 

A magnetic potential 

B amplitude of streamline perturbation  

D height of fluid liquid 

da  Darcy number 

g acceleration due to gravity 

H magnetic field 

K permeability of porous medium 

M  dimensionless heat capacity  

Nu  Nusselt number 

P  pressure 

κT  thermal diffusivity 

Pr1  Prandtl number 

Pr2  magnetic prandtl number 

Q chandrasekhar number 

Ra  Rayleigh number 

t time 

T temperature 

∆T  temperature difference 

V mean flow velocity 

x, y, z space co-ordinates 

α coefficient of thermal expansion  

µe coefficient of effective fluid viscosity  

µm magnetic permeability  

µ coefficient of viscosity of fluid  

  porosity 

η magnetic diffusivity 

ρ density 

ε perturbation parameter 

ω frequency of modulation  

δ1 amplitude of modulation 

σ growth rate 

ψ stream function 

Superscripts 

’ perturbated quantity 

Subscripts 

b base state  

c critical value  

0 reference valve 
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1. INTRODUCTION 

Magneto-convection with a sparsely packed porous 

medium is heated from the bottom, uniformly, is 

very interesting phenomenon in fluid dynamics 

specially in geophysics. This event may happen 

inside the layer of the Earth’s mushy outer core. The 

peripheral core of earth consists of mostly Iron, 

sulphur and Nickel which is in fluid layer about 2400 

K.M thick, the temperature of outer core is about 

3000K-4500K, iron-nickel fluid of the outer core is 

main source of Earth’s magnetic fluid. At the surface 

of the earth the magnetic field is 50 times less 

stronger than at the core. In an electrically 

conducting liquid in non-porous case, magneto-

convection has been studied by many researcher in 

detail but, in sparsely porous medium it has not been 

studied in this way, and it has many application in 

geophysical fluid dynamics. 

Gershuni (1970) and Gresho et al. (1970) have 

studied the stability analysis under the presence of 

the gravity modulation on a fluid layer heated from 

below. The result confirms that the layer being 

heated from below under gravity modulation is 

stable, but the layer is destabilized in the case of 

heating from above. Clever et al. (1993) have studied 

the two-dimensional modes of oscillating convection 

of fluid layer for free-free and rigid-rigid boundaries 

heated either from above or from below, under the 

gravity modulation and concluded that the 

subharmonic modes are unstable for the finite-

amplitude synchronous convection. The low 

frequency g-jitter are known to affect the stability of 

the system and viscous flow limit and the Darcy limit 

are the degenerate cases of the Brinkman model and 

also the asymptotic analysis are discussed for various 

frequencies. 

Malashetty and Padmavathi (1997) have studied in a 

fluid the small amplitude onset of convection and its 

effects, and concluded that low frequency g-jitter 

definitely affects the stability of the fluid layers. 

Dyko and Vafai (2007) have discussed about the 

convection in two horizontal coaxial cylinders in 

presence of gravity modulation and their result 

shows that gravity modulation has stabilized the 

secondary flow as compared to gravity with constant 

force. Eckhaus and zigzag instabilities in thermal 

convection of couple stress fluid under the influence 

of Soret and Dufour effects were reported by Ravi et 

al. (2018) and also the heat and mass transports for 

unmodulated case were discussed. Malashetty and 

swamy (2011) examined, in viscous fluids the 

thermal convection of porous layer with gravitational 

modulation in influence of the rotation and made a 

conclusion that gravity modulation provides 

stabilizing effect and in Brinkman porous layer both 

stabilizing and destabilizing effects. Siddheshwar et 

al. (2011), have reported the stationary magneto-

convection in the presence of newtonian liquid and 

concluded that the system is stabilized by magnetic 

field. Bhadauria et al. (2013) studied the combined 

effect of both gravity modulation and temperature 

and internal heating in a medium which is porous and 

closely packed and heated from below and same time 

cooled from above and observed that gravity 

modulation results in oscillatory movements in the 

system, transport of heat in internal parts is more 

than when internal heating is not present. 

