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ABSTRACT

In this research, natural convection of power law fluid in a square cavity, with a porous deposit in the shape
of a semicylinder is studied numerically, using the multipédaxationtime lattice Boltzmann methb The

modified DarcyBrinkman model is applied for modelling the momentum equations in porous medium and
the Boussinesq assumption is adopted to mtwdbuoyancy force term. The influerccef power law index

060 n O 1. 4), T'DaDayyPRay@gherumber (FID0 R a © @nd thé radius ratio of
thesemicyl i ndrical porous deposit (0. 05 ar®stuled.Ohed . 5)
obtained results show that these paramétave an important effect, on the structure of hydrodynamic and
thermal transfer. The improvement of the power law index leads to a decrease in the heat transfer rate,
illustrated by the average Nusselt number, and the augmenitafarcy number inducesnincrease in that

rate. Moreover, the variation tie Rayleigh number anthe porous depositadiushas a significant effect on

the transfer rate and convective structure. Besides, an unusual phenomenon is noticed for high Rayleigh
numbers, where a bettheat evacuation from the porous deposit is noticed for the dilatant fluid compared to
the pseudoplastic one.

Keywords: Modified Darcy-Brinkmanmodel; Square cavitySemicylinder.

NOMENCLATURE

Ct tortuosity factor 0 porosity of porous medium
Cp specific heat of fluid q dimensionless temperature
Da Darcy nunber €a apparentlynamicviscosity
[ discrete particle velocity r fluid density
F total body force _ s porous matrix coefficient
fi density distribution function u kinematic viscosity
G driving force _ Ue effective kinematic viscosity
g acceleration of gravity _ R dimensionless radius of porous deposit
K permeability of the porous medium r dimensional radius of porowposit
k thermal conductivity Ra Rayleigh number
K* modified permeability of the porous ¢ relaxation rate

) medl_um . S, strain rate tensor
K’ consistency coeffient T temperature
L length and height of the cavity t time
LBM Lattice BoltzmannMethod Vi dimensional velocity component in x
MRT Multiple-RelaxatiorTime direction
n power law index Vy dimensional velocity component in-y
ni modified power law index direction
Nu local Nusselt number Vi dimensionless velocity component in x
NUavg average Nusselt number direction
p pressure Vy dimensionéss velocity component iny
Pr Prandtl number direction

& local shear rate w size of heat source


http://www.jafmonline.net/

A. Bouradaet al./ JAFM, Vol. 14, No. 2, pp459472, 2021

dimensional Cartesian coordinates
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thermal conductivity

thermal expansion coefficient
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collision operator
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1. INTRODUCTION

The problem of natural convection in a medium
with porous matrix has attracted the attention of
numerousresearchers, duto the wide range of
relevant applicatios in mechanical, technical and
chemical fields such as electronic cooling, fibrous
insulation, packeded reactors, fluid flow in
geothermal reservoirs, crude oil production, grain
storage system, food processidgying, éetc.

Over the last few decadethe free convection of
Newtonian fluids in porous madin has been
consideredby many authorsBasaket al. (2006)
have comparedn natural convection, the impact of
uniform versus nowniform heating, in an entirely
porous guare cavity, employing the Darcy
Forchheimer modelafariet al (2018)considered
natural convection of nanofluid for five different
configurations of square porous cavities, equipped
with cylindrical hot pins, using thelattice
Boltzmann method.Ragui et al (2017) have
simulatedfree convection in a partitioned porous
cavity, under the effect ofhermosolutal buoyancy
forces Habbachiet al. (2017) have exanined heat
transfer in natural convectioninside cubic
enclosure equipped with a cubic porous obstacle.
Numerical investigation on the influence of porous
layer thickness was proposed Bhenet al. (2009)
Heidaryet al (2016)analysechatural convection in
porous inclined enclosuseequipped with one or
two obstacles with the presence of sinusoidal
heated wall and magnetic fieldA numerical
investigation on natural convection was perfadme
by Astaninaet al (2018) in a partially porous
squarecavity. The later contains a conductive and
heatgenerating block. The simulations were run
using DarcyBrinkman equatiorand considering a
temperaturalependent cosity. Omara et al.
(2016) performed a numerical study on natural
convection in a square porous enclosure with
partially heated left wall and partially cooled right
one The study wasrealized using thermal non
equilibrium  model and DarcBrinkman
Forchheimer equation.

