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ABSTRACT 

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear 

formulations are simple and require less computational resources but have the disadvantage that, those can’t 

predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are 

predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy 

viscosity including all the possible higher order terms quadratic in the mean velocity gradients and a simplified 

model is developed for actual oceanic flows where only the vertical velocity gradients are important. The 

simplified formulation is used for the study of natural convection flow in a vertical water column and the results 

are compared with the observational data and predictions of other existing turbulence models. The developed 

formulation can be incorporated in other computational fluid dynamics codes for the flow analysis in various 

engineering applications. The model predictions of marine turbulence and other related data (e.g. sea surface 

temperature, surface heat flux and vertical temperature profile) can be utilized in determining the effective 

siting for the Ocean Thermal Energy Conversion (OTEC) plants and in particular for the development of tidal 

energy projects. 
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NOMENCLATURE 

*A  Lumley flatness parameter 

ijb  Reynolds stress anisotropy  

pC  heat capacity 

ijd  diffusive transport 

k  turbulence kinetic energy 

P  pressure 

ijP  shear production 

ijR  vorticity tensor 

S  salinity 

ijS  strain rate tensor 

T  temperature 

U  velocity 

  kinematic viscosity 

u  fluctuating velocity in x-direction 

v  fluctuating velocity in y-direction 

t  eddy/turbulent viscosity 

  molecular diffusivity 

w  fluctuating velocity in z-direction 

 

ε turbulence dissipation 

  elevation of the free surface  

II  second invariant of Reynolds stress anisotropy 

III  third invariant of Reynolds stress anisotropy 

ij  pressure strain correlation 

 
1. INTRODUCTION 

Turbulence modeling in computational fluid 

dynamics and geophysical modelling can be 

classified into four major approaches as direct 

numerical simulation (DNS)(Moin and Mahesh 

1998), large eddy simulation (LES)(Piomelli 1999), 

Reynolds stress model (RSM)(Panda 2020; Mishra 

and Girimaji 2010; Mishra and Girimaji 2017) and 

eddy viscosity model (EVM)(Pope 2000). DNS 

consists of solving the Navier-Stokes equations 

resolving all the scales of motions. Computational 
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cost of such simulations is very high for complex 

flows and for flows with higher Reynolds numbers. 

However, in LES Largest scales are resolved and the 

smaller scales are modelled. The computational cost 

is comparatively less than DNS. These two methods 

of turbulence simulations are not practically viable 

with limited computational resources. The Reynolds 

stress models (Mishra 2014; Panda and Warrior 

2018) are more accurate than the eddy viscosity 

models, but those make the solver unstable, since 

those models solve equations for all the components 

of the Reynolds stresses. 

In contrast to above mentioned three approaches, 

eddy viscosity models are simple and require less 

computational resources and provide a stable solver 

for performing different simulations and are based 

on the Reynolds averaged Navier Stokes (RANS) 

equations in which Reynolds stresses appear as a 

result of time averaging of momentum conservation 

equations, The RANS equations can be written as: 

i

i

U
0

x





                                                                     (1) 

i i
i j

i j j j

DU 1 P U
ν( ) (u u )

Dt ρ x x x x

    
  

   
             (2) 

where, U and P are velocity and pressure 

respectively. In the above equation, there are four 

equations but ten unknowns. The additional 

unknowns result from the averaging of Navier-

Stokes equations and are termed as Reynolds 

stresses. (Boussinesq 1877) was the first to postulate 

the assumption that the Reynold stress tensor is 

proportional to the strain rate tensor and can be 

written as 

i j t ij ij

2
u u 2ν S kδ

3
                                                 (3) 
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ij

j i

U1 U
S ( )

2 x x


 

 
                                               (4) 

Similarly the vorticity tensor has the form: 

ji
ij

j i

U1 U
R ( )

2 x x


 

 
                                                  (5) 

The eddy viscosity models can be further classified 

as linear and non-linear models. Most of the 

geophysical modellers have used linear version of 

the eddy viscosity models (Dijkstra et al. 2017; 

Smyth et al.  2012; Klingbeil et al.  2018; Yamazaki 

et al. 2014). The linear models are unable to predict 

the Reynolds stress anisotropy accurately when the 

flow is complex because of swirl and curvature 

effects, since those have not any higher order terms 

in the definition of anisotropy. However, the non-

linear eddy viscosity models has quadratic terms in 

terms of the strain and vorticity, which can overcome 

such difficulties and can accurately predict the high 

Reynolds stress anisotropy resulting from the 

complex flow physics (Yang and Ma 2003; Shih et 

al. 1998). Very few researchers have used non-linear 

eddy viscosity models for modelling geophysical 

flows (Sasmal et al.  2014; Sasmal et al. 2015). They 

mainly have used the lower order terms in the 

definition of the Reynolds stress anisotropy. 

