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ABSTRACT 

The current paper reports on a new theory developed by modifying the basic Moore-Greitzer model, which 

can predict the performance of a compression system during the instabilities in more details. The general 

assumptions such as the compression system layout, the lags in the entrance and exit ducts, the compressor 

axisymmetric characteristic and the small disturbances are similar to those of Moore-Gereitzer model. 

However, a second order hysteresis is used in the current work for the pressure rise of the rotor and stator 

rows. As a result, some new parameters are added to the governing equations, such as the stall cell 

acceleration ( 22 / drd ), second derivative of the mean axial flow coefficient ( 22 / dd  ), second derivative of 

the disturbance amplitude ( 22 / dAd ) and slope of the compressor characteristic curve. This gives the 

modified model new capabilities, like investigating the transient speed of the stall cell or the effect of the 

throttling rate on the instabilities, which are discussed in details in the current paper. 
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NOMENCLATURE 

nn ba ,  Fourier coefficient of ( )g  and ( )h  

A  amplitude function of first-harmonic 

angular disturbance 

cA  compressor duct area 

a  reciprocal time-lag parameter of blade 

passage 

sa  sound speed 

B  Greitzer parameter 

F  steady pressure rise coefficient in blade 

passage 

TF  throttle characteristic function 

f  non-dimensional speed coefficient 

g  disturbance of axial flow coefficient 

H  semi-height of cubic axisymmetric 

characteristic 

h  circumferential velocity coefficient 

GK  loss coefficient at IGV entrance 

TK  throttle coefficient 

cl  total aerodynamic length of compressor 

and ducts 

El  length of exit in wheel radii 

Il  length of entrance in wheel radii 

Tl  length of throttle ducts in wheel radii 

m  parameter defining lag tendency outside 

compressor 

N  number of stages of core compressor 

n  wave number (corresponding to number 

of stall cells) 

P  pressure coefficient 

0p  static pressure at entrance to IGV 

1p  static pressure at entrance of core 

compressor 

Ep  static pressure at exit of core compressor 

Sp  static pressure at end of exit duct, and 

pressure in the plenum 

Tp  total pressure ahead of entrance and 

following the throttle duct 

R  mean wheel radius  

r  time-dependent phase angle 

t  time 

U  wheel speed at mean diameter 

PV  volume of plenum 

W  semi-width of cubic characteristic 

Y  disturbance potential at compressor 

entrance 
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  axial disturbances measured in wheel radii 

  angular coordinate around wheel 

  angular coordinate around wheel, 

measured relative to a rotating-stall cell 

  time, referred to time for wheel to rotate 

one radian 

  coefficient of pressure-rise lag 

  axial flow coefficient in compressor, 

annulus averaged; axial velocity divided 

by wheel speed 

T  flow coefficient of throttle duct 

  local axial flow coefficient, a function of 

 and   


~

 velocity potential in entrance duct 

 
~

 disturbance velocity potential 

  total-to-static pressure rise coefficient 

c  axisymmetric pressure rise coefficient 

0c  shut-off value of axisymmetric 

characteristic 

 

SUBSCRIPTS 

0  at the entrance to the compressor 

E  at the exit of the compressor 

  

1. INTRODUCTION 

There is always a strong motivation to increase the 

safe operating range of axial compressors which is 

limited by the onset of two aerodynamic 

instabilities, rotating stall and surge. Surge is 

characterized as large amplitude oscillations of the 

annulus flow through the whole compression 

system, whereas rotating stall is a localized 

disturbance which might be limited to some of the 

compressor stages. There are two well-known types 

of stall inception patterns, modal and spike 

(McDougall et al. (1990) and Day (1993b)). In 

modal stall inception, long length-scale 

perturbations gradually buildup and lead to the 

formation of stall cells. Modal waves might survive 

20-200 rotor revolutions prior to rotating stall. This 

type of stall inception was first predicted 

theoretically by Moore (1984 I, II) and Moore and 

Greitzer (1986) before being observed by a number 

of researchers (e.g., Tryfonidis et al. (1995), 

Garnier et al. (1991) and Hendricks (1993)). As 

reported by Garnier et al. (1991) and Hendricks et 

al. (1993), modal stall inception can occur in high 

speed compressors as well as low speed ones. 