The investigation of the natural convection of
Newtonian andpower law fluids also attracted
considerable attention in recent decad¥sshet al
(2014) introduced a novel flexie forcing
immersed boundantBM for simulating natural
convection in an annulus of hot eccentric square
inner cylinder. Habibi Matin et al (2013) have
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Subscripts

avg average

C cold

e effective
eq equilibrium
H hot

i direction index

simulated thenatural convection of power law fluid
in an annulus. Turan et al (2011) studied
numerically thefree convection in differentially
heated cavitigs saturated by power law fluids.
Gangawane and Manikandan(2017) have
compared in natural conwetion, the isothermal
heating to the uniform heat flow of a hexagonal
block attached to theentreof a square enclosure
The latter is filledwith power law fluid.Dash and
lee (2014)used a mw flexible forcing immersed
bourdary LBM to study numericallythe natural
convection inan enclosureequippedwith inclined
square hot cylinder.Moreover, Dash and Lee
(2015) studied free convection within a square
enclosurewith different horizontaland diagonal
eccentric square heat sowsckhezzaret al (2012)
have treated natural convection in inclined cavities,
saturated by power law fluids, for various aspect
ratios.

Nevertheless,natural convection ofOstwaldde
Waelefluids in porous media has not been treated
considerably. Jecl and Skerget (2003) have
presentedree convection in totally porous square
enclosues containing power law and Carreau
fluids. The work wasdone using the modified
Darcy-Brinkman model for flow in porous medium
and considering the neDarcy viscous effects.
Abdelgaied and Eid2011)have performed a study
of thermosolutal natural convection Gfstwaldde
Waelefluids, flowing on an axisymmetric body of
arbitrary form in a porous medid&he work was
doneutilizing the modified Darcy model. In natural
convection modeGetachewet al (1996)have used
the modified Darcy equation to modgle power
law fluid flow in a porous cavityKefayati (2016)
used finite difference LBM to simulate
thermosolutal natural convection dDstwaldde
Waele fluids within inclined porous enclosure.
Zhuanget al (2017) have reported a numerical
studyon thermosolutal natural convection of power
law fluids within a porous cubic enclosurby
adopting the generalized nebarcy model and
considering a chemical reactioBdhuang and Zhu
(2018) have investigated the buoyarklarangoni
convection of power law nanofluids saturated
porous cubicenclosureby adopting theDarcy
Brinkman modelRaizah Abdelraheert al (2018)
have preseet a numericainvestigationof laminar
flow of power law nanofluid saturated porous
medg, inside an inclined open shallow enclosure,
wherethe Darcy model is applied.
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Lattice Boltzmann is a relatively new method V.=V, =0,88/8Y =0
compared to conventional approaches imarical L LI L 4
simulation. Yet, between the foundation of 1

statistical physics, on which LBM is based, and its
theoretical completion, more than a century has
passed. The construction of the lattice Boltzmann
method can be summarized in two paradoxically
independet steps: the development of statistical
physics of one side, and the appearance of cellular
automatons on the other side. LBM is one of the
most powerful and most used approaches for the
simulation of transfer phenomena within a porous
medium. This may beelative to its simplicity and

its ability to manage complex geometries and
boundary conditions. This tool has also been used
as a computational approach to simulate flows of
non-Newtonian fluids.

