
   

  
Journal of Applied Fluid Mechanics, Vol. 14, No. 4, pp. 1103-1111, 2021.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
DOI: 10.47176/jafm.14.04.32134   

  

 

 

Effect of Pressure Gradient on Local Excitation of  

Boundary-layer Instability Due to Free-stream 

Turbulence and Micro Surface Roughness 

L. Shen and C. Lu † 

School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China 

† Corresponding Author Email: cglu@nuist.edu.cn 

(Received August, 24 2020; accepted December 12, 2020) 

ABSTRACT 

The prediction and control of the laminar-turbulent transition is crucial to the designs of vehicles, turbines, etc. 

The initial condition of transition depends on the exciting process of boundary-layer instability, which is the 

key to implement its prediction and control. The current researches confirm that the exciting process of 

boundary-layer instability, namely receptivity, is affected not only by different types of free-stream disturbances 

and shape parameters of surface roughness elements, but also by the pressure gradient of mean flow. Hence, 

we study the effect of pressure-gradient on local excitation of boundary-layer instability under the interaction 

of the low-level, isotropic free-stream turbulence and micro surface roughness in this work. The numerical 

results reveal the pressure-gradient effect on the receptive process and the group speed of excited wave packets 

in the Falkner-Skan boundary layer. The favorable/adverse pressure gradients (FPG/APG) are found to be able 

to promote/suppress the excitation and subsequent evolution of Tollmien–Schlichting (T-S) waves. Then the 

relations of the pressure gradient with the amplitude, growth rate, wave number, phase speed and shape function 

of excited T-S waves are studied. 
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1. INTRODUCTION 

The excitation of instability in the boundary layer 

by external disturbances, namely receptivity, is the 

initial stage of laminar-turbulent transition. It is 

well known that the transition routine highly 

depends on the external disturbances. At a high-

level turbulence intensity, a bypass transition will 

be triggered. (Saric et al. 2002; Jacobs and Durbin 

2001; Xu et al. 2016) Meanwhile, at a relatively 

low-level turbulence intensity, it will experience a 

linear growth stage before the nonlinear regime. 

And its receptive process can generally fall into 

two categories, i.e., leading-edge receptivity and 

local receptivity. The former is induced by 

disturbances in the free stream near the leading-

edge region where non-parallelism is significant, 

while the latter is triggered by the interaction 

between free-stream disturbances and localized or 

distributed surface non-uniformity, e.g., roughness 

element, blowing or suction. (Saric et al. 2002; Wu 

2001b; Choudhari 1993) 

The mechanism of leading-edge receptivity was 

firstly revealed by Goldstein (1983) who employed 

asymptotic analysis to investigate receptivity at the 

first neutral point of T-S instability in Blasius 

boundary layer. Then, for local receptivity, Ruban 

(1984) and Goldstein (1985) showed the receptive 

process of an unstable T-S waves due to the 

interaction of the acoustic waves with two-

dimensional wall roughness by the triple-deck 

theory. This acoustic receptive theory was verified 

by the following experiments of Saric et al. (1991) 

and Wiegel and Wlezien (1993). On the other 

hand, the existence of vortical local receptivity was 

confirmed by Dietz (1999) experimentally in a 

flatplate boundary layer, where the unstable T-S 

waves were excited by the interaction between the 

freestream vortices and two-dimensional micro 

surface roughness. By applying the triple-deck 

theory, Duck et al. (1996) and Wu (2001a) showed 

that the stationary perturbations induced by surface 

roughness interact with the vortical oscillations in 

the upper deck leading to T-S wave generation. 

And, Wu (2001a)’s asymptotic solutions agreed 

well with the experimental data of Dietz (1999), 

including the relationship of receptivity with the 

amplitude of free-stream vortices, the shape, 

position and number of the localized roughness 

elements. The case of three-dimensional 

roughness element is studied by Würz et al. (2003) 

experimentally and numerically to interact with 
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oncoming acoustic waves. As a result, three-

dimensional T-S waves were found to propagate 

downstream in a fan-shape, and the receptivity 

coefficient was a function of spanwise wave 

number and frequency of forcing wave. 

The current researches have already determined 

the relationship between the local boundary-layer 

receptivity and the parameters of forcing 

disturbances, e.g., free-stream amplitude, the 

shape, position and number of the surface 

roughness elements at a zero pressure gradient 

(ZPG) condition. However, the pressure gradient 

of mean flow driven by the inviscid slip velocity, 

which is not zero in actual surfaces of vehicles, has 

a considerable effect on boundary-layer receptivity 

that cannot be neglected (Saric et al. 2002). And 

recently, via numerical simulations, Johnson and 

Pinarbasi (2014) found the growths of the excited 

T-S waves in the boundary layer depend on the 

pressure gradient. Meanwhile, there are few (if 

any) of studies about the effect of the pressure 

gradient on such local boundary-layer receptivity. 