Furthermore, it was shown by Hendricks et al. 

(1993) that compressibility does not have a 

dominant effect on the dynamic behavior of the 

stall cells. On the other hand, spike-type stall 

inception involves a short length-scale disturbance 

which appears suddenly and develops directly into 

rotating stall (Camp and Day (1997) and Gong et 

al. (1999)). 

Theoretical and semi-empirical models of surge and 

rotating stall have been reported by a number of 

researchers (Moore (1984 I, II), Moore and Greitzer 

(1986), Emmons (1955), Stenning and Kriebel 

(1956), Takata and Nagano (1972), Cumpsty and 

Greitzer (1982)). Emmons (1955) postulated a 

theory to predict the propagation speed of the stall 

cell in cascades. Irrotational flow was assumed at 

the cascade inlet and a transient velocity field 

(time-averaged axial and tangential velocity 

components together with small disturbance 

velocities) was applied. Stenning and Kriebel 

(1956) also employed small disturbance approach 

to calculate the stall cell propagation velocity. 

Takata and Nagano (1972) reported on a nonlinear 

analysis of rotating stall, in which blade rows were 

replaced by semi-actuator disks. A semi-empirical 

model was presented by Cumpsty and Greitzer 

(1982), based on an analytical estimate of the 

pressure change across a stall cell boundary. Moore 

(1984a, b) developed a model of unsteady pressure 

rise across a blade passage at in-stall condition. The 

stall cell was modeled as a small circumferential 

disturbance to axial and tangential velocities. The 

disturbances were assumed to be expressed as 

Fourier series and the propagation velocity of the 

stall cell was calculated by equating the coefficients 

of trigonometric functions. A theory was developed 

by Moore and Greitzer (1986) to model the 

performance of an axial flow compressor as it 

leaves stable operation and moves toward 

instabilities. This model focused on the initial 

transient period leading to either fully developed 

rotating stall or surge.  

Gong et al. (1991) presented a 3-D computational 

model for compressor instability which employed a 

three dimensional distribution of body forces. The 

model made it possible to simulate both modal and 

spike stall inception. A three dimensional model 

based on the body force method and empirical 

correlations has been developed by Righi et al. 

(2018). Results showed that the model can simulate 

rotating stall and surge fairly accurately.  

Many numerical investigations concerning rotating 

stall inception have been reported recently. Vo et al. 

(2008) introduced two criteria for spike type 

rotating stall inception. The first condition was that 

the interface between the tip clearance and 

oncoming flows becomes parallel to the leading-

edge plane, leading to the occurrence of the 

leading-edge vortex spillage. The second condition 

was the initiation of reverse flow at the trailing-

edge plane. Similar findings were reported for high-

speed compressors (e.g., Chen et al. (2008), Choi et 

al. (2011) and Khaleghi (2015)). In the experiments 

reported by Weichert and Day (2013), however, no 

spillage was observed before and during the 

emergence of spike. As emphasized by Weichert 

and Day (2013), the debate about whether forward 

spillage occurs before or after stall onset is a topic 

of current interest which requires more numerical 

and experimental investigations. 

Epstein et al. (1989) was the first who suggested 
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the concept of the so called intelligent engines, in 

which stalling disturbances are detected and 

suppressed at early stages of formation (e.g., Day 

(1993a) and Paduano et al. (1991)). Since then 

Moore-Greitzer model has become a theoretical 

framework for active control of instabilities in 

compression systems. However, there are some 

drawbacks in the basic Moore-Greitzer model, one 

of which is that it does not include the slope of the 

compressor characteristic curve (it is assumed that 

stall is initiated at peak pressure rise where the 

slope of the compressor characteristic is zero). 

However, Camp and Day (1997) showed that the 

slope of the compressor total to static pressure rise 

characteristic for modal stall inception can be 

between roughly -0.2 to +0.2.  Furthermore, the 

basic Moore-Greitzer method can not model the 

transient behavior of the stall cells. The main 

objective of the current work is to develop a 

modified model based on the basic Moore-Greitzer 

method with more capabilities and advantages such 

as modeling the stall cell transient behavior and 

including the slope of the compressor characteristic 

curve for low-speed axial compressor. 