=V,=0,0=-05
S0-=0°0="A="A

v,

S

Porous.depasit:

Yy Y,
00/6Y =0 0=+0.5 ab/eY =0

The scarcity of published works treating the natural
conveetion of nonNewtonian power law fluid in V,=V,=0

medium with a porous matrix has motivated us to Fig. 1. Physical problem scheme with boundary
continue in this field. Such fluid flows are abundant conditions.

in many applications both technologically and
theoretically. In this article, the MRIBM is
developed to solvéhe general equations governing
the convective heat transfer of power law fluid in a
square cavity containing a senylindrical porous
deposit. The main aim of this study is to determine
the combined effect produced by the coexistence ofBased onthe assumptions mentioned abotke
power law fluid ad porous matrix, on the governing equations of heat transfer by convection
hydrodynamic and heat transfer characteristics. Thisin their dimensional form, using momentum and
effect was computed by implementing the modified energy conservation, are writtén porous medium
Darcy-Brinkman model for power law fluid in the and fluid regionas follows(Nebbaliand Bouhadef
Boltzmann equation. The influence of diverse 2011 Shenoy 199%

parameters such as power law indearcy number,
Rayleigh number and radius ratio of the semi
cylindrical porous deposit were studied.

3. MACROSCOPIC GOVERNING
EQUATIONS

Continuity equation

e Wy g 1)

2. PHYSICAL PROBLEM e W

X momentum equation:
Two-dimensional natural convection of power law
fluid is studied in a partiallyheated square W  Vx Wy  Vy Wy _ € D

enclosurgFig. 1). The hot source of sizev (w /L H e ix e w ro X *

= 0.6), is placed at the central part of the bottom

wall, andkept at a uniform temperature HJT The aé{ Vx 8 +F 2
side walls aremaintained at a constant cold e“ 1(a;ew(2 29 % L)
temperature (d), while the other walls are

adiabatic. The cavity contains a serylindricd y momentum equation:

porous deposit of radius andconstant porositye

= 0.6 located on the centre of the bottom wall. The HVy , x Wy Yy Wy _ e wp

porous matrix is considered as homogeneous and pt e X e Ww ro Wy

isotropic. Also, the fluid and the porous matrix are 2,2 2, &

thermally in equilibrium. We have taken advage e dVy HVyo, o 3
of the modified DarcyBrinkman model for — g"1&2 2 O y ®)

modelling the momentum equations in the porous
deposit. Energy equation:

The fluid is considered as incompressible with |n the fluid region:

constant thermghysical properties. Only in the

buoyancy term, the density is described by the 3 uT HT 6 aL H
Boussinesq @proximation(Bejan 2003 The fluid pr%+Vx—+Vy g=kE—+—9
viscosity is equivalent to the effective viscosity and ¢ X W = a%( W
the Prandtl numbesiequal to 10 in all the study.

(4)

IOOOz

In the porous medium:
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where w andy arerespectively the transversal and
longitudinal constituents of thaveragedvolume
velocity, ro is theaveragefluid density, p the
pressureand T the temperaturee is the porosity

y direction.

The shear stress forppwer lawfluid is depicted in
tensor form agHabibi Matinet al. 2013:

of the porous deposit (this parameter is equal to/7is the apparent viscositlefined by

unity in the fluid region), we is the effective
kinematic viscosity,x= [e(r cp)+(1 - & (rsCp9)] /

(r cp) is the ratio of thermal capacity; and rsare
densities of the fluid and the saqlicespectivelyco
and cps are respectivelyhe fluid and solidspecific
heat capacities k and ke are the thermal
conductivities of the fluid and the porous matrix
respectively In momentum equations,n is the
power law index, F = (Fx, Fy) refers to the body's
total force, caused by the existencetloé porous
deposit andthe Buoyancy term, givenyb(Nebbali
and Bouhadef 201 Bhenoy 1994

F=-s v+eG

(6)

=8

where v = (%, W) is the velocity in the x and/

directions, M =JV2+vZ2 , s isthe porous matrix

coefficient which isequal to 1 in the porous region
and O in the fluid region.

K" is the modified permeability of Ostwaldde
Waelefluid, defined byChristopher and middlema
(1965} it relies both on the power law index and the
existence of porous medium:
K _143ne 8a5CK 8(n +)/2 @
2C; ¢3n+1l+ ¢ 3e +

K refers to the intrinsic permeability an@: is the
tortuosity factor defined thus:

25
12

Christofer an
Middelman (1965)

Kemblowski  an

o AN
ab0 a-n)2
&02 Michiewicz (1979)

c2+

e P

3(1m-3)
284 8n 83 on - 3%758101+11)
33%n +39 836n +1 916+

Dharmadfkari anc
Kale (1985)

®

In this work, theDharmadhikari and Kal€1985)
expression isused For this expression, the power
law index musbe changed ta new power index:

=n+0.31-n).