In the standard k-epsilon model (Jones and Launder 

1972) tν is defined as 

νt = Cμ
k2

ε
                                                                  (6) 

The equations for k and  can be written as(Pope 

2000), 

j ji
k i j t

j i i

u uDk U
D u u ν

Dt x x x

 
  

  
                             (7) 

Dε

Dt
= Dε −

Cε1Pk−εCε2

k/ε
                                               (8) 

The coefficients appearing in the dissipation 

equation were chosen by referring to the measured 

rate of decay in grid turbulence and local 

equilibrium turbulence respectively (Launder and 

Spalding 1983). To obtain νt, the transport 

equations of turbulence kinetic energy k and 

dissipation rate ε are need to be solved in the k-

epsilon model. (Mellor and Yamada 1982) solved 

equations for k and kl , where l is the length scale. 

cµ is the structure parameter. (Wilcox 1988) 

replaced dissipation by ω (which is the ratio of 

dissipation and kinetic energy) . In k-epsilon model 

the structural parameter is a constant value, that 

can be defined by referring to local equilibrium 

shear layers but in the geophysical turbulence 

model of (Mellor and Yamada 1982) the structural 

parameter was taken as function of shear and 

buoyancy. The effects of buoyancy, vorticity and 

Reynolds stress anisotropy were included in the 

structural parameter of (Kantha and Clayson 

1994). 

Reynolds stress anisotropy can be defined as 

i j ij
ij

u u 2 / 3kδ
b

2k


                                                  (9) 

(Maity and Warrior 2011) proposed an eddy 

viscosity model based on a transport equation of 

second invariant of Reynolds stress anisotropy and 

studied the natural convection flow and mixing in a 

vertical water column. For non equilibrium shear 

flows (Craft et al.  1996) proposed a non-linear eddy 

viscosity model and took Reynolds stresses as more 

general function of vorticities and mean velocities. 

Considering the above formulation of anisotropy 

tensor (Sasmal et al. 2014) proposed an eddy 

viscosity formulation for geophysical turbulent 

flows. They didn’t consider the cubic terms in the 

definition of Reynolds stress anisotropy. Later, 

(Sasmal et al.  2015) used the same formulation of 

eddy viscosity to model dissipation of turbulence in 

geo-physical flows. 

In this article, a simplified formulation for the eddy 

viscosity in terms of the invariants of the Reynolds 

stress anisotropy is proposed for the geophysical 

flows by adopting a non-linear constitutive 

equation for Reynolds stress anisotropy tensor that 

include all the possible higher order terms 
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quadratic in the mean velocity gradients, which 

accounts for the streamline curvature and swirling 

effects (Craft et al.  1997). We have neglected the 

heat flux and wall reflection terms from the model 

of (Craft et al. 1997), since those are nor not 

relevant to our work. The proposed formulation is 

implemented in the 1D General Ocean Turbulence 

Model(GOTM) (Burchard et al.  1999), where, the 

velocity is considered to be varying only in the 

vertical direction. Numerical experiments were 

conducted for the Fladenground experiment 

1976(FLEX'76) (Burchard et al. 1999) and the 

ocean whether station papa (OWS PAPA) 

(Burchard et al. 1999) for which large 

observational datasets are available for different 

meteorological conditions. The model predictions 

are compared against those observational data and 

contrasted against the k-epsilon model predictions. 

The proposed formulation can accurately predict 

flow parameters for complex geophysical flows, 

where complex strain field exists because of the 

swirling and streamline curvature. 