Therefore, the present work is devoted to filling 

this gap by using direct numerical simulation, 

which is associated with the interaction of low-

level free-stream turbulence and micro surface 

roughness. Such a study will contribute to 

improving the prediction of the laminar-turbulent 

transition. 

2. FORMULATION 

2.1 Scalings and Governing Equations 

We consider the exciting process of unsteady 

instability by small-amplitude, isotropic free-

stream turbulence interacting with a micro surface 

roughness element in a pressure-gradient boundary 

layer. The incompressible flow is described in a 

two-dimensional Cartesian system normalized by 

* * *( , ) ( , ) / ,x y x y =                                       (1) 

where
*δ is the displacement boundary-layer 

thickness at the inlet boundary which is located 

very close to the leading edge of flat plate. And the 

velocity, time and pressure are dimensionless by 
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where *U is the streamwise far-field velocity at 

the inlet boundary. BU ( , )B BU V= is the base flow 

velocity, and u ( , )u v= is the perturbed velocity. 

t,p and ρ  are time, pressure, and density 

respectively. The variables noted by asterisk 

superscripts are the dimensional quantities, while 

those without asterisk superscripts are the 

corresponding dimensionless quantities. 

For convenience of comparison among the cases in 

adverse pressure gradient (APG), zero pressure 

gradient (ZPG) and favorable pressure gradient 

(FPG), Falkner-Skan similarity solution with far-

field velocity m
eU x= is introduced here to give 

the distributions of base flow velocity BU  in 

pressure-gradient boundary layers, 
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where the similarity variable /ey U x = , and 

Hβ 2m / (1 m)= +  is the pressure-gradient 

coefficient. Hβ 0 for FPG, Hβ 0= for ZPG, and 

Hβ 0  for APG. The Reynolds number is defined 

as * * *( ) /Re U  = , where 
*υ is the kinematic 

viscosity coefficient. The perturbed velocity, of the 

external disturbances and excited instability, is 

governed by the nonlinear perturbation form of 

incompressible Navier-Stokes equations 
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The excitation of the boundary layer instability, 

namely Tollmien–Schlichting waves, have to 

involve the interaction between the unsteady 

disturbances in the free stream and the steady 

inhomogeneities on the surface of the flat plate, 

which is a nonlinear process. However, after the 

exciting regime, the subsequent development of 

the unstable waves is almost linear due to their 

small amplitudes. In this regime, the wave-wave 

interactions are rather small that cannot affect the 

growth rate at the leading order. 

In order to solve the governing equations Eq. (5) 

numerically, a modified fourth-order Runge- Kutta 

scheme is introduced for the temporal march, and 

compact finite difference schemes on nonuniform 

meshes are applied for the spatial derivatives, i.e., 

fifth-order upwind schemes for the convective 

terms, sixth-order symmetric schemes for the 

pressure-gradient terms, and fifth-order symmetric 

schemes for the viscosity terms. The pressure 

equations are solved by third-order iterative 

scheme. See Shen and Lu (2016), Shen and Lu 

(2017), Shen and Lu (2018), Shen et al. (2019), 

Shen and Lu (2021) for the details of the 

discretization and validation. 

2.2 Model of Free-Stream Turbulence 

A proper mathematical model to formulate 

freestream turbulence for inlet and far-field 
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boundary conditions is vital to the calculation. 

Accounting for the randomness of turbulence and 

satisfying the continuity equation, a mathematical 

model in Fourier modes proposed by Jacobs and 

Durbin (2001) is adopted here to describe the 

oncoming turbulence in the free stream, which can 

be written in a two-dimensional form, 
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Here I 1= − , u and v are the streamwise and 

normal components of perturbed velocity of free-

stream turbulence respectively. û and v̂ are the 

spectra of u and v related to the energy 

spectrum E(κ) and random phase angle σ . ò

denotes the amplitude. M and J are the maximum 

mode numbers. 1κ and 2κ are the fundamental 

wave numbers in the x- and y-directions 

respectively, and 
2 2 2 2

1 2m j  = + . The 

streamwise and normal wave numbers are 1α mκ=

and 2γ jκ= . 

2.3 Computational Domain and Boundary 

Conditions 

Figure 1 gives the computational domain of the 

present work. The streamwise length is 1000, and 

the normal length is six times of the boundary layer 

thickness at the inlet boundary 17.26. The 

computational meshes are 512 200  grids in the 

x- and y-directions. Non-uniform meshes are 

utilized in the normal direction so that the grids can 

be refined in the near-wall region. The Reynolds 

number is set to be 1000. 

The far-field boundary: The velocities are given by 

the free-stream turbulence model Eq. (6) and  p=0. 

The wall boundary: The no-slip condition is 

utilized, i.e., u v 0= = , and p / y 0  = . As the 

height of micro roughness element is very small, it 

can be equivalent to the localized velocities by 

linear treatment (luchini 2013), 

,( ,0) ( ) (0),Bu x h x U = −                                    (8) 

where h(x)  is the roughness height. B,ηU (0) is 

the first normal derivative of base flow velocity at 

the wall. 