Malashetty and Begum (2011), in their paper 

explained that gravity modulation stabilizes as well 

as destabilizes saturated porous medium for a 

Maxwell fluid and it depends on the various 

parameters like frequency and many more. 

Bhadauria et al. (2012) have studied the effect of 

time-periodic temperature/gravity modulation on the 

thermal instability. Bhadauria et al. (2013) have 

reported that the combined effect due to variable 

viscosity and modulation of temperature in the 

anisotropic porous medium. A weakly non-linear 

theory performed to investigate the heat transport in 

presence of temperature modulation and made a 

conclusion that heat transport is negligible in the 

system for In-phase modulation. Many researchers 

like, Bhadauria and Khan (2009), Siddheswar 

(2010), Shivakumara et al. (2011), Babu et al. 

(2011), Bhadauria (2016) have explain in detail for 

the effect of temperature modulation and gravity 

modulation in different situation under porous 

medium. Farooq et al. (1996), investigated 

convection under gravity modulation for a vertical 

slot and concluded that gravity modulation 

destabilize the long-wave eigenmodes of the slot 

problem for ε ∼ O(1). 

The proposed work is presented as follows: The 

relevant governing equation with perturbation is dis-

cussed in section 2 followed by section 3 with linear 

stability analysis, and the finite amplitude equation, 

weakly nonlinear stability analysis using different 

types of gravity modulation and heat transport is 

described in section 4. The results and discussions 

are presented in section 5. And concluding remarks 

of the presented work are in section 6. 

2. GOVERNING EQUATIONS 

We consider an electrically and thermally con-

ducting fluid in sparely packed porous medium of 

depth d, confined between two infinitely, parallel, 

horizontal layer at z = 0 and z = d with uniform 

magnetic field H0 in a vertical direction given in Fig. 

1. The magneto-convection with sparsely packed 

porous medium under boussinesq approximation, the 

set of governing equations are (Babu et al. 2011): 
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Fig. 1. Physical configuration of problem. 

 

 0 0ρ ρ 1 α T T ,                                                (6) 

                                 (7) 

All quantities which are used in the above equations 

have explained in nomenclature. The thermal 

boundary conditions are as follows: 

0 0T T T, at z=0,T T , at z=d.                         (8) 

We assume that the basic state quiescent. The basic 

state solutions are given by: 

     b b b bV 0,ρ ρ z ,T T z ,P P z ,                   (9) 

using Eq. (8) the expression of basic state 

temperature is: 

𝑇𝑏 = 𝑇𝑏 + ∆𝑇(1 −
𝑧

𝑑
)                                          (10) 

Now we introduced the finite-amplitude 

perturbations on basic solution: 

   b b bV V V ,T T T z ,P P P z ,               (11) 

   b bH H H z ,ρ ρ ρ z .                                (12) 

Further, we consider only disturbances in two 

direction (x-direction and z-direction) in our study, 

now using Eqs. (11) and (12) into Eqs. (1)-(6), and 

introducing stream function ψ as  
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Now for simplicity drop the asterisk then we get the 

equations as:  
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The non-linear Eqs. (13)-(15) can be represented 

using the matrices is as follows: 
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case(1): Trigonometry wave-form 

2
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case(3): Square wave-form 
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Derivation of Amplitude equation for above three 

different gravity modulation cases were discussed in 

section 4. 

3. LINEAR STABILITY ANALYSIS 

The jacobin terms present in the Eqs. (13), (14) and 

(15) are neglected to study the linear stability. 

2
2 2

2
1

4

1 1

 

 
    

 

 
  


m

A
Q

z M DaM Pr

T
g Ra

x M








       (19) 

2 1 
  

 

T
T

M x




                                        (20) 

22

1

 
  

 

Pr A
M A

Pr z





                                    (21) 

Eliminating T and A from the above Eqs. (19), (20) 

and (21), so we resulting equation as follows, 
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ψ is satisfied the boundary condition and 
2 4 6 0       at z = 0,1. 