2. FORMULATION OF THE 

PROBLEM 

The one-dimensional form of the Reynolds-averaged 

Navier-Stokes equations, energy conservation 

equation and salt conservation equation are used for 

the study of natural convection flow and heat transfer 

in a vertical water column. Effects of the advection, 

internal pressure gradients and horizontal transport 

are neglected. 

t zz z x
0

ρ
U ν U uw fV g ζ

ρ
                         (10) 

t zz z y
0

ρ
V ν V vw fU g ζ

ρ
                          (11) 

where, U and V  are the velocities, g  is the 

acceleration of gravity, ζ is the elevation of the free 

surface, ρ is the averaged density, and 0ρ a constant 

reference density resulting from Boussinesq 

approximation (Umlauf and Burchard 2005). 

The Energy and Salinity conservation equations can 

be written respectively as 

z
t zz z

p 0

I
T ν ' T wt

C ρ


                                          (12) 

t zz zS ν S ws 0'                                                  (13) 

where T and S are the temperature and salinity 

respectively. ν'  denote the molecular diffusivity, 

pC is the heat capacity. I  denotes the short wave 

radiation and its vertical divergence is taken as the 

source term in the energy conservation equation 

(Umlauf and Burchard 2005). 

2.1   Simplified Formulation of Eddy 

Viscosity 

The Reynolds stress in terms of Boussinesq eddy 

viscosity can be written as 

i j t ij ij

2
u u 2ν S kδ

3
                                             (14) 

We have assumed that the turbulence is in 

equilibrium state. The constitutive equation of (Craft 

et al.  1997) for the Reynolds stress anisotropy tensor 

is considered for the present eddy viscosity 

formulation, 

𝑏𝑖𝑗 =
−𝜈𝑡
𝑘

𝑆𝑖𝑗 + 𝑐1
𝜈𝑡
𝜀
(𝑆𝑖𝑘𝑆𝑘𝑗 − 

1

3
𝑆𝑘𝑙𝑆𝑘𝑙𝛿𝑖𝑗) + 𝑐2

𝜈𝑡
𝜀
(𝑅𝑖𝑘𝑆𝑘𝑗 + 𝑅𝑗𝑘𝑆𝑘𝑙) + 

𝑐3
𝜈𝑡
𝜀
(𝑅𝑖𝑘𝑅𝑗𝑘 − 1/3𝑅𝑙𝑘𝑅𝑙𝑘) + 

𝑐4
𝜈𝑡𝑘

𝜀2
(𝑆𝑘𝑙𝑅𝑘𝑗 + 𝑆𝑘𝑗𝑅𝑙𝑖) + 

𝑐5
𝜈𝑡𝑘

𝜀2
(𝑅𝑖𝑙𝑅𝑙𝑚𝑆𝑚𝑗 + 𝑆𝑖𝑙𝑅𝑙𝑚𝑅𝑚𝑗 − 

2

3
𝑆𝑙𝑚𝑅𝑚𝑛𝑅𝑛𝑙𝛿𝑖𝑗) + 

𝑐6
𝜈𝑡𝑘

𝜖2
𝑆𝑖𝑗𝑆𝑘𝑙𝑆𝑘𝑙 + 

𝑐7
𝜈𝑡𝑘

𝜀2
𝑆𝑖𝑙𝑅𝑘𝑙𝑅𝑘𝑙 = 𝜈𝑡𝜙1                            

                                                                             (15) 

The coefficients of Eq(15) are calibrated against test 

cases as, 1 0.04 c , 2 0.1c , 3 0.02c , 4 0.1c

,  5 0.8 c ,  6 0.6 c  and  7 0.6c .  

An expression for jib  can be written by 

interchanging the indices i and j, and here will 

represent only the final expression, 

ji t 2b ν                                                                   (16) 

Multiplying Eq (15) and (16), an expression for the 

second invariant of Reynolds stress anisotropy can 

be obtained, 

2
ij ji t 1 2II b b ν                                                        (17) 

After rearrangement of the terms, An equation for the 

turbulent viscosity will be obtained as 

1

2

t 1

2
1 2

II
ν

( )





                                                          (18) 

In the oceans, because of the strong disparity 

between the horizontal and vertical dimensions, the 

strain and vorticity take a simplified form. Thus by 

considering only vertical gradients of velocity and 

neglecting variations of U and V in other 

directions, the strain and vorticity tensor acquire the 

form 

ij

U
0 0

z

1 v
S 0 0

2 z

U V
0

z z

 
 

 
 

  
 
  

 
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                                          (19) 
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z
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R 0 0
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U V
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z z
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  
 
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                               (20) 

2.2   Transport Equation for the Second 

Invariant of Stress Anisotropy 

An equation for the second invariant developed by 

(Craft et al. 1997) is taken into consideration. A 

transport equation for Reynolds stress anisotropy can 

be written as, 

 

 

                                                                              (21)                                                                                              

The transport equation for II is derived by 

multiplying the above equation by ij2b . The 

resulting equation for the stress invariant is written 

as 

 

                                                                            

                                                                             (22)       

where ijd  represents the diffusive transport, ijP is 

the shear production, ij  is the pressure strain 

correlation which is the summation of slow and rapid 

term and ijd is the dissipation rate of  Reynolds 

Stress. 