2. MODELING 

2.1 Compressor Model 

The compression system is assumed to be the same 

as that modeled by Moore and Greitzer (1986) (Fig. 

1 in Moore and Greitzer (1986)). The compressor is 

assumed to have high hub-to-tip radius ratio blades, 

which enables 2-D flow assumption. The inlet and 

outlet channels as well as the compressor are 

assumed to have constant cross sections. The flow 

is assumed to be incompressible, frictionless and 

irrotational within the entrance duct. It is further 

assumed that the flow is inviscid throughout the 

whole compression system and also is compressible 

everywhere, except in the plenum chamber. The 

circumferential coordinate is denoted by the wheel 

angle   and the axial coordinate by the non-

dimensional parameter   (the axial distance 

divided by the compressor mean radius). 

Furthermore, the non-dimensional time is defined 

as: 

RUt /=                                                              (1) 

The axial flow coefficient is postulated to be 

consisted of a mean value and a small axial 

disturbance (Eq. (2)). This axial disturbance term is 

not only a function of the circumferential 

coordinate but also a function of time, in order to 

enable transient behavior of the compression 

system during surge or stall.  

),()(  g+=                                                (2) 

The mean axial flow coefficient ( ( )  ) is defined 

as: 

 =





2

0
)(),(

2

1
d                                        (3) 

A circumferential disturbance is necessary to 

satisfy the continuity: 

),( hh =                                                             (4) 

 

 
Fig. 1. Compressor axisymmetric characteristic. 

 

As mentioned above,   is the circumferential 

average of  , and therefore, the angle average of g 

must be vanished. Furthermore, due to the 

irrotational assumption at the entrance of the 

compressor, the angle average of the 

circumferential disturbance ( h ) must be vanished: 

 ==



2

0

2

0
0),(;0),( dhdg                        (5) 

In the recent work done by Khaleghi et al. (2020) 

and  Shahriyari et al. (2019), the compressor 

pressure rise function which was used by Moore 

(1984a) and Moore and Greitzer (1986) was 

modified to include a second order derivative term, 

which enabled the investigation of the stall cell 

transient behavior. The same hypothesized function 

is used in the current study:  














+−=


2

2

2

)(

2

1 dt

d

dt

d
F

U

p 




                          (6) 

The terms dtd /  and 
22 / dtd   for the rotor and 

stator can be expressed as follows: 








=









R

U

dt

d

stator

                                              (7) 













+




=

















R

U

dt

d

rotor

                                  (8) 

2
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2

2
















=















R

U

dt

d

stator

                                    (9) 


















+




+












=















2

22

2

22

2

2

2












R

U

dt

d

rotor

  (10) 

By putting Eqs. (7-10) into Eq. (6) and applying the 

same model for all of the stages, the pressure rise 

coefficient for the N-stage compressor becomes: 
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−
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






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






R
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a

a
NF

U

ppE

               (11) 

UN

R
a


=                                                            (12) 

2.2 Inlet Guide Vanes 

Similar to Moore and Greitzer (1986) and using the 

same assumptions, the pressure rise through the 

inlet guide vanes can be modeled as: 

2

2

01

2

1
hK

U

pp
G=

−


                                            (13) 

Where the term 2hKG  is the coefficient of abrupt 

pressure rise at the IGV entrance. Note that if the 

IGV has no loss, the value of GK  will be 

equivalent to one, and otherwise, less than one. 

2.3   Entrance Duct 

The flow in the entrance duct is assumed to be 

inviscid, incompressible and irrotational, and 

therefore, Laplace Equation can be used. A velocity 

potential function (
~

) is defined, the derivatives of 

which gives the axial flow coefficient ( ) and the 

circumferential disturbance (h):   

( ) ( ) ),(
~

);,()(
~

00
  hg =+=            (14) 

The velocity potential function is defined by Eq. 

(15) so that it satisfies the condition that 
~

 be 

equal to zero at the entrance of the compression 

system (reservoir).  

