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Individual drops are suitable tools to study the liquid-fluid interfacial properties. In this work, force-

displacement equation and non-linear oscillations of a pendent drop are numerically investigated. The 

presented novel force-displacement function allows following the dynamics of a pendent drop and realizing 

its elastic behavior. The growth and detachment of drop, which is pending due to gravity from a capillary tip, 

is considered (assuming high density and high viscosity ratios and immiscible two-phase flows). Two-

dimensional multi-relaxation time lattice Boltzmann method (MRT-LBM) was used to simulate growth, 

detachment, and oscillations of the drop using a conservative model for high-density ratio. The force-

displacement function of a pendent drop (FDFPD), which is non-linear, was introduced. Using FDFPD, the 

non-linear elastic specifications of the pendent drop were determined. It was realized that the drop shows 

three different elastic behaviors simultaneously (hardening, linear, and softening). The drop superharmonic 

and subharmonic frequencies were calculated, using the natural frequency of the linear portion of FDFPD. 

Besides, the drop would grow as long as its displacement is between the extrema of FDFPD. In addition, a 

dynamic criterion for the onset of detachment was established. Also, increasing the Bond number from 0.11 

to 1.96, while keeping Reynolds number equal to 0.023, accelerates the drop detachment and increases the 

linear portion of FDFPD. It was shown that increasing Capillary number from 1.8E-5 to 7.3E-4, while 

keeping Reynolds number equal to 0.023, accelerates the drop detachment and increases the non-linear 

portions of FDFPD. 

Keywords: Two-phase flow; Growing drop; Drop non-linear oscillations; Lattice Boltzmann method; Drop 

dynamics 

NOMENCLATURE 

Bo Bond number 

Ca Capillary number 

cs speed of sound in the system 

D inner pipe diameter 

eα macroscopic velocity set 

Fα forcing term 

F external force vector exerted to the fluid 

Fb body force vector 

Fs surface tension force vector 

f(y)  force-displacement function of a pendent 

drop (FDFPD) 

G gravitational acceleration vector 

g̅α hydrodynamic distribution function 

hα phase-field distribution function 

k̅ spring constant of the linear portion of the 

FDFPD 

m̅ average drop mass 

M system mobility 

M orthogonal transformation 

Nx domain resolution, the horizontal 

direction 

Ny domain resolution, the vertical direction 

n̂ interface unit normal vector 

n̂w wall unit normal vector 

p macroscopic pressure 

pin inside pressure of drop 

pin outside pressure of drop 

R radius of the drop 

Re Reynolds number 

Ŝ diagonal relaxation matrix 

t time 

t* dimensionless time 

u macroscopic velocity vector 

W interface thickness 

wα weight coefficients 

x position vector 

x0 initial position vector of the equilibrium 

phase-field profile 

Xc/D dimensionless drop mass center      

y independent variable of FDFPD 
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α direction index 

φ diffuse-interface phase-field variable 

φw wall phase-field variable 

Ωα collision operator 

µ local fluid viscosity 

µφ chemical potential for the binary fluids 

ν kinematic viscosity 

ρ local fluid density 

ρH heavier phase density 

ρL lighter phase density 

τ hydrodynamic relaxation time 

τφ phase-field relaxation time 

τH heavier phase relaxation time 

τL lighter phase relaxation time 

θ contact angle at the solid boundary 

σ surface tension 

 

 
1. INTRODUCTION 

Liquid-fluid interactions are omnipresent in the 

real-world, namely nature and industry. Therefore, 

individual drops are often used for the specification 

of liquid-fluid interfacial properties (Miller and 

Liggieri 2011). Their study helps analyze systems 

with similar interfaces or the same dynamics. As an 

example of the latter case, one can refer to a 

dripping faucet, which is among the systems with 

non-linear oscillations and chaotic modality 

(d’Innocenzo and Renna 1996; Shaw 1984). Also, 

oscillating pendent drops constitute a suitable 

system for analyzing non-linear dynamics (DePaoli 

et al. 1995). Non-linear elastic behavior of 

oscillatory drops has convinced many researchers 

that the study of the vibrating drop is beneficial, in 

order to describe systems with non-linearity and 

chaotic nature (Shaw 1984). Many experimental, 

analytical, and numerical approaches exist that have 

tried to tackle such a problem. Among them, 

numerical approaches have been increasingly used. 

Most works done in this field have been 

accompanied by the omission of dynamic effects 

and assuming thermodynamic equilibrium. 

Nevertheless, those efforts have resulted in 

important and applicable outcomes. More recently, 

the main interest of researchers in this area has 

focused on the dominant interactions of dynamical 

effects. Besides, phases in liquid-fluid systems have 

complex dynamic characters, which demand 

theoretical and practical treatments (Sultana et al. 

2017). That is why investigations of drop formation, 

oscillation, and detachment from a capillary tip 

have special importance.  