In order to model the pressure strain correlation, the 

Poisson equation for fluctuating pressure should be 

solved for determining the pressure fluctuations  

The second moment closure model of (Craft et al.  

1996) has the form: 

S R
ij ij ij                                                               (23) 

 

 (24) 

R
ij ij ij kk ij kk0.6(P 1/ 3δ P ) 0.3b P                         (25) 

In the expression for S
ij , 

2 * 0.5 0.5 *
1 t 1c 3.1[1 exp R / 80) (A ) min(II ,0.5),c 1.2$,   

and 
j

ij i k
k

δU
P (u u )

δx
   

k iiP =0.5P                                                                 (26) 

S
ij ijb  works out to be, 

                                                                              

                                                                             (27) 

 

The transport equation for the second invariant of 

Reynolds stress anisotropy can be simplified as: 

                                                                       

                                                          

                                                                             (28) 

After suitable modifications and assumption for the 

geophysical flows, the equation for II  can be written 

as: 

  

 

 (29) 

where, ij jiII b b and ij jk kiIII b b b are the second 

and third invariants of the Reynolds stress anisotropy 

tensor(in turbulence studies those are used for 

plotting the anisotropy invariant mapping for 

demarcating the different states of turbulence) and 
*A  is the Lumley flatness parameter (Lumley 1979), 

which is zero at the wall, where turbulence goes to 

two component limit. 

* 9
A 1 (II III)

8
                                                       (30) 

For preventing the model form blowing up during 

numerical simulations realizability constraints for 

the second invariant were considered. The values of 

second invariant can be larger than one, near the 

walls because of higher values of turbulent stresses 

at those regions, those were not considered in this 

study, 

0 II 1                                                                    (31) 

3. NUMERICAL MODELING 

The temperature decrease with depth in the ocean and 

an upward and downward movement of water occurs 

as a result of temperature difference between the layers 

of fluids, which can be termed as free or natural 

convection flow, is dependent on the temperature, 

salinity and depth of the water. In this work, an one 

dimensional water column model ”General Ocean 

Turbulence Model”(Burchard et al.  1999) is used to 

study the natural convection flow in a vertical water 

column. The simplified formulation is used to simulate 

the flow and the results obtained from the simulations 

are compared with the observational results of ocean 

weather station papa (OWS Papa) and a realistic ocean 

test case of the Fladenground experiment 1976 (FLEX 

76). A detailed discussion on such experiments and 

data collection is available in (Burchard et al.  1999). 

The discretization of the domain is achieved by 

dividing the domain into required number of intervals. 

The vertical discretization were refined at the surface 

and bottom. The discrete values for the mean flow 

quantities such as x and y components of velocity, 

temperature and salinity represent interval means and 

are located at the centers of the interval and the 

turbulent quantities are positioned at the interfaces of 

the intervals. The staggering of the grid allows for a 

second order approximation of the vertical fluxes of  
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(a)                                                                                    (b) 

 

                      
(c)                                                                                    (d) 

Fig. 1. Time series of temperature profiles for OWS papa. 

 
momentum and tracers without averaging. 

Averaging of the eddy diffusivities is required for the 

vertical fluxes of kinetic energy, length scale and 

dissipation. Because of absence of advection and 

fully implicit treatment of diffusion the time stepping 

is equidistant, based on two time levels. For 

momentum and tracers a fully implicit discretization 

scheme is used, which results in a system of linear 

equations with tri-diagonal matrix for each transport 

equation. The resulting tri-diagonal matrix is solved 

by means of simplified Gaussian elimination 

(Burchard et al.  1999). 