( ) ),(
~

)(
~

 ++= Il                                (15) 

In order to determine 
~

, the velocity potential 

function for the disturbances ( 
~

) must be defined, 

which is given by Eq. (17) (it satisfies the Laplace 

equation given in Eq. (16)). The derivatives of this 

Equation in the directions of   and   at the 

compressor face are equal to g and h, respectively. 

Furthermore, note that this velocity potential 

function is vanished at far upstream.  

0
~~

=+                                                        (16) 

0,)cossin(
1~

1

+= 


=

 

n

nn
n nbnae

n
  (17) 

By applying the Bernoulli Equation between far 

upstream and the compressor face (See Moore and 

Greitzer (1986)). 

( )
0

22

2

0 ~
)(

2

1



++=

−
h

U

ppT                          (18) 

Where: 

( ) ( )
00

~
 


 +


=

d

d
l I                                          (19)  

2.4   Outlet Guide Vanes and Exit Duct 

The pressure rise of the OGV and exit duct can be 

modeled as follows (see Eqs. (17-20) in Moore and 

Greitzer (1986)): 

( ) ( )
02

~
)1( 


−−


−==

−
m

d

d
lP

U

pp
EE

ES          (20)  

Where m is the compressor lag parameter and its 

value is between one and two (see Moore (1984a)). 

2.5  Pressure Rise through the Compression 

System 

By using Eqs. (11), (13), (19) and (20), the overall 

pressure rise through the compressor becomes as 

follows: 

( )

( ) ( )
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R
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d

d

Ra

U

d

d
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a
l

NF
U

pp

G

EI

TS

  (21) 

From the definitions of the upstream total to 

downstream static pressure rise coefficient ( ( )  

given in Eq. (22)), the axisymmetric compressor 

characteristic ( ( ) c  given in Eq. (23)) and the 

compressor non-dimensional effective length 

(given in Eq. (24)), Eq. (25) can be obtained. It 

should be noted that the IGV is assumed to have no 

loss ( 1=GK ).  

2
)(

U

pp TS




−
                                                (22) 

2
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1
)(  −= NFC                                            (23) 
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ll ++=
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d
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  (25) 

As Eq. (5) indicated, the circumferential average of 

the disturbance functions ( g  and h  which are 

assumed to be periodic) are vanished over 0 to 2 . 

By taking the first term of the Fourier series given 

in Eq. (17), the following equation is obtained:  

( ) ( )
00

~~
  −=                                                    (26) 
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The function Y  is define as follows for the sake of 

simplicity (see Eqs. (31) to (35) in Moore and 

Greitzer (1986)): 

 YgYh −== ;                                               (27) 

It should be noted that Y  is periodic 

( ( ) ( ) ,2, YY =+ ) and because the cyclic 

integral of g and h are vanished, the cyclic integral 

of Y must be vanished as well: 

( ) =





2

0

0, dY                                                   (28) 

By using Eq. (27), Eq. (25) become as follows: 

( )

( )

 








YYY
Ra

U

YY
a

mY

d

d

Ra

U

d

d
lY cc

+++

++−


−


−−=

22
2

2
2

1

)(
2

2

          (29) 

2.6   Overall Pressure Balance 

The continuity equation of the plenum chamber 

under assumptions of one dimensional and inviscid 

flow leads to the following equation (Moore and 

Greitzer (1986)). 

 )()(
4

1
2




Tc
Bd

d
l −=


                           (30)  

In this equation B  is the Greitzer parameter: 

cc

P

S lA

V

a

U
B

2
                                                  (31)  

Where sa  is the speed of sound, PV  is the plenum 

volume and cA  is the compressor cross sectional 

area. 

2

2

1
TTT KF =                                                     (32)  

Where TF  is the throttle characteristic function 

and TK  is the throttle coefficient. 