1.1 Conventional CFD Simulations of Drop 

Dynamics 

Let us consider drop dynamics as a challenging 

problem in hydrodynamics, which has affected the 

complexity of the mutual effects of liquid-fluid 

interfaces. In 1997, drop formation at the tip of a 

vertical tube, immersed in a second immiscible 

fluid, was numerically studied (Zhang and Stone 

1997) at low Reynolds number of the flow, using 

boundary integral method. Zhang and Stone 

examined the influence of some dimensionless 

numbers on evolution, breakup of drops, and the 

size of separated satellites. They found that for 

viscosity ratios smaller than 10, no large satellite 

drops are formed. They also imposed external 

uniform flow to the system, which reduced the size 

of the drop. One of their significant results belongs 

to the effect of nondimensional Capillary and Bond 

numbers on drop size and its break up. In 1998, a 

novel axisymmetric dynamical model of drop 

detachment in gas metal arc welding was presented 

(Jones et al. 1998). Jones et al. compared the 

numerical results with the experimental 

measurements of welding images. They reached 

valuable results about the variable surface tension 

of drops. They made a qualitative observation about 

the bouncing force exerted by the detached drop to 

the upstream of the flow. Also, this phenomenon 

was reported previously in 1994 (Miller et al. 1998) 

during drop detachment measurements. In 2000, 

(Lau and Mashayek 2001) investigated oscillating 

drop warming using numerical simulation of hot gas 

environments. Lau and Mashayek observed that the 

most apparent feature of thermo-capillary flows was 

demonstrated by vortices. The number and strength 

of vortices were varied with the mode of 

temperature disturbance. In 2003, (Davidson and 

Copper-White 2003) used VOF numerical 

simulation to predict the dynamics of shear-thinning 

liquid drop formation in the air from a circular 

orifice. They examined the effect of Weber, Froude, 

and Ohnesorge Numbers on drop shape, pinch-off, 

and thickness length. Drop formation at a capillary 

tip and in a channel flow was investigated by  

(Cramer 2004). Cramer realized that there are 

mainly five important dimensionless numbers 

engaged in the physics of this problem, namely: 

Capillary, Ohnesorge, Reynolds, Bond, and 

viscosity ratio. Moreover, he studied periodic 

dripping, which was previously studied by 

(Fainerman and Miller 1995). Cramer concluded 

that after drop pinch-off, the residual fluid upstream 

starts to vibrate and transfer vibration to the newly 

forming drop, which in turn affects its detachment. 

This result had been confirmed by (Jones et al. 

1998). In 2005, Fawehinmi et al. (Fawehinmi et al. 

2005), who performed a numerical simulation using 

commercial CFD packages by implementing the 

VOF method to study drop formation. Also, he 

made an experimental study comparing the two 

results. They argued that experimental results 

revealed for the same grid resolution, the single and 

multiphase solvers offer similar accuracy of 

prediction and are both able to capture the features 

of most significant practical engineering interest, 

such as primary drop volume as a function of flow 

rate. Using first-order time discretization, the 

formation of oil drops both numerically and 

experimentally were studied from a single capillary 

tube with cross-flow, using continuous water phase 

by (Timgren et al. 2009) . They concluded that 

increasing cross-flow velocity decreases the size of 

the drop and vice versa. The linear problem of 

axisymmetric, inviscid, volume-preserving 
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vibrations of a liquid drop, pinned along a latitude 

was studied by (Bostwick and Steen 2009). They 

solved this problem using numerically generated 

eigenfrequencies for their integrodifferential 

boundary value problem. Considering the center of 

mass, they used the effect of a pinned drop to 

introduce a new low-frequency eigenmode. 

However, during their precise work, they only 

considered linear oscillations. In 2013, drop 

formation and pinch-off from a capillary tube under 

the influence of gravity was widely studied by 

(Bierbrauer et al. 2013), using FEM. They studied 

the critical pinch-off time required for drop 

ejection. They found that the required ejection time 

decreases exponentially with average pipe velocity. 

However, the lack of drop oscillations was 

highlighted in their study. An extensive 

experimental and numerical study on drop 

formation, oscillation, and detachment was 

performed by (Karbaschi et al. 2015). Their study 

was mainly experimental measurements of drop 

surface tension coefficient. However, they did not 

report any results related to the natural frequency of 

drops. One of the recent works has been performed 

by (Nazari et al. 2018). In this experimental work, 

they investigated the growing drop profiles using a 

high-speed camera and generated a curve that 

relates the drop mass center to the time during drop 

growth and formation. Nowadays, researchers' 

attention has been switched towards modern 

meshless CFD methods (e.g., LBM). Due to the 

intrinsic mechanism of LBM, which has its basis in 

mesoscale, it has increasingly gained success in 

multiphase flows. One reason may be the fact that 

the hydrodynamic interactions of multiphase 

interfaces are governed by molecular scales and are 

best fitted with LBM nature, rather than with 

conventional CFD methods (a macro-scale 

approach). 