Now we introduce the asymptotic expansions as, 
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Here R0c is eigenvalue and ψ0 is eigenfunction for 

unmodulated case and Ri and ψi, for i ≥ 1 for 

modulated case. Now using Eqs. (23) and (24) in 

Eq.(22) and collect the coefficient of various power 

of ε from resulting equation we get: 
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putting the value of Eq. (28) in Eq. (25) we get, 
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where, δ2 = k2 + π2 

now Eq. (26) using Eq. (28) becomes 
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the particular solution of Eq. (30) is 
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The solution of Eq. (30) for corresponding 

homogeneous part has a term which is proportional 

to sinπz, adding a similar term in Eq. (30) to make 

complete solution, re-normalize the term because we 

can group all the terms proportional to sinπz and 

define a ψ0 with corresponding ψ1,ψ2,ψ3,..... so we let 

that ψ0 is orthogonal to all others nψ s  .The equation 

of ψ2 can be as 
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            (33) 

Here we shall not require the solution of the Eq.(33), 

but we use this to find R2. For the solution of the Eq. 

(33) have to exist, its rhs steady part must be 

orthogonal to sinπz. This gives us, 

1
2 2 22

0 1 2 0
0 1

[ ( ) ]

sin( ) 0

 




Pr

k R f t R
Pr

z dz

    



                  (34) 

Taking time average, we get, 

1
2 2 22

2 0 1
0 1

[ ( ) ]sin( ) 
Pr

R R k f t z dz
Pr

             (35) 

Following Venezian (1969), we get the expression 

for R2 in the form 

2 2 22 1
2 0 2

1 2 | ( ) |

 
  

 
 

Pr X
R R k

Pr L
 


                       (36) 

4. FINITE AMPLITUDE EQUATION 

We introduce the following power series expansion 

interms of ε (Venezian (1969), Malkus (1958)). 

2 4 6
0 2 4 6    cRa R R R R                     (37) 

2 3
1 2 3                                             (38) 

2 3
1 2 3   T T T T                                      (39) 

2 3
1 2 3   A A A A                                    (40) 

We use the small-time variations, for that we re-

scaling as τ = ε2t. 

Now using Eqs. (37)-(40) in Eqs. (13)-(15) and 

collect the coefficient of the lowest order of ε, we get 

the following system: 

2 4
2

0

1
2

1

1
2

1
0

0

0

0

0

     
    

     
  

   
  
       

 
  

 
 


 
  

cR Q
MDa M x z

T
M x

A

M
z



   (41) 

with the conditions on the boundary as: ψ = ∇2ψ = 0, 

A = 0, T = 0, on z = 0 and z = 1. 

The first order solution of system: 

1 ( )sin( )sin( ) cB k x z                                    (42) 

1 2
( )cos( )sin( )


 c

c

k
T B k x z

M
 


                       (43) 

1 2
( )sin( )cos( ) cA B k x z

M


 


                        (44) 

where δ2 = kc
2 + π2, 

the critical Rayleigh number for onset of the 

stationary magneto-convection can be obtained from 

Eq. (41) 

2 2 2 2

0 2

1 



  

 
 

 


c

c

Q
Da

R
k

   

                    (45) 

By putting Chandrasekhar number Q = 0, Darcy 

number Da tends to infinite and Λ = 1, in Eq. (45), 

we get classical results of critical Rayleigh number 

Roc of Rayleigh-Benard convection obtained by 

Chandrasekhar (1961). 