One more equation is needed to be solved together 

with Eqs. (29) and (30) in order to find the 

unknowns: ( ) , ( )  and ( ) ,Y . This 

equation is obtained by integrating Eq. (29) with 

respect to   and using Eq. (28):  
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                              (33)  

For pure rotating stall, the time derivatives in the 

above Equations vanish. By applying the change of 

variable given in Eq. (34), the governing equations 

for pure rotating stall become as given in Eqs. (35) 

to (37). Note that the frame of reference attached to 

the stall cell is inertia due to the fully developed 

stall assumption. 
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
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

d
d

Yd
C

2

0

2*

2

)(
2

1
                          (36)  

T=                                                               (37)  

Equation 37 shows that the operating point in pure 

rotating stall should be on the throttle characteristic 

curve. Furthermore, note that hddY =/  and 

gdYd −=22 /  . By approximating 







 − 22 /  dYdc  by the first two terms of its 

Taylor series (noting that modal waves can be well 

described by a linear theory Gong (1999)) and 

representing g and h by Fourier series and taking 

the first term (so that gddh −=/  similar to 

Moore (1984a)), Eq. (35) becomes: 

( ) cff
Ra

U
 −=+− 122

2

2                                 (38)  

am
f

+
=

1

2/1
                                                         (39)  

By putting Eq. (39) into Eq. (38) the following 

result is obtained (this equation is valid for the 

negative slope portion of the compressor 

characteristic where the parameter a  is negative 

(see Fig. 1) : 

Z
Ra

U
c

2

−
=                                                      (40a)  

In the positive slope part of the characteristic, a  is 

positive and the following equation can be written:  

Z
Ra

U
c

2
=                                                      (40b)  

Where Z is defined for convenience as: 

( ) 













+

+
−=

2
1

2/1
1

am

am
Z                                            (41)  

By putting Eq. (40) into Eqs. (29) and (33) (Eq. 

(40(a)) or (40(b)) depending on the operating 

point), the following equations are obtained (the 

upper signs in these equations refer to the negative 
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and the lower ones to the positive part of the 

compressor characteristic):   
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The three equations derived so far are the 

momentum of the compression system, the annulus 

averaged momentum balance and the mass balance 

of the plenum chamber (Eqs. (42-44)). These 

equations can be compared to Eqs. (42-44) in 

Moore and Greitzer (1986). Equation (44) (mass 

balance of the plenum chamber) is the same as its 

counterpart in Moore and Greitzer (1986). 

However, as compared to the basic Moore-Greitzer 

equations, four terms are added to Eq. (42) and one 

term to Eq. (43), all of which include the slope of 

the compressor axisymmetric characteristic ( c  ). 

In order to solve the above equations, an 

axisymmetric characteristic function ( ( ) c ) 

should be determined for the compressor. The same 

characteristic function used by Moore and Greitzer 

(1986) is used in the current study to enable 

comparison with the basic Moore-Greitzer model 

(Fig. 1): 
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Similar to Moore and Gretzier (1986), Galerkin 

method is used in the current study to solve the 

above nonlinear equations. The following function 

is used to represent Y: 

))(sin()(  rWAY −=                                      (46)  

Where )(A  is the unknown amplitude of the 

disturbances and )(r  is the unknown phase angle 

(which identifies the variation in angular location of 

the disturbances). By putting Eq. (46) into Eqs. (42) 

and (43) and then applying the Galerkin method, 

the following results are obtained: 
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Note that the integral on the left hand side of Eq. 

(49) becomes zero over a cycle. Unlike the basic 

Moore-Greitzer, ( ddr / ) is not constant in the 

current model.    

By using Eq. (45) as the axisymmetric 

characteristic function of the compressor, the final 

governing equations are obtained:  
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Equations (50) to (53) are the governing equations 

which are coupled and should be solved to give   

(circumferentially average flow coefficient),   

(total-to-static pressure rise), A  (amplitude of 

angular disturbances) and r  (phase angle of 

disturbances) as a function of   (the non-

dimensional time).  

The following parameters affect the compressor 

response during instabilities: the characteristic 
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steepness ( HW / ), shut-off head ( Hc /
0

 ), 

compressor non-dimensional length ( cl ), 

compressor external lag ( m ), Greitzer parameter 

( B ), throttle characteristic function ( ( )TF ) and 

the slope of the compressor axisymmetric 

characteristic ( c  ). One of the advantages of the 

current model is that it includes the slope of the 

compressor total to static pressure rise 

characteristic. The basic Moore-Greitzer equations 

do not include this parameter. However, if 0=c  

the current model is reduced to the basic Moore-

Greitzer model (in that case, Eq. (53) decouples 

from Eqs. (50-52)). Another advantage of the 

current model is that it enables the investigation of 

the stall cell transient behavior, because Eqs. (50) to 

(53) include 
22 / drd  (stall cell acceleration). 