1.2   LBM Simulation of Drop Dynamics 

In the past one and half decades, many works have 

been performed using LBM for single drop 

dynamics and its behavior. LBM was used by 

(Fakhari and Rahimian 2009), to simulate a drop 

subjected to a gas stream (using Reynolds and 

Weber numbers). One year later, they investigated 

the free fall of a drop in an axisymmetric pipe by 

studying surface tension effects in conjunction with 

impacts of gas and drop viscosity via, studying the 

effect of Eotvos, Morton, and Archimedes numbers 

(Fakhari and Rahimian 2010). Later in 2011, they 

extended their falling drop simulation to MRT- 

LBM (Fakhari and Rahimian 2011). In the years 

2013 to 2017, (Fakhari and Bolster 2017; Fakhari et 

al.2016; Fakhari and Lee 2013; Geier et al.2015) 

developed LBM model for multiphase flows, 

namely: conservative phase-field model. 

Despite the extensive studies on growing drops, a 

complete description of the drop elastic behavior 

(during the growth, formation, and detachment 

process) has not yet been performed. The novelty of 

this work is to numerically obtain an algebraic 

relation for a drop elastic deformation during 

growth and detachment, using LBM. For the 

pendent drop, the proposed equation (FDFPD) 

unifies different drop behaviors (hardening, linear, 

and softening; a very rare phenomenon that 

occurs in the growth of a pendent drop) all in one 

continuous non-linear function. While, other 

methods have linearized the drop elastic 

behavior by splitting the drop into two or more parts 

to study the force-displacement relation. Also in 

this work the profiles of the growing drop, along 

with its mass, velocity, and pressure have been 

captured numerically which can be used to evaluate 

its natural, super-harmonic, and subharmonic 

frequencies. While, in other works fast cameras 

have been used to capture the instantaneous drop 

profile, without any information about its mass, 

velocity, and pressure. In addition, there have not 

been reported any numerical works concerning the 

frequency evaluation of the growing pendent drops. 

2. PHYSICAL MODEL 

In this work, we have presented two-dimensional 

simulation of formation, oscillation, and detachment 

of a single pendent drop at a capillary tip. The fluid 

is assumed isothermal, Newtonian, incompressible, 

and isotropic. The flow entering the domain from 

the pipe tip is uniform and steady (time has no 

impact on the non-linearity of the drop), with zero 

mass transfer between the two phases. In the 

beginning, there is no dense phase in the region, and 

the drop growth starts with the injection of liquid. 

Continuing this process eventually leads to drop 

detachment. Figure 1 shows schematic 

representation of this physical model.  

 
Fig. 1. Schematic of the flow geometry with a  

pendent drop. 

3. NUMERICAL MODEL 

Fakhari and his coworkers have developed an LBM 

model for multiphase flows, named conservative 
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phase-field model. In this section, a brief 

explanation of interface capturing and the 

hydrodynamic equations used in the conservative 

phase-field model are presented.(Fakhari and 

Bolster 2017; Fakhari et al. 2016; Fakhari and Lee 

2013; Geier et al. 2015).  

3.1   Interface Capturing Equation 

There exist two well-known approaches for 

interface capturing, namely the Cahn–

Hilliard equation (Cahn and Hilliard 1958) and 

Allen–Cahn equation (Allen and Cahn 1979). 

For Cahn–Hilliard equation, regardless of its mass 

conserving property, one should discretize a fourth-

order derivative term, which demands careful 

attention. While, Allen–Cahn equation 

only includes second-order derivative terms. 

Interestingly enough, Chiu and Lin (Chiu and Lin 

2011) combined both advantages of Cahn–Hilliard, 

and Allen–Cahn equations.  

In the conservative model introduced by (Geier et 

al. 2015) for a system containing incompressible 

binary-fluid, the governing equation for interface 

tracking is the following Allen-Cahn equation: 

 

 ˆ[ (4 ) (1 ) ,

 u

n  

φ t φ

M φ W φ φ

  

    
                (1) 

where φ is the diffuse-interface phase-field variable 

with zero value in the lighter phase and one in the 

heavier phase, u is macroscopic velocity vector, t is 

time, W is the interface thickness, M is mobility, and 

n̂ is the interface unit normal vector, so that its 

positive direction is towards the heavier phase. Thus, 
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

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                                                          (2) 

Also, φ(x)  is assumed to change as follows:  
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in which equilibrium phase-field profile is located 

at x0 and is used as an initial condition for φ derived 

by minimizing the system bulk energy (Lee 2009). 

Jacqmin (Jacqmin 2000) proposed a wetting 

condition, to impose a contact angle, θ, at a solid 

boundary. Note φw  is the wall phase-field and n̂w is 

the wall unit normal vector, i.e.,  
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and σ is surface tension coefficient. 