The driving force G described by the Boussinesq
approximation is given by:

G=-gb(T-To); (©)
in which g is the gravity accelerationp is the

thermal expansionoefficient, © = (Tn + Tc)/2 is
the reference taperature,j is the unit vector in the

462

auv, W, 0
="A§§N*w * 8 (10)
B g g s wgf e
Ok it 7 e T

where Ki is the consistency coefficient.

The nondimensional parameters of this study are:

v, L - 3
X:5yY:l7VX:£yVy:y_yRa:—gb(TH TC)L ;
L L ER ae ug
* T-T,

Da= 2;F’r—i; ey m 0 Rl
L de u Ty-Te' L

In which ae is theeffective thermal diffusivity,Ra
is the Raylei number, Da is the number of
Darcy, Pr is the number of Prandtl. is the
characteristic length, v is the fluid kinetic
viscosity J is the viscosity ratiand R isthe
radius ratio of the senaylindrical porous deposit

4. LATTICE BOLTZMANN APPROACH

The LBM may be applied tsolve the problems of
fluid flow, heat transfer andmass transport
phenomenaln this approachthe fluid is considered
as a set of particles, whicmove Etream) with
discrete velocityin specified directionsdepending
on the lattice structure, and collide (interact) with
each other on lattice nodes. The distribution function
f is the probability of finding a particle at a given
node with a certain velocity. Collision and particle
advection are driven by the LB equatiowhich
reflects the development of these functions and
external force introducedby a source ternfBoutra

et al 2017, Kumar et al 2017, Shahet al 2017,
Sullivanet al. 2009):

fi(x+qd,t+d)- fi(xt)=Wf)+dF

where fi is the function of distribution with
velocity & at lattice nodex at time t, d is the
discrete time step, WY(fi) is the discrete collision
operatorand Fi is theexternal forces term.

The lattice Bhatnaga®rossKrook (BGK) is the
most simple of the LB methodapproximatingthe
collision operator with single relaxation time
(Bhatnagaret al. 1954 Khali et al 2013. By
adopting this approximation, the collision operator
is linearized aroundn fi®d equilibrium state it is
thus written in the following matrix form:

(12)

fi(x+ed.t+a)- fi(xt)=
1
S UICURRASCR) ity (13)

where fi#d is the equilibrium distribution function
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and ¢ is the dimensionless relaxation time.

Numerical instability, limitation in representation of
certain flow problems and fixing of Prandtl number
and the report of kinematic viscosity to apparent
viscosityat the unit values, appear as default of this
method and give limits to its use.

In order to overcome these shortcomings,
d 6 Hu m{1992)ereposedhe moment approach
known as the multipleelaxationtime model,
employing different relaxation timgeto simulate the
evolution of macroscopic quantities. The execution
of the collision in an orthogonal moment space
leads to an efficient and flexible scheme. This

The local equilibrium distribution functiorfi®d for
the hydrodynamic field in porous medium is
calculatedby Eq. (17) (Fallahet al. 2012 Kumar et
al. 2017:

e 2 2g

£.89=w r él+3qv+ 9(qv) } llﬁl 17)
A 2e 2ep
g ¥

where the weighting factorsy are given as:

Wy =4/9; W4 =1/9; w.53=1/36 (18)

M is the transformation matrix, which projects

model presents an optimal stability compared to the@nd fi®® into the moment spacga m = Mf and

BGK model.In the MRT scheme, the collision term
is defined in the following wayBouarnouneet al
2019 Shahet al. 201%:

W =-M"1G|mxn- m(x1)

where m and m® are macoscopic and
equilibrium macroscopic variablegspectively.