Furthermore, 
22 / dAd  and  

22 / dd   have 

appeared in the equations. For reference, the 

relevant parameters through this paper 

are: .8,5.3/1,25.0,18.0,75.1 ===== claWHm  

Finally, in order to solve the differential equations 

(Eqs (50) to (53)), Runge-Kutta method is used. 

3. VALIDATION 

The ability of the modified model developed in the 

current study in predicting the transient stall cell 

speed has been approved by comparing the 

experimental results reported by Jackson (1986) to 

the theory in Fig. 2, obtained by solving Eq. (52) 

and (53). The compressor specifications are given 

in Table 1. The outside lag parameter ( m ) has been 

chosen to be equivalent to 2 (see Moore (1984a)). 

The time lag parameter ( a ) was then calculated to 

be equivalent to 0.4889. Finally, the initial 

conditions imposed are: 

( ) ( ) ( ) ( ) 8.00/,0.00/,01.00,0.00/ ====  ddrddAAdd
. 

Note that the choice of )0(/ ddr  is based on the 

initial cell speed that Jackson measured (roughly 

0.8, as can be observed in Fig. 2). As observed in 

Fig. 2, the developed model is appeared to predict 

the transient stall cell speed quite accurately. 

 

Table 1 Jackson (1986) compressor specification 

 Rotor Stator 

Solidity 1.43 1.1 

Chord (mm) 110 114.6 

No. of IGVs 0 

Tip diameter (mm) 1524 

Hub/Tip ratio 0.7 

Speed of Rot. (rpm) 500 

 

 
Fig. 2. Transient stall cell speed. 

 

4. RESULT AND DISCUSSION 

4.1 Pure Rotating Stall 

In order to investigate the transient behavior of a 

stall cell, Eqs. (52) and (53) must be solved 

together. The mean flow coefficient is chosen to be 

equivalent to 0.25 ( 25.0= ), which was also used 

by Moore and Greitzer (1986). The initial values 

and the compression system parameters are: 

( ) ( ) ( ) 6.00/,0.00/,0.00/ ===  ddrddAdd  and 

75.1,8,5.3/1,5.0 ==== mlaB c . A comparison 

between the stall cell amplitude growth calculated 

from the current model and that calculated from the 

basic Moore-Greitzer is given in Fig. 3(a). It should 

be noted that the initial amplitude of the 

disturbances is assumed to be ( ) 01.00 =A . Figure 

3(a) shows that with the current model, the rate of 

the amplitude growth is predicted to be steeper and 

the fully-developed rotating stall pattern to achieve 

faster, as compared to the basic Moore-Greitzer. 

The experimental stall cell amplitudes reported by 

Garnier et al. (1991) are adapted and compared to 

the model in Fig. 3(b). As this figure shows, the 

current model gives a more accurate prediction of 

the stall cell amplitudes.    

Figures 4(a) and 4(b) show the stall cell amplitude 

growth and it’s time derivative for three different 

values of the initial disturbance 

amplitudes: ( ) .001.001.0,1.00 andA =  Figure 4(a) 

suggests that the initial disturbance does not have 

any effect on the final amplitude of the stall cell. 

However, the greater the initial amplitude, the faster 

the fully-developed rotating stall is achieved. 

Furthermore, Fig. 4(b) shows that the rate of the 

amplitude growth is the same for different initial 

amplitudes. 
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a) Comparison between the current model and 

Moore-Greitzer  

 
b)   Comparison with experiments (Garnier et al. 

(1991)) 

Fig. 3. Normalized stall cell amplitude. 

 
 

As stated by Koff and Greitzer (1984), the 

positively sloped portion of the compressor 

characteristic cure does not have any effect on the 

steady rotating stall speed. Therefore, the positively 

sloped part was simply faired in between the peak 

and valley points (see Fig. 1). In order to investigate 

the effect of the above mentioned portion of the 

compressor characteristic on the transient 

performance of the compressor during rotating stall 

with the current model, the amplitude growth of the 

stall cell is shown in Fig. 5 for three different slopes 

(0.5, 1.08 and 2) at 38.0,25.0 == . It should 

be noted that the slope which is specified by Eq. 