 

3.2  Hydrodynamic Equations 

For an incompressible, isothermal, multiphase flow, 

Navier-Stokes equations are (Clift et al. 1978): 

0,u
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                                               (5) 
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                           (6) 

where ρ is the local fluid density, µ is the local fluid 

viscosity, and p is the macroscopic pressure. Also,  

F is the external force exerted to the fluid. In this 

study, the force consists of two components as: 

,F F Fs b                                                          (7) 

where Fs and Fb are surface tension and body 

forces, respectedly. Jacqmin (Jacqmin 1999) 

proposed the following relation for surface tension 

force:   

,Fs φμ φ                                                            (8) 

where µφ, the chemical potential for the binary 

fluids, is defined as: 

24 ( 1)( 1 2) .φμ βφ φ φ κ φ                        (9) 

Fb is written as: 

  ,F Gb H Lρ ρ                                             (10) 

where G is the gravitational acceleration, while ρH  

and ρL are heavier and lighter phase densities, 

respectively. Note, the densities, and the forces are 

local. 

4. NUMERICAL METHOD 

Here, we used conservative phase-field LBM 

proposed by (Mitchell et al. 2018) to solve the 

interface tracking and hydrodynamics equations. It 

has been proven that the following LBE can recover 

Eq. (1) for conservative phase-field (Krüger et al. 

2017), as:  
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where τφ is phase-field relaxation time, hα is phase-

field distribution function, and eα is macroscopic 

velocity set.  

In this model, the equilibrium distribution function 

for the phase-field is: 
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Fig. 2. Boundary conditions used in the computational domain. 
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and cs=c/√3  is speed of sound, wα  is weight 

coefficients, and M is system mobility, which is 

related to the relaxation time as (Mitchell et al. 

2018): 

2 .φ sM τ c t                                                       (14) 

For D2Q9 lattice, macroscopic velocity set and 

associated weight coefficients are listed in the 

Appendix. Eq. (11) is solved in two steps: collision 

and streaming. After streaming step, phase-field is 

updated as: 

.α
α

φ h                                                            (15) 

Density is calculated using the following relation: 

( ).L H Lρ ρ φ ρ ρ                                         (16) 

For an almost incompressible multiphase flow, 

lattice Boltzmann equation is (Fakhari et al. 2017): 

( , ) ( , )
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                  x x
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                 (17) 

where, g̅α is hydrodynamic distribution function and 

Ωα is a collision operator. Again, this equation can 

be solved using the collision-streaming approach. In 

Eq. (17), Fα is a forcing term given as (Fakhari and 

Bolster 2017): 
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Using the MRT model for collision operator, Ωα is: 

 1ˆΩ ,M SM
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Where, 
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 2 Γ ,eq

α α s α αg pw ρc w                             (21) 

while, M is an orthogonal transformation, which 

maps physical space onto momentum space, and Ŝ 

is diagonal relaxation matrix and is listed in the 

Appendix for D2Q9 lattice.  

After solving Eq. (17) and obtaining g̅α, one can 

calculate hydrodynamic properties, using the 

following equations (Fakhari and Bolster 2017): 

2

1
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2
u e F Fα α s b

αs

t
g

ρc ρ


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2( ) .
2

uα H L s
α

t
p g ρ ρ c φ


                   (23) 

5. BOUNDARY TREATMENT 

Figure 2 shows the computational domain, whose 

dimensions are Nx=192, Ny=128, D=14 (inner 

diameter of the pipe), and H=10 (height of the 

pipe).In the computational domain, three different 

boundary conditions have been used.  

For input and output boundaries, the interpolation 

method proposed by Chen et al. (1996) was used. 

The main idea of the proposed method is to use a 

grid layer next to the input and output. The non-

equilibrium part of the unknown distribution 

functions in these additional layers is calculated by 

extrapolating (quadratic) the values of the 

distribution function in the flow domain. For the 

pipe and left solid walls, a half-way bounce-back 

boundary condition was used. For the upper and 

lower walls, the free slip boundary condition was 

used. 
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Fig. 3. Laplace test, (a) grid resolution of 128*128, (b) grid resolution of 256*256. 

 

 

6. VALIDATION 

6.1   Numerical Method Validation 

The first criterion used is the Laplace test. This test 

was performed to study the code written for 

Boltzmann method. In this test, the numerical value 

of surface tension used in the code was calculated. 

According to Laplace's law, pressure difference 

inside and outside a two-dimensional drop follows 

the following relation: 

,in out

σ
p p p

R
                                           (24) 

where, σ is the surface tension, and R is the radius 

of the drop. To examine the Laplace's law (all 

quantities are in lattice units),  circular drops having 

radii equal to 16, 20, 24, and 28 with σ=0.001 are 

located at the center of the computational domain 

(128*128 grids) with periodic boundary conditions. 