4. RESULTS AND DISCUSSION 

The OWS Papa is located in the North Pacific, at 

145W and 50 N, where sea temperature profiles 

and meteorological data have been collected from 

1940s to the early 1980s. The current simulations 

of OWS Papa have been performed for the year 

1961. It is situated in a region where horizontal 

advection of heat and salt is assumed to be small. 

for OWS Papa, meteorological data for sea surface 

temperature, air pressure, wind speed and direction 

are available. In station OWS Papa, horizontal 

advection of heat and salt is assumed to be small. 

Time series of SST profiles of OWS Papa are 

shown in Fig. 1. In four separate sub-figures the 

different model predictions are compared with 

observed data. OWS papa observational results are 

available up to 250 meter depth. The vertical 

profiles of temperature are shown in 2. The present 

model prediction matches well with the 

observational data and are comparatively better 

than the k-epsilon model predictions. The time 

series of eddy viscosity over a period of two 

months is shown in Fig. 3. Figures 4 and 5 show 

the variation of eddy viscosity and heat diffusivity 

respectively with depth. k-epsilon model predicts 

almost zero viscosity in lower layers but the 

present model shows nonzero viscosity in those 

layers, which can be considered as an improvement 

of the result because of the non linear terms in the 

formulation of the eddy viscosity. 

The Fladenground experiment was performed at 

the northern North Sea at a water depth of 145  

meter and a position 58 .55  N and 0 .55  E.  

Measurements of meteorological forcing and 

temperature profiles were carried out in spring 

1976. Various turbulence modellers have validated 
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their models and compared the performance of 

various turbulence models against FLEX 76 data 

(Sasmal et al. 2014) and (Burchard et al. 1999). 

Figure 6 represents the time series of temperature 

profiles during the Fladenground experiment 1976. 

From the present model predictions, it is observed 

that there is little improvement over the model 

predictions of the k-epsilon model for the sea 

surface temperature profiles. Time series of 

temperature profiles, at a depth of 100 meter are 

shown in Fig. 7. Since the present model properly 

represents the complex flow fields because of the 

addition of cubic nonlinear terms in the 

formulation of the Reynolds stress anisotropy, an 

improved prediction of temperature profiles is 

observed at a depth of 100 meter. On the Julian day 

133, a storm occurred on that site, the storm can be 

noticed from the vertical temperature profiles in 

Fig. 7. Figures 7 (a) and 7 (b) represent Julian day 

124 and 136 respectively. Both before and after 

storm, predictions of temperature are better than k-

epsilon model and are matching with the trends of 

observational data. 

 

 
Fig. 2. Vertical profiles of temperature: 

comparison of the model predictions with the 

observed data for OWS papa. 

 
 

 
Fig. 3. Variation of eddy viscosity with time: 

comparison of the present and k-epsilon model 

predictions for OWS papa. 

 
Fig. 4. Profile of eddy viscosity: comparison of 

the present and k-epsilon model predictions for 

OWS papa 

 

 

 
Fig. 5. Profile of heat diffusivity: comparison of 

the present and k-epsilon model predictions for 

OWS papa. 

 

5. CONCLUSIONS 

Effects of complex strain fields can be tackled by 

using nonlinear terms in the constitutive equation 

as done by other researchers. Addition of cubic 

terms to the Reynolds stress anisotropy 

constitutive equation ensures proper 

representation of flow field by mimicking 

streamline curvature and swirl effects in 

geophysical flows. The k-epsilon model predicts 

almost zero viscosity in the lower layers but the 

present model shows non-zero viscosity in those 

layers which is an improved prediction of the eddy 

viscosity field. Because of addition of swirling and 

curvature effects also there is an marked 

improvement of the temperature profiles. This 

simple model will be beneficial for flow prediction 

in coastal areas, where depth is less and the no-slip 

condition induces higher vorticity in the flow field. 

In future course of work focus can be placed on 

the modelling of the near wall geophysical 

turbulent flows by considering the near wall 

invariant parameters such as strain and stress 

invariants in the formulation of eddy viscosity or 
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through incorporation of the pressure strain 

correlation representing the wall damping effects 

in the transport equation of the stress invariant. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6. Time series of temperature for the 

Fladen-ground experiment 1976. a) present 

model b) k-epsilon model c) observed data. 

 

 

 
(a) 

 

(b) 

Fig. 7. Vertical temperature profiles during the 

Fladenground experiment 1976.a) Before storm 

b) After storm. 
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