4.1 D2Q9 MRT-LB Equation for the flow
Field in Porous M edia

(14)

For flow field, the twodimensional ninevelocities
model D2Q9 is used in thistudy (Fig. 2). The
MRT-LB equation(Higueraet al 1989 Khali et al
2013 with a specific treatment of the faderm
(Kumaret al 2017 Li et al 2010 is employed:

fix+gd.t+a)- fi(xt)=

i 1A GC3§
- M M (x0) - mEY(x )|+ M 1%%- 7'§Di (15)

et e2 e5
el
e3 e1
e7 ed4 es

Fig. 2. The D2Q9 lattice structure.

The nine discrete velocitiesi are given by(Liu et
al. 2014 Ghatreh Samani and Meghdadi Isfahani
2019:

e
1(0,0) i=0
I\
6 =i[cost sinf]lc  F=(i- 1)% i=1234 (16)
i
ll[cosf,sinf]\/zc f=(a- 9)% i=5678

where ¢ = (d/d) = (d/d) is the lattice speednd
o and ¢, are the lattice cdlldimensions these
quantities are chosen equal to the udit o/ = d =
1, thus c=1.
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mf9 = Mf ®  in which m and mf9 are the
macroscopic and equilibrium macroscopic variables
vectors respectively. The functions of distribution
in moment space adescribed belowFallahet al
2012 Kumaret al. 2017%):

=
[,
i

1
o1 -

194f0
u& 0
2g&ho
Leds
1y&;0
N 0
1{@i0=M (19)
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where r is the fluid density, e is related to
energy, is related to the square of the energpy
arethe momentuntomponentsj = (jx, jy) = (&,
rvw), Oxy arethe energy flux in two directions, and
pxxy refer to the diagonal and edfiagonalstrain
rate tensor component

Density r and momentum jxy are conserved
guantities,while the six other momentsf velocity
are nonconserved. mf9 for the noncorserved
momentsaredescribedas(Liu et al 2014:

2 2
eeq:_2,+3r0|"| ;/-eq=,_3’0|"| ;
e e

eq — . ~€0 — .
xq_'rOVx1qu_'r0Vyv (20)
2 2
ped = rO(VX B Vy). ped = ToVxVy
XX e Y e
In the equilibrium moments above, the

incompressibility approximation was usedhe
fluid density is writterin the following mannerr =
(ro+d ¥° ro (d risthe density fluctuation), angl
= (jx, jy) © rov. The mean flid density ro is taken
equal to 1for simplicity.

| is the identity matrixand C
relaxation matrix given by:

C=diag(s, 51,52, 535,555, 57 Ss)

is the diagonal

(21)

s are the relaxation rates. Their values must be
between 0 and 2 to maintaitalsility. In this

simulation, they are selected as follows:
C=diag1,1.21.4,1,1.2,1,1.2,1/¢,1/¢) (22)

The nonconserved moments relax in linear terms
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into their equilibrium valuegMezrhabet al 2010.
In the moment spacehé collision step iperformed
as:

m*(xt)=m(x t)- Ci|m (x,t)- m®i(xt)
&

ra - 8D (23)

c =
In the velocity space, the streaming step is
performedby:

fi (x+gd,t+q)=f (xt)

where f' = M-1m".

(24)

m' is the moment after collision.

The constituents of the vectob in the moment
space are as given beldiau et al. 2014):

6rgvF D, =- 6rgvF

DOZO;D]_: ;D3:f0FX;
D4:'f0FX;D5:f0Fy;D6:'f0Fy;

va

(25)
ro vXFy +Vny)
e

B 2r0(vXFX -

= ). p. =

ll

e

In the MRT-LBM, the fluid kinematic viscosity is
related to the texation parameter of the flow field
t (Guoet al. 2010:

u=1%.18 (26)
3(; 2+

For a Newtonian fluid,¢ is constant ireachnode,
whereas for a power law fluid, ¢ is variable
according to the local strain raSullivan et al
2006. The form of local viscosity for the power
law fluid is given by:

u=K (" (27)

& is the local shear rate. It is linked to the

symmetrical strain rate tensor's second invarigg;
in the following way(Sullivanet al 2006):

g= 2\/ S Sapr (28)

with

Sy = War (29)
KXy WXy

In MRT method, lte strain rate tenso8a; may

be written asKallahet al. 2012):

8

a eaerdl

i=0

Siw =

2{(1:54 (M SMJI[f (xt)- eq(xt)] (30)

where Cs= ¢ /./3 is the speed of sound.