(45) at 25.0=  is equivalent to 1.08. Figure 5 

shows that the final amplitude of the stall cell is the 

same for different initial slopes. However, the 

transient part is different in that a greater slope 

causes greater stall cell amplitudes.   

4.2  Instability Initiation 

In the above section, only Eqs. (52) and (53) were 

solved together in order to investigate pure rotating 

stall. Now, by solving the complete governing Eqs. 

(50-53), the path into instability and the conditions 

under which the compression system triggers surge 

or rotating stall can be studied. 

 
a) Normalized stall cell amplitude 

 

 
b) Growth rate of stall cell amplitude 

Fig. 4. Effect of initial disturbance amplitude on 

the stall amplitude and its rate. 

 

 
Fig. 5. Effect of the compressor characteristic 

slope on the stall cell amplitude, 25.0= . 

 

4.2.1   Rotating Stall 

As mentioned earlier, Camp and Day (1997) 

showed that modal rotating stall occurs near the 

compressor peak pressure rise, 0=c  (at a slope 

of the compressor total to static pressure rise 

characteristic between roughly -0.2 to +0.2). In 

order to study the effect of initial flow coefficient 
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on modal stall inception, the governing equations 

have been solved at 55.0= (which is in the 

negative slope portion of the compressor 

characteristic) for two initial disturbance 

amplitudes. The initial values and compression 

system parameters are the same as those used 

earlier in pure rotating stall. Figure 6(a) and 6(b) 

show the local and mean flow coefficients for the 

initial disturbance amplitude equivalent to 0.01 and 

0.1, respectively. As Fig. 6(a) shows, the modal 

disturbances have not neither grown up nor 

damped, but remained unchanged (note that if the 

initial disturbance amplitude were smaller enough, 

this disturbance would damp). If the initial 

amplitude of the disturbances increases to 0.1 (Fig. 

6(b)), the modal waves grow up and cause the mean 

flow coefficient to suddenly reduce and the local 

flow coefficient to have large oscillations leading to 

a fully developed rotating stall pattern. This 

suggests that with a negative slope of the 

characteristic, rotating stall can occur if the initial 

amplitude of the disturbances is large enough, 

which confirms the results in Camp and Day 

(1997). Note that in the Moore-Greitzer model, any 

negative slope causes the modal disturbances to be 

damped, regardless of the value of the initial 

disturbances. 

 
a) ( ) 01.00 =A  

 

 
b)   ( ) 1.00 =A  

Fig. 6. Local and annulus-averaged axial velocity 

coefficient as a function of time, 55.0= . 

 

Similar to the negative slope, the governing 

equations have been solved at 48.0=  in the 

positive slope portion of the characteristic. Figures 

7(a) and 7(b) show the local and mean axial flow 

coefficients for the initial disturbance amplitude 

equivalent to 0.01 and 0.1, respectively. As seen, 

rotating stall is triggered in both cases. The two 

cases are different in that with a greater initial 

amplitude, the fully developed condition is achieved 

faster (Fig. 7(b)). Comparing Fig. 7(b) to Fig. 6(b) 

shows that if the initial operating point is located in 

the negative slope portion of the compressor 

characteristic, the time needed for a steady state 

stall cell formation is much greater than the positive 

slope. 

 

 
a) ( ) 01.00 =A  

 
b)    ( ) 1.00 =A  

Fig. 7. Local and annulus-averaged axial velocity 

coefficient as a function of time, 48.0= . 

 

4.2.2   Surge 

Moore and Greitzer (1986) showed that two 

parameters (the Greitzer parameter, B , and the 

compressor mean effective length, cl ) determine 

the type of the instabilities (surge or rotating stall). 

In order to investigate surge with the current model, 

B  and cl have been chosen to be equivalent to 1.2 

and 8, respectively, for two initial operating points: 

48.0=  and 45.0= . Note further that the 

initial conditions are: 
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( ) ( ) ( ) ( ) 0.00/,01.00,00/,0.00/ ====  ddrAddAdd

. Figure 8 illustrates the variation of the mean axial 

flow coefficient for the two cases modeled. As this 

figure shows, deep surge is triggered in both cases 

(the flow coefficient becomes negative). Although 

the frequency of the instability is the same for the 

two initial points, surge is deeper for 45.0= .  