6

0 2
c

c

R
k


                                                               (46) 

Now for second order system, we get: 
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2
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2
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where, 

21 0R                                                                  (47) 

1 1 1
22

11 1   
 

   

T T
R

M x z M z x

 
                       (48) 

1 12 1 2 1
23

1 1

   
 

   

Pr A Pr A
R

Pr x z Pr z x

 
                      (49) 

with the boundary conditions ψ = ∇2ψ = 0, T = 0, A 

= 0 on z = 0 and z = 1. 

The solution for second-order system, can be 

obtained as follows: 

2 0                                                                    (50) 

2
2

2 2 2
[ ( )] sin(2 )

8


 ck

T B z
M

 
 

                            (51) 
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2
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2 2 2
1
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8

  c

c

Pr
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Pr M k
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


             (52) 

Now for the third order system, we have 
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Pr A Pr A
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                        (55) 

Now for the existence of the solution of the third-

order system, we have used the solvability condition 

(Siddheshwar et al. 2011) to obtain Ginzburg-

Landau equation in the following form of 

3
1 2 3

( )
( ) [ ( )]  

dB
B B B B B

d


 


                     (56) 

where, 
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The Ginzburg-Landau equation given in Eq. (56) is 

Bernoulli equation, and since the equation is of non-

autonomous nature, it is very difficult to find its 

analytical solution, therefore it has been solved 

numerically. The solution of Eq. (56) can be found 

by using the in-built function ode45 MATLAB 

R2020a subject to the initial condition B(0) = c0 

where c0 is an initial amplitude of convection, for 

simplicity we may assume R2 = R0c to keep the 

parameters to be minimum. 

Now in similar manner, we write Ginzburg-Landau 

equation for case (2) and case (3) as 
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where B1 and B3 are explain in Eq. (57) and (59) 
respectively. 

4.1   Heat Transport 

The horizontally averaged Nusselt number, Nu is 
given by 
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After simplifying Eqs. (51), (52) and (62), we get 

2
2

2
( ) 1 [ ( )]

4
  ck

Nu B
M

 


                                 (63) 

It is clear from the above equation that the gravity 

modulation term δ1 sin(ωt) is present due to second 

order term and the next section gives details of the 

heat transport. 

5. RESULTS AND DISCUSSION 

In this paper, we present linear and weakly nonlinear 

analyses of magneto-convection in a sparsely packed 

porous medium under a constant vertical magnetic 

field with gravity modulation. For linear stability 

analysis, the regular perturbation method is used to 

calculate the correction Rayleigh number R2c. 

Weakly nonlinear analysis is performed using 

Ginzburg-Landau equation to investigate the effect 

of three different gravity modulations on heat 

transport. The effects of non-dimensional 

parameters, thermal prandtl number (Pr1), magnetic 

prandtl number (Pr2), Darcy number (Da), 

Chandrasekhar number (Q) and other porosity 

parameters are presented in Figs. (2)-(5). 

 



R. Ragoju and S. Shekhar / JAFM, Vol. 13, No. 6, pp. 1937-1947, 2020.  

 

1943 

 

 

 

 

 

 

 

 

 

Fig. 2. Graph for correction Rayleigh number 

R2c verses ω for different value of (a) Da, (b) Λ, 

(c) φ (d) Pr1 and (e) Pr2. 

 

Before we make a discussion of the results of the 

paper, we first mention about the physical 

significance of the various parameters that arise in 

the study. There are two Prandtl numbers, Pr1 and 

Pr2. The first one, Pr1, refers to the classical Prandtl 

number which is the ratio of the speeds of 

momentum diffusion and thermal diffusion. The 

Prandtl number of the liquid-saturated porous 

medium should be more than that of the base liquid 

due to the presence of the porous medium. If we 

consider water, Pr1 then must take a value much 

greater than 6. The second, Pr2, refers to the 

magnetic Prandtl number. This is the ratio of the 

viscous diffusion rate to the magnetic diffusion rate. 