Also, by increasing the grid resolution, circular 

drops with radii of 32, 40, 48, and 56 having 

σ=0.001 are located at the center of the 

computational domain (256*256 grids) with 

periodic boundary conditions. After about 10,000 

repetitions, the drop became utterly rounded. Note, 

the pressure values inside and outside the drop are 

calculated from Eq. (23). The results obtained from 

Eq. (24) are illustrated in Fig. 3 (mobility was set to 

0.2). 

The slope shown is the surface tension that is 

approximately equal to 0.000,9. As can be seen, the 

numerical results are in agreement with the 

theoretical predictions, since all e points shown in 

the figure overlap the lines passing through the 

origin.  

The second test was the square two-dimensional 

drop relaxation. For this purpose, a square drop 

with 80 grid units was positioned in the middle of a 

240*240 computational field. The periodic 

boundary conditions were used in the surrounding 

boundaries. Also, by increasing the grid resolution, 

a square drop with 160 grid units was positioned in 

the middle of a 480*480 computational field.  

The periodic boundary conditions were used in the 

surrounding boundaries.  

The drop deformation changes with related domain 

density along a horizontal line passing through the 

middle of the drop. This is illustrated in Figs. 4 and 

5 at some typical time steps.. The mobility was set 

to 0.2. 

6.2   Results Validation 

Unlike linear springs , non-linear springs have 

variable spring coefficients (having variable 

elasticity). When stretching a spring, if the spring 

constant grows, it is called a hardening spring, and 

if it decreases, it is a softening spring. In Fig. 6, 

three regions of FDFPD with different characters 

are recognized. The first region (begins from almost 

the minimum of the FDFPD) belongs to the initial 

growth of the drop, which has hardening elasticity. 

Therefore, by increasing the force (due to 

increasing the weight of the drop), the surface 

tension force tends to increase such that by keeping 

its overall trend prevents the drop's necking. Of 

course, this resistance is not permanent, and there is 

an inflection point in FDFPD (beginning of the 

region with softening elasticity). From the inflection 

point to the maximum point of FDFPD, drop shows 

a softening elasticity. The drop detachment occurs 

at the maximum point of FDFPD. The region 

between hardening and softening regions is almost 

linear or pseudo-linear. As shown in Fig. 6, these 

three distinct behaviors of surface tension forces are 

due to geometrical changes in drop shape during the  
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Fig. 4. Square drop relaxation test, drop shape evolution, and its density variation at the time steps t=0, 

2000, and 8000 for 240*240 grid. 

 

 
Fig. 5. Square drop relaxation test, drop shape evolution, and its density variation at the time steps t=0, 

4000, and 15000 for 480*480 grid. 
 

 

drop growth process. The geometrical non-linearity 

is one of the primary sources in the dynamical 

system non-linearity. During drop growth, the 

contact angle between the growing drop and 
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the pipe tip begins to increase. Increasing contact 

angel causes an increase in vertical component of 

surface tension force, which cancels out the drop 

weight. The process of increasing vertical 

component of the surface tension force continues 

until the contact angel becomes right  (maximum of 

the vertical component of surface tension force), 

which is the end of the hardening region. By 

advancing the contact angle to more than the right 

angle, the vertical component of surface tension 

force begins to decrease (beginning of softening 

region). The region in the vicinity of the inflection 

point of FDFPD may be called pseudo-linear 

region. So, the overall geometry of pendent drop 

evolves with time, which causes its non-linear 

behavior. Further illustrative explanations are given 

in Section A.2 of the appendix. In all of the 

simulations, it was realized that the local maximum 

point of FDFPD could be considered as a pinch off 

criterion.  

 

 
Fig. 6. Numerically derived Force- displacement 

function of pendent drop (FDFPD) for  the 

growing drop during its formation 

and detachment (a) three different 

elastic regions of FDFPD (dimensionless axes), 

(b) regression line fitted to the linear region of 

FDFPD to calculate the linear elastic coefficient 

of the drop, k=1.925E-4, (axes in lattice units). 

 

Extensive experiments on the formation and 

detachment of drops were performed by (Zhang and 

Basaran 1995). They illustrated the variations of 

drop neck thickness versus drop formation time for 

water in air. Their results are shown in Figs. 6 and 8 

(Zhang and Basaran 1995). As it is shown in these 

figures, the trends for variations of surface tension 

force of growing pendent drop are the same as in 

Fig. 6. The simulation was performed with surface 

tension coefficient σ=0.004, inner pipe diameter 

D=14, density ratio of 1,000, inlet velocity of U= 

1.1E-5, and gravitational acceleration of g= 2.28E-

6. All the quantities are in the lattice units. 

 

 
Fig. 7. Comparison of the trends between the 

Fig. 6 of this work with a) Fig. 5 of Nazari et al. 

(2018), b) Fig. 8 of Zhang and Bassaran (1995), 

c) Fig. 27 of Gennes (1985). 
 