Figure 9 shows the amplitude of the disturbances as 

a function of the non-dimensional time. This figure 

reveals that the disturbances (which identifies the 

existence of modal waves and rotating stall) first 

grow up significantly and then become zero (which 

shows the occurrence of surge). Furthermore, for 

45.0= , the growth rate of the disturbances is 

greater, and therefore, it ends up with surge faster. 

 

 
Fig. 8. Annulus-averaged axial velocity 

coefficient during transient to surge. 

 

 
Fig. 9. Disturbance amplitude during transient 

to surge. 

 

4.2.3   Effect of Throttle Rate 

One of the capabilities of the current model is 

that it enables the investigation of the initial 

dd / , which can be interpreted as the rate of 

throttling (it has been experimentally investigated 

by Garnier et al. (1991)). In order to investigate 

the effect of the throttling rate on the type of the 

instability, two initial dd /  have been 

modeled: 0.01 and 0.04. The initial operating 

point is at 48.0= , which is located at the 

positive slope portion of the compressor 

characteristic. It should be noted that B  is 

chosen to be 0.5, which is less than its critical 

value (0.8). Therefore, the occurrence of rotating 

stall is expected. Furthermore, cl  is 8 and the 

initial values 

are: ( ) ( ) ( ) 6.00/,01.00,00/ ===  ddrAddA . 

Figures 10 and 11 show the time variation of the 

axial flow coefficient and dd /  for the two 

cases investigated. In Fig. 10, the mean axial 

flow coefficient has reached to a constant value, 

which identifies the occurrence of fully-

developed rotating stall. By increasing the 

throttling rate to 0.04, however, the annulus 

averaged flow does not remain constant and 

shows large oscillations, identifying the 

occurrence of surge. It can be concluded that the 

rate of throttling can change the type of the 

instability in a compression system. 

 

 
b) dd /  

 

 
b)   Axial flow coefficient 

Fig. 10. Local and annulus-averaged axial 

velocity coefficient as a function of time (initial 

dd / = 0.01). 
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a) dd /  

 

 
b)   Axial flow coefficient 

Fig. 11. Local and annulus-averaged axial 

velocity coefficient as a function of time (initial 

dd / = 0.04). 

5. CONCLUSION 

 A new model has been developed by modifying the 

basic Moore-Greitzer theory. The general 

assumptions were similar to those of the Moore-

Greitzer model. However, a second order hysteresis 

was assumed for the pressure rise of the rotor and 

stator rows, which added new parameters to the 

governing equations. The modified model has some 

advantages and new capabilities, as compared to the 

basic Moore-Greitzer. One of these advantages is 

that the governing equations in the current model 

include the slope of the compressor characteristic 

curve. It was shown that in the positive slope 

portion of the compressor characteristic, c   does 

not affect the final stall cell speed and its amplitude. 

However, the transient stall cell behavior was 

shown to be different having different slopes. 

Results further revealed that c   changes the fully-

developed rotating stall characteristic. The effect of 

the initial amplitude of the disturbance on the stall 

cell behavior was also investigated in the current 

study and it was shown that it does not change the 

stall cell final speed and amplitude. It was shown in 

the current study that if the initial operating point is 

located in the negative slope part of the compressor 

characteristic, the disturbances may be damped, 

kept unchanged or grown up to fully-developed 

rotating stall, depending on their initial amplitudes. 

If the initial point is located in the positive slope 

part, however, the disturbances were shown to be 

grown up to rotating stall, regardless of their initial 

amplitudes. Another finding was that in the positive 

slope portion, the fully-developed rotating stall is 

achieved considerably faster, as compared to the 

negative slope. An advantage of the current model 

is that it includes the second derivative of the mean 

axial flow coefficient (
22 / dd  ). This enables the 

investigation of the initial dd / , which can be 

interpreted as the rate of throttling. It was shown 

that the rate of throttling can change the type of 

instability (e.g., rotating stall to surge). 
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