For finitely electrically conducting liquids 

occupying a porous medium the parameter Pr2 

usually takes values less than 1. In the case of sun, 

plasma and liquid metals it takes very small values, 

much lesser than 1. The other parameter that arises is 

the Chandrashekar number, Q, which is the square of 

the ratio of the Lorentz force to the viscous force. We 

consider not so small and not so large values of Q in 

the paper signifying that the two forces are 

comparable. Lorentz force and viscous force oppose 

the flow. The latter force acts as friction whereas the 

former force lends rigidity to the finitely electrically 

conducting fluid. The parameters that correspond to 

the sparsely-packed porous medium are M, Λ and Da 

which are respectively, the ratio of heat capacities, 

the ratio of viscosities and the Darcy number 

respectively. The parameter M is the ratio of the 

effective heat capacity of the porous medium and the 

heat capacity of the fluid. The effective heat capacity 

is larger for most fluid-saturated porous media 

compared to that of the fluid and hence takes a value 

less than 1. The parameter Λ is the ratio of effective 

viscosity of the fluid-saturated porous medium to 

that of the fluid. Gilver and Altobelli (1994) have 

shown that the range of the ratio = µe/µ varies from 

0.5 to 10.9. Compared to the effect of other 

parameters, M and Λ have a lesser influence on the 

stability and the heat transport in the system. The 

parameter Da is a geometric parameter. It involves 

the permeability of the porous medium and the 

height of the porous medium. Since we are 

considering a sparsely-packed porous medium the 

value of Da is non-zero and less than 100 (Nield and 

Bejan 2006). Further, for a sparsely-packed porous 

medium the value of φ is nearer 1 but less than 1. 

Since we are considering a small-amplitude 

modulation in the problem the value of δ1 has to be 

small and hence we have chosen 0.1. 

Figs. 2(a)-2(e) shows the effect of modulation (ω) on 

correction Rayleigh number, R2c for different 

parameters. The Fig. 2(a) shows that the graph of 

correction Rayleigh number R2c verses ω for 

different value of Darcy number Da, and it decreases 

with increase in Da, thus showing the effect that 

increase in Da destabilize the system. From the Fig. 

2(b), it is observed that the correction Rayleigh 

number R2c increases with the increase in Λ which 

means that the effect of Λ is to stabilize the system. 

Similar kind of results can be found in Fig. 2(c) with 

the increase in φ. It has been observed that from Figs. 

2(d) and 2(e), the correction Rayleigh number, R2c 

increases when the thermal prandtl number (Pr1),  
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Fig. 3. Nusselt number verses τ for different value of (a) δ1, (b) Λ, (c) ω, (d) Pr1 (d) Pr2 and (f) Q. for the 

gravity sine modulation. 
 

 

magnetic prandtl number (Pr2) increases. It means 

that, the effect of both parameters, thermal prandtl 

number (Pr1), magnetic prandtl number (Pr2) is to 

stabilize the onset of convection. 

The weakly nonlinear analysis of Rayleigh-Benard 

convection in a sparsely packed porous medium 

under constant magnetic field with gravity 

modulation is discussed here. We have taken into 

account that the modulation of Rayleigh-Benard 

convection has been assumed to be of order O(ε2), 

that means the large amplitude of gravity is not 

considered. The modulated term (δ1 sin(ωτ)) are 

because of the second order O(ε2) terms which 

affects the system. The influence on the heat 

transport due to various parameters like 

Chandrasekhar number (Q), thermal prandtl number 

(Pr1), magnetic Prandtl number (Pr2), frequency 

modulation (ω) and amplitude modulation (δ1) is 

shown in Figs. 3-5. Fig. 3(a) shows that, the increase 

in the amplitude of gravity modulation increases the 

value of Nusselt number Nu also. Thus the 

enhancement of heat transport is due to the amplitude 

of gravity modulation, δ1 and we also sketch the 

graph when amplitude of gravity modulation is zero 

and settles to a fixed value. Similar kind of 

observation is also found with the effect of triangular 

wave and square wave gravity modulation with the 

increase of amplitude of gravity modulation (see 

Figs. 4a and 5a). 