Jones concluded that the surface tension force has a 

non-linear nature (Jones, 1996). Jones exploiting 

figure 4.26 of (Jones, 1996), realized that at the 

beginning of drop formation, surface tension force 

increases, and after a certain point, it starts to 

decrease. This conclusion compares well with the 

result of this work about the variation of surface 

tension force, as illustrated in Fig. 6. Here it is 

appropriate to explain the relation of the graph to 

the surface tension force. The ordinate of the curve 

in Fig. 6 is the time step of simulation, which has 

been non-dimensionalized.  During the process of 

the drop growth, two opposite forces are in balance, 

namely drop weight and surface tension force. So, 
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there is a corresponding mass and, consequently, a 

weight force for each time step, which increases 

during the drop growth. Gennes studied the 

Mechanics of wetting phenomena experimentally 

(de Gennes 1985). 

A precise issue referred to in that work is the 

experimental curve (after (Hoffman 1975)) relating 

apparent contact angle variations to the speed of 

drop interface motion. Gennes used silicon oil drop 

on glass and generated Fig. 27 of (de Gennes 1985). 

Therein, the variation of surface tension force is 

such that it consists of three distinct regions 

(hardening, pseudo-linear, and softening) during 

drop formation. As it is seen, there is a close 

coincidence between the trends of Fig. 6 and the 

curve presented by Gennes. One of the recent works 

has been performed by Nazari et al. (Nazari et al. 

2018). In this experimental work, they have 

investigated the growing drop profiles using a high-

speed camera and generated a curve that relates the 

drop mass center to the time during drop growth 

and formation. In Fig. 5, the trend is in full 

agreement with Fig. 6 of the present work, which 

describes force-displacement of a growing drop. 

Figure 7a,b, and c illustrates the comparison 

between Fig. 6 of this work and 5 of Nazari et al. 

for water in n-Hexane, 8 of Zhang and Bassaran, 

and 27 of Gennes, repectively. The difference 

between the curves is due to the fact that the one 

related to this work is dimensionless, while the one 

presented by Nazari et al. is not. If the force-

displacement diagram of pendent drop for Re=0.023 

and Bo=0.48 (illustrated in Fig. 11) is plotted along 

with the one presented by Nazari et al. (Fig. A2). 

7. RESULTS AND DISCISSION 

7.1   Force-Displacement Function  

By entering the denser fluid into the gas region, the 

drop mass center changes its position along the flow 

direction. This situation is very similar to hardening 

a spring elongated with time by increasing a force 

exerted on it. We can then draw a force-

displacement curve for its growth (Fig. 6). In our 

extensive numerical results, we found that the 

process of formation and detachment of drop for 

any density ratios obeys the same non-linear force-

displacement equation referred by Eq. (25), i.e., 

2 3( ) ,

0,
  

f y α βy γy εy

ε

    

 

                      (25) 

where α, β, γ, and ε are real constants. 

Force-displacement function of a pendent drop 

(FDFPD) for simulation of Fig. 6a, is presented by 

the Eq. (26). 

2 3

( ) 7.99 24.26

23.54 3.15

f y y

y y

 

     
                                (26) 

7.2   Resonance of a Pendent Drop  

In non-linear vibrations (Kelly 2012; Yang, 

Sanjuán, & Liu, 2016), there exist superharmonic 

and subharmonic resonances. When the excitation 

frequency is one-third of the system's natural linear 

region frequency, there is a superharmonic 

frequency in a system with cubic non-linearity. 

Also, there is a subharmonic frequency that is 

approximately three times the excitation frequency 

of the linear natural frequency of the system (Kelly 

1996, 2012). To get the frequencies, the natural 

frequency was extracted from the linear region in 

the vicinity of the inflection point of Fig. 6b. For 

the simulation illustrated in Fig. 6a, this linear 

region occurs at about t*=42, where t* is 

dimensionless time. By linear interpolating of data 

between t*=37 and t*=47, the linear spring constant 

is k̅=1.925E-4 (in lattice units according to Fig. 

6b)). The averaged drop mass of simulation in that 

region is m̅=1791 (in lattice units). 

 

 
Fig. 8. Superharmonic and subharmonic 

resonances of simulated growing drop in Fig. 6a 

in its elastically softening region at t*=77.3. 

 
Then, simulation was considered using 

 ωsup= (√( k̅/m̅))/3 and ωsub= (3√( k̅/m̅)) for two 

possible regions in the FDFPD. By selecting drop 

profile from softening region of Fig. 6a at t*=77.3 of 

the drop formation process, with surface tension 

σ=0.004, inner pipe diameter D=14, and density 

ratio of 1,000, the drop was stimulated by an 

external sinusoidal force with superharmonic and 

subharmonic frequencies. It was observed that there 

is only one oscillation before drop detachment due 

to resonance in both frequencies (Fig. 8). Note, all 

the above quantities are in lattice units. The result is 

in agreement with the non-linear vibrations theory 

of superharmonic and sub-harmonic resonance. 