. . . n=
The macroscopic fluid variables are calculated as

follows:

(1)

8
= a fi
i=0
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8

rov=Q ef; +% roF (32)
i=0
4.2 D2Q5 MRT-LB Equation for the

Temperature Field

The twodimensional D2Q5 model (Fig. 3) with

five velocities is used in this workfor the

temperature fieldThe MRT-LB equation may be
written as:

gi(x+ea,t+a)- gi(xt) =

- N7IE [ (x,t) - n®9(x.t) (33)
ez
el
e3 el
e4

Fig. 3. The D2Q5 lattice structure.

where gi(x,t)
distribution.

is the function of temperature

In D2Q5 model,& are given by:

:;(o,o) i=0

_%[cog,sinf]c f:(i-l)% i—1234 Y

The function of equilibrium distribution idenoted
by:

=w T[1+56V] (35)
wherethe weighting factorswii are given as:
Wp =3/5; W_,=1/10 (36)

N is the 5x5 orthogonal transformation matrix,
which projects g and gi®®into the moment space
with n = Ng and n®9= Ng®%, where n and n®d
are the macroscopic and equilibrium macrogcop
temperature variablegespectively.

The functions of temperature distribution in
moment space are providéeglow (Mezrhabet al

do g gl 11 1 lﬂaeqoo
amo g0 1 0 -1 05ado
Moo= go 01 0 -1U§2°_Ng (37)
@0 ¢4 1 1 1 15890
2949 g0 1 -1 1 -1%,?

E is the diagonal relaxation matrix:

E= diag(ro, r,ro,r3, r4) (38)
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Table 1 Comparison of average Nusselt number for various Da and R=0.4 ; Pr=1

Da Ra Liu et al. Nithiarasuet | Guo and Zha Present work Mrz)l(gt]iq\?em
(2014) al. (1997 (2005) deviation(%)
108 1.007 1.010 1.008 1.008 0,198
102 10 1.362 1.408 1.367 1.357 3,622
100 3.009 2.983 2.998 3.057 2,480
100 1.067 1.067 1.066 1.066 0,093
104 10 2.630 2.550 2.603 2.597 1,843
107 7.808 7.810 7.788 7.792 0,230
107 1.085 1.079 1.077 1.077 0,737
106 10° 2.949 2.970 2.955 2.935 1,178
10° 11.610 11.460 11.395 11.770 3,290

For stability reasons, the relaxation rates are choserfizn=fan , fsn=f7n, fon="fan

as follows:

E =diagL,l/¢1,1/t1,1.251.25) (39)

where #r is the relaxation parameter for
temperature field.

The D2Q5 MRTLB
accomplished as follows:

collision process is

) =n (6D ER(xD- 1
Among the 5

(40)

moments, only temperatuse

conserved
A

n=T=a 9 (41)
i=0

The nonconserved moments are written in

equilibrium as follows(Lallemandet al 2003

nfqzvXT;nngvyT;ngq:VT;nfqzo (42)

The effective thermal diffusivity(k is defined as:

a =SWrv)E 18

43
10 ¢ 2= “3)

The thermal transfer between the hot cavity wall

and the cold fluid is characterized by the lo¢alu)
andthemean (Nuavwg Nusselt numbers:

|lT 1 ( )
Nu=- — and Nu = udx 44
avg ioi‘l

Wiy=o
4.3 Boundary Conditions

In the LBM, conditions should bentroduced
through the distribution function.