From Fig. 3(b) it is evident that the increase in Λ i.e 

ratio of coefficient of effective fluid viscosity to 

coefficient of viscosity of fluid, diminish the heat 

transfer. In Fig. 3(c) shows that the effect of 

frequency of gravity modulation on heat transport. 

One can easily observe that there is enhancement in 

heat transfer for small value of ω, whereas for higher 

values of ω the amplitude of gravity modulation 

decreases and so Nusselt number Nu. If we take large 

values of ω, the effect of gravity modulation vanish 

altogether, so the system is stable with the effect of 

ω. Similar kind of observation can be found with the 

effect of triangular wave as well as square wave 

gravity modulation (see Figs. 4b and 5b ). 

The Fig. 3(d) shows that the effect of thermal prandtl 

number which is nothing but ratio of kinematic 

viscosity by thermal diffusivity is to increase the heat 

transport for small value of time, and same pattern is  
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Fig. 4. Nusselt number verses τ for different 

value of (a) δ1, (b) ω, (c) Q, for the triangular 

wave modulation. 

 
Fig. 5. Nusselt number verses τ for different 

value of (a) δ1, (b) ω, (c) Q, for the square wave 

gravity modulation. 
 

 

 

 

also observed for large value of time also. It is also 

observed that when prandtl number increased then 

either thermal diffusivity decreased or kinematic 

viscosity increased. Thus results in the enhancement 

of heat transport in either of the cases. 

Figure 3(e) shows that the effect of magnetic prandtl 

number Pr2 which is nothing but ratio of thermal 

diffusivity and magnetic diffusivity is to decrease the 

heat transport for small value of time, i.e as magnetic 

prandtl number increases heat transport decreases 

and it is observed that magnetic prandtl number is 

increased then either thermal diffusivity increased or 

magnetic diffusivity decreased, so in both way heat 

transfer decreases. Same pattern are observed in case 

of square waves and triangular waves of gravity 

modulation. From Fig. 3(f) it is evident that increase 

in Chandrasekhar number Q is diminishing the heat 

transfer. As Chandrasekhar number increases the 

Nusselt number decreases in case of square wave and 

triangular wave gravity modulation. Thus the effect 

of Chandrasekhar number is to diminish the heat 

transport (see Figs. 4c and 5c) for both types of 

waves. 

The modulation of the type that has been considered 

in the paper arises due to the vertical vibrations of the 

fluid system housed in a porous medium. The 

modulation gives rise to a time-dependent gravity in 

addition to the usual gravity (see Siddheshwar and 

Kanchana (2019), Siddheshwar and Meenakshi 

(2019) and Kanchana et al. (2020), Bhadauria and 

Kiran (2015)). The modulation greatly affects the 

onset of convection and heat transport and thus 

serves the purpose of regulating the dynamics in the 

system. 
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6. CONCLUSIONS 

1. The effect of parameters, porosity, φ, thermal 

prandtl number, Pr1, magnetic prandtl number, 

Pr2 and Λ is to stabilize the system, whereas the 

effect of Darcy number, Da, is to destabilise the 

system. 

2. Enhancement of the heat transport is seen due to 

the effect of amplitude modulation. 

3. Diminished heat transport is the effect of 

frequency modulation is observed. 

4. The effect of thermal prandtl number is to 

enhance the heat transport whereas the effect of 

magnetic prandtl number and Chandrasekhar 

number is to diminish the same. 

5. The control of convection is a major issue in 

systems with fluids as a working media. This is 

all the more difficult if the fluid system is housed 

in a porous medium. The paper presents three 

mechanisms of controlling onset of convection 

and thereby the heat transfer in such fluid 

systems. In order the modulation effect is 

effective in its role, we have considered the 

system to be a fluid-saturated porous media. 
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