According to Fig. 8,  in subharmonic resonance at 

about t√( g/D)=5.3, the drop becomes unstable, and 

detaches. Also, in superharmonic resonance at 

about t√( g/D)=36, the drop becomes unstable, and 
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detachment occurs. Besides, in subharmonic 

resonance, the detachment time is about one-sixth 

of detachment time in superharmonic stimulation. 

The simulation was then repeated by a drop profile 

selected from the elastically hardening region at 

t*=40.5 near the inflection point of FDFPD in Fig. 

6. 

 

 
Fig. 9. Superharmonic resonance of the 

simulated growing drop in Fig. 6a in its 

elastically hardening region at t*=40.5. 
 

In this region, It was realized that drop detachment 

was due to superharmonic resonance (subharmonic 

resonance was not observed). The external 

stimulation by changing drop geometry pushes it to 

enter softening region, which results in drop 

detachment. As a final remark, the close 

resemblance between Figs. 6 and 9 is interesting. 

Yet, they are representative of different physical 

phenomena. Figure 6 is due to a steady injection of 

mass under constant gravity force, and Fig. 9 (with 

no mass injection) is due to stimulation by an 

external sinusoidal force. So, we may say being in 

elastically softening region is a necessary condition 

for the drop detachment.  

7.3   Effect of Dimensionless Numbers  

We performed extensive simulations to examine the 

effect of the main dimensionless numbers engaged 

in drop formation, namely Reynolds, Capillary, and 

Bond numbers. Their definitions are presented in 

Section A.4 in the appendix. Note, capillary number 

is representative of relative importance 

of viscous force generated by internal flow to 

interfacial tension force. Since Reynolds number in 

these simulations are low, besides gravity the two 

forces, namely: surface tension and viscous, are the 

main effective and engaging forces in drop 

formation. As the heavier phase enters the lighter 

one, it is distorted by the viscous forces due to the 

relative velocity of the two phases. In fact, in many 

flow cases, in addition to the effect of gravity, these 

forces tend to extend and squeeze the drop 

downstream.  (Gu et al. 2011). The surface tension 

force  (which inherently tends to lower the 

interfacial area) tries to overcome viscous force by 

pulling the drop upstream. So, the overall shape of 

the pendent drop depends on the relative dominance 

of these forces. At low capillary numbers, 

surface tension force tends to dominate and the 

shape of the drop becomes spherical. In contrast, 

at high capillary numbers, viscous forces are 

dominant, resulting in deformation of the drop. 

 

 
Fig. 10. Effect of Ca number variation with 

constant Reynolds number. 
 

As a remark, the viscosity reduces drop oscillations 

at its interface due to its damping effects 

and stabilizes the drop. It almost has no effect on 

the drop size. According to Zhang and Basaran 

1995, the stabilizing effects of viscosity on drop 

formation have two aspects. First, viscosity damps 

the initial oscillations of the interface immediately 

remaining after the pinch-off of the previous drop at 

the tip of the tube. Second, viscosity has an 

essential effect in preserving the falling primary 

drop approximately in spherical shape as it is 

detaching from the pipe tip. For Re= 0.023 the 

Capillary number was set to Ca= 1.8E-5, Ca= 7.3E-

5, Ca= 1.47E-4, and Ca= 7.3E-4. The results are 

shown in Fig. 10.  As it is seen, increasing the Ca 

number (while keeping the Re number constant) 

results in the decrease of the detachment time 

(which is in good agreement with the results of 

(Zhang and Basaran 1995) and shrinking of linear 

portion in FDFPD. This phenomenon may be due to 

the weakening surface tension force effects in 

comparison to viscous effects that accelerate the 

detachment time. One possible explanation is that 

increasing the viscous effects increases the non-

linear character of the growing drop. As capillary 

number increases, viscous effects dominate and the 

drop stretches out. The more it extends, the more it 

deviates from its spherical shape (or symmetry), 

which causes increase in non-linearity due to 

geometrical changes. As explained earlier, the 

growing drop has a geometrical non-linearity. 

Also, keeping the Reynolds number equal to 0.023, 

other simulations were made by setting Bond 

number to 0.11, 0.48, 0.98, and 1.96. Interestingly 

enough, it was realized that by increasing Bond 

number, the linear portion of FDFPD enlarges and 

also the detachment time reduces (Fig. 11). This 

behavior may be due to the increase of gravitational 

forces effects that mainly have linear nature. Also, 

increasing Bond number means that relative 

importance of surface tension force decreases, 

causing detachment time to diminish. Obviously, 

keeping Reynolds number constant means we can 
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not change dynamic viscosity, pipe diameter, and 

heavier phase velocity. So, the only way to change 

capillary number is changing surface tension 

coefficient. As a result, changing capillary number 

changed Bond number. Therefore, in Fig. 10 for 

capillary numbers of 1.8E-5, 7.3E-5, 1.47E-4, and 

7.3E-4, the corresponding Bond numbers are equal 

to 0.11, 0.45, 0.90, and 4.5, respectively. 