Boundary conditions for flow:

Bounce Back conditions are employed for
specifying boundary conditions dhe solid walls.
The distribution functins at the solid are equal to
the distribution functions of the flui(Rahmati and

Najjarnezami 2016)For the D2Q9 model:
upper wall:
f4,n:f2,n , f7,n:f5,n y fB,n:fG,n (45)

lower wal:

465

(46)
left wall:
fin=fan, sn=frn, fen="Ten 47)
right wall:
fan=fin, frn=fsn, fon="fan (48)

Boundary conditions for Temperature:
For thethermal field (D2Q5 mode):

The Bounce Back condition is also used on the
adiabatic walls:

upper wall:
Q2n=02n1 (49)
lower isolated portions
4n=0gan1 (50
and in the isothermal walls, we appliedhe:
left wall:
g =28+ Y 8 g, (51)
¢S 20+
right wall:
5=28 Jobre - 52)
lower heated portion:
9> = del' +LgTH - O (53)
¢5 20
5. CODE VALIDATION AND MESH

SENSITIVITY ANALYSIS

The computational code has been successfully
approved with the numerical works fu et al
(2014) Nithiarasuet al (1997)and Guo and Zhao
(2005) for the case of diffrentially heated porous
cavity with isolated horizontal walls. This cavity of
porosityequal to 0.4 is filled with a Newtonian
fluid. Table 1 indicates a goatcordancéetween
the averageNusselt numbers obtained from this
code and those ofthe mentioned papersfor
different Darcy and Rayleigh numbers, with a
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Table 2 Grid independencestudy for n=0.7,1and1.3.Ra=10¢; Da=10 $R=0.3.

n=0.7 n=1 n=13

Grid NUavg Re'?f,i/‘o’)egap NUag Relaz%egap NUavg Re""zf,i/:)egap

80°80 | 4.7666 ] 4.1222 - 3.8385 -
10°100 | 4.7880 | 0.448 4.1347 0303 | 3.8499 0.297
120°120 | 4.808 0.351 4.1441 0227 | 3.8560 0.158
140°140 | 4.8115| 0.139 4.1488 0113 | 3.8575 0.039
160°160 | 4.8119 | 0.008 4.1499 0026 | 3.8582 0.018
180°180 | 4.8125 | 0.012 4.1505 0014 | 3.8586 0.010
200°P200 | 4.8126 | 0.002 4.1505 0.000 | 3.8587 0.003

maximumrelative deviationof about 3.62 %. The with Ra = 16, Da = 10% and R = 0.3. The
values were compared with the three works and therelative gap of the average Nusselt number of each
maximumrelativedeviationis reported. mesh, compared to the result of the prior mesh, is
presented. Based on thesimulation runs the
uniform mesh size ofl80% 180 nodes was selected
for the rest of the simulations.

The code is also validated with the numeriealrk
of Turanet al (2011)in the case of differentially
heatedcavity filled by a power law fluid. Figre 4
shows a good correspondence between isotherms

obtained from this code and those Tafran et al. 6. OUTCOMES WITH EXPLANATIONS
(2011) for severalpower lawindicesand Numbers
of Rayleigh. This study is performed primarily to exhibit the

applicability of the MRTLBM method and its
simplicity of implementation, compared to more
Ra =10 Ra =16 classical methods. The analysis was, therefore,
n=0.6 restricted to the treatment of the effaxt certain
parameters, namelypower law index, Rayleigh
number, Darcy number and the radius ratio of the
porous deposit, on hydrodynamic and heat transfer.
The power law indexangesfrom 0.6 to 1.4,the
Rayleigh numbewaries between 10° and 10,
Darcy number takes its values between' S1@nd
10 2 and the radius ratio of the mus deposit is
chosen betweel®.05 and 0.5.

Turanet
al. (2011)

In the simulations below, the necessary parameters
are fixed at these value®r = 10, €= 0.6,8e/a =

1 (a is the flud's thermal diffusivity) J =1 and

v = - 2.

Present
work

To respect the incompressible flow approximation
and the stability criterion ornw, the Mach number
based onU (Ma =U/Cs) should be less than 0.3.

U=, gbOorL is the characteristic velocityni

Turanet
al. (2011)

thermal convective flows.

1 \ \ ] \ \ Figure 5 preserg the influence of power law index

< \g b on streamlines for multiple Rayleigh numbevith
k & Da =10 %and R =0.3. For the elevated nunser
% of Rayleigh (Ra = 10), the structure of streamlines
04 shows that the natureonvection transport becomes
\ %\\ \ stronger for the pseudoplasfinid compared to the
A

dilatant one. However, the low buoyancy forces in
Fig. 4. Comparison of isotherms with those of ~ the lower Rayleigh numbesignificantly slow the
Turan et d. (2011) movement of the fluid and the flow pattern becomes
almost independent oh. Therefore the effects of
sheasthinning and sheahickening appear
Before tackling the simulations resyltthe mesh insignificant except inside the porous medium,
sensitivity analysis was performed to assure a gridwhere the flux of the pseudoplastic fluid is weaker
independent sotion. The Mesh influence on the as compared to the Newtonian and dilatant #uid
mean Nusselt number of the hot horizontal wall is This is due to the lightness ofi$ fluid that is
shown on Table 2 for various power landices deflectedby the porous deposit.

Present
work
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Darcy number on flow fields also investigated
Results are illustrateid Fig. 7 for Ra= 19 and R

= 0.3. At higher numbers of Darcy (Da =" fand

10 3, the flow is able tgpenetrate more deeply
inside the porous deposit withodtsturbance for
pseudoplastic, Newtonian and dilatant fluids
because of the high permeability. Nevertheless, the
convective flow in porous matrix is weak for lew
Darcy numbers (Da = 1Gand 103}, given that
the deposit becomes quasilid and causes
deflection of streamlines. But even so, the
extremely external streamlinesinduced by the
strong convectivecurrents existing at the vertical
walls, are only able to penetrate the porous deposit.

Ra n=0.7 n=1 n=13

108

10t

100

Da n=0.7 n=1 n=1.3

100
10°

= =

Fig. 5. Streamlines for various power lawvindices
and Rayleigh numbers Da =10 3; R=0.3.

The effect of power law index on isatms for ~ 10*

several Rayleigh numbers dda = 10 3 and R =

0.3 is presented on Fig. 6For the smallest

Rayleigh number (Ra = 16), it can be observed

that isotherms are similar for all three types of 103

power law fluid and the conduction is dominant,

given the low intensity of convective currents.

However, for larger Rayleigh numbers, the thermal

transfer becomes more convective and the decrease

in power law index reduces the thermal boundary 102

layer thickness near the wallBhis isdue to the low

apparentviscosity that improves thermal transfer

referring to the increase in the rate of parietal Fig. 7. Streamlines for various power lawindices

gradients. It is of interest to note that the cold fluid and Darcy numbers Ra=1C; R=0.3.

follows the vertical walls in a downward

movement, in the form of two concentric cells, Figure8 displays isotherms fatifferent power law

given the high derity, and then rises through the indicesand Darcy numbernsith Ra =16 and R =

centreforming a thermal plume. 0.3. Clearlyimproving the Darcy number redes

significantly the thickness of the thermal plume and

boundary layerdr the pseudoplastic fluid. Foba

=10 Sand Da = 10% the conduction heat transfer

is dominant within the porous deposit for the three

considered fluids In particular, for the

pseudoplastic fluid, the cold fluid descending along

the vertical walls goes around the porous deposit.

This phenomenon is attenuated when dealing with

the dilatant fluid given the magnitude of the

10¢ apparent viscosity. Therefore, in the case of
pseudoplagt fluid, the hot fluid inside the deposit
is prevented from invading the upper regions of the
cavity and only a plume of hot fluid is observed
This is not the case for the dilatant fluid where the

10 cold fluid is less reassembled and thus allows the
expanson of the hot fluid.

Ra n=0.7 n=1 n=13

108

Figure 9 reveals the effect of power law index and
Darcy number onthe average Nusselt number,
100 calculated on the hot portion of the bottom wall for
Ra =10° and R = 0.3. Note that the heat transfer
) ) Lo rate decreases with the increa$@ower law index.
Fig. 6. Isotherms for various power lawindices The previousbehaviouris owed to the fact that the
and Rayleigh numbers Da =10 R =0.3. augmentation of n leads to an enhancement in the
) . ) effective viscosity which reduces convective
The impact of varying the poer law index and  cyrrents in the cavity. Moreover, the heat transfer
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