Also, changing Bond number was conducted by 

changing gravity. So, in Fig. 11 the capillary 

number was kept constant and equal to 1.8E-5.  

 

 
Fig. 11. Effect of Bond number variation at 

constant Reynolds number. 

 

8. CONCLUSION 

In this work, by introducing a new eqation, non-

linear elastic behavior of pendent drop was 

investigated. This equation fully expresses the 

dynamical specifications of the pendent drop (from 

growth to detachment). In addition, this equation 

makes it possible to identify elastic behavior of the 

pendent drop in regions having hardening, and 

softening elasticity by using its extrema and 

inflection points. The study of drop growth showed 

that the drop detachment occurs at the maximum 

point of this equation when the growing drop 

advances to the elastically softening region (by 

crossing the inflection point). In examining 

the oscillating behavior of the pendent drop, the 

superharmonic and subharmonic frequencies of the 

drop were determined using the natural frequency 

extracted from the linear region of the above 

mentioned equation. The pendent drop was 

resonated using superharmonic and subharmonic 

frequencies. It was observed that, first, the drop 

detachment occurs after its entrance to the 

elastically softening region. Second, when 

stimulating drop with subharmonic frequency, it 

detaches faster than when resonated with 

superharmonic one. The effect of capillary and 

Bond numbers on non-linear behavior of 

pendent drop detachment were also investigated. In 

this regard, it was observed that increasing capillary 

number reduces pinch-off time and increases non-

linear behavior of the drop, where the increase of 

Band number decreases both separation time and 

non-linear behavior of the drop.  

9. APPENDIX 

A1.   Lattice Parameters 

In this study, D2Q9 lattice was used is as follows 

(Fakhari and Bolster 2017): 
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where c= Δx/Δt,  for the uniform grid (Δx=Δt=1  ), 

in which Δx and Δt are lattice length and time 

scales, respectively, and w's are weight coefficients 

derived using Gauss-Hermit quadrature rule.  

Using Ŝ and M for D2Q9 from (Fakhari et al. 2017) 

M-1ŜM for 2D lattice is as follows:  

1ˆ  
  
 

T1 0
M SM

0 T2
                                    (A2) 
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and 
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In Eqs. (A3-A4),  is defined as: 

1

1 2
νs

τ



                                                (A5) 

Where τ is the hydrodynamic relaxation time and is 

related to kinematic viscosity as: 
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2

sν τc t                                                          (A6) 

τ can be calculated using the following interpolation 

relation: 

 L H Lτ τ φ τ τ                       (A7) 

A.2   Variation of Surface Tension Force 

with Appearant Contact Angle. 

Figure A.1 shows a pendent drop from a capillary 

tip. The growing drop has an apparent angle of θ 

with respect to the horizontal level of the capillary 

tip.  

 

 

 
Fig. A1. Schematic of apparent angle of a 

growing drop. The drop has an angle of θ with a 

capillary tip. Here, the direction of surface 

tension forces acting on the three-phase contact 

line is shown. 

 

Figure A1 shows surface tension force, Fs, which 

has an angle θ with the horizontal direction. This 

force exerts to the perimeter of the capillary tip with 

a diameter D, which is called the three-phase 

contact line. Its overall magnitude is πσD, so its net 

magnitude in the vertical direction is πσDSin θ. In 

this regard, the variation of surface tension force 

can be considered as a function of θ. While, the 

drop is growing, if 0< θ<π/2  then surface tension 

force will be ascending, and if π/2< θ<π, it will be 

descending 

A.3   FDFPD with Re=0.023 and Bo=0.48 

In this section the FDFPD is illustrated for 

Re=0.023 and Bo=0.48 and compared with the Fig. 

5 of Nazari et al. 

A.4   Dimensionless Numbers 

According to (Cramer 2004), there are mainly five 

important dimensionless numbers engaged in the 

drop formation problem, namely: Capillary (Ca), 

Ohnesorge (Oh), Reynolds (Re), Bond (Bo), and 

viscosity ratio. Though Oh=√(Ca/Re), the three 

dimensionless numbers, Re, Bo, and Ca, were 

considered in this simulation. Their definitions are 

as: 

Re ,
 

 

UD Inertial Forces

ν Viscous Forces
                       (A8) 

,
 

  

ρνU Fiscous Forces
Ca

σ Surface Tension Forces
     (A9) 

2

,
 

  

g ρD Gravitational Forces
Bo

σ Surface Tension Forces


  (A10) 

where U is heavier phase velocity entering from the 

pipe, D is pipe inner diameter, ν is kinematic 

viscosity, ρ is heavier phase density, ∆ρ is the two-

phase density difference, g is gravity acceleration, 

and σ is the surface tension coefficient. 

 

 
Fig. A2. Comparison of the trends between the 

FDFPD for Re=0.023 and Bo=0.48 with Fig. 5 of 

Nazari et al. (2018). 
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