The inlet boundary: The velocities are given by the 

free-stream turbulence model Eq. (6), and

p / x 0  = . 

The outlet boundary: The velocities are computed 

by the 
2
FSTu non-reflect boundary condition Shen 

and Lue (2016). And the computation is 

terminated before the excited waves reach the 

outlet boundary. 

3. Results and Discussion 

The mechanism of local receptivity to free-stream 

turbulence in the Blasius boundary layer has been 

already revealed by Duck et al. (1996), Wu 

(2001a), Dietz (1999). Therefore, in this paper, we 

focus on the pressure gradient effect on the 

excitation of T-S instability. In this case, a 

rectangle roughness elements is placed at 

x [150,200] with a height of h 0.01= that is very 

small comparable with the boundary-layer 

thickness. The fundamental wave number of 

imposed free-stream turbulence is 1κ 0.010= with 

M=8. The turbulence intensity 

2 2 1/2
FST FST FSTA (u v ) 0.5%= + = is sufficient low 

to avoid nonlinear interaction in the free stream, 

where and 
2
FSTv are the mean square roots of the 

perturbed velocities at the outer edge of boundary 

layer. 

3.1 Validation of Numerical Settings 

Before the simulation of the excitation of 

boundary-layer instability, the numerical settings 

including the numerical method and generated 

mesh. The computational mesh is shown in Fig. 

2(a) which is clustered near the wall and most of 

the grids are placed inside the boundary layer. And 

the first and second derivatives dy dj and 

2 2d y dj  of the y-grids are given in Fig. 2(b), 

where [1, ]j Jmax is the index of the grids in the 

normal direction. Both the first and second 

derivatives of the y-grids are smooth function so 

that ensuring the stable calculation on this mesh. 

The eigenmodes in a Blasius boundary layer with 

various wavenumbers osα , including the 

shortest wavelength of the unstable wave in the 

simulation, obtained by the Orr-Sommerfeld 

equation are imposed at the inlet boundary and to 

travel downstream in order to verify the 

convergence of the mesh. The relative errors of the 

dispersion relations (complex streamwise 

wavenumber α ) of the eigenmodes at downstream 

location x=800 between numerical results on 

different streamwise meshes and theoretical 

solutions from Orr-Sommerfeld equation are 

shown in Fig. 3. The real part rα  associated with 

the wavelength and its relative error represents the 

disperse error, and imaginary part iα vassociated 

with the growth rate and its relative error 

represents the dissipative error. Apparently, fine 

meshes (2024, 1024 and 512 streamwise-grids) 

give relatively exact results for both the real part 

and imaginary part of the 
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Fig. 1. Computational domain. 

 

 

Fig. 2. (a) Sketch of computational mesh and (b). 

 

 

(a) Relative errors of the real part αr  

 

(b) Relative errors of the imaginary part αi i 

Fig. 3. Relative errors of the complex streamwise wavenumber α of the eigenmodes on different 

streamwise meshes at x = 800. 

 

 

wavenumber α . And the course meshes having 

less than 512 streamwise-grids bring in a visible 

errors for the unstable waves. In view of this, we 

choose a mesh of 512 streamwise-grids for the 

efficiency of computation. 

First and second derivatives dy dj and 2 2d y dj  

of the y-grid in the normal direction. 

3.2 Excitation of Wave Packets 

Due to the interaction of free-stream turbulence 

and surface roughness, small-amplitude wave 

packets is observed as expected in the downstream 

of roughness element. Figure 4 gives the 

streamwise evolution of streamwise velocity of the 

excited T-S wave packets in typical FPG, ZPG and 
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Fig. 4. Streamwise evolution of streamwise velocity of the excited T-S wave packets in various pressure-

gradient boundary layers. (y = 0.66, t = 2500) 

 

APG boundary layers separately at $y=0.66$. The 

pressure-gradient effect is apparent. The excited 

wave packets in ZPG ( 0)H =  and APG 

H(β 0.05)= −  are amplifying as it propagates 

downstream, and those in FPG H(β 0.1)= , in 

contrast, is decaying downstream. 

By recording the positions of the antinodes of the 

wave packets at different times, the average group 

speeds are approximately calculated, as shown in 

table 1. The group speed decreases very slightly as 

pressure gradient coefficient Hβ  decreases. 

One of the main targets for the study of boundary-

layer receptivity is to determine the initial 

amplitude of the instability which provides the 

initial condition for the prediction of laminar-

turbulent transition. (Dietz 1999; Saric et al. 2002) 

Hence, the initial amplitude of the excited wave 

packets RA is calculated and compared in this 

section. The initial amplitude RA  is defined as

2 2 1/2( )R R RA u v= + , where 
2
Ru and 

2
Rv  are the 

mean squares of the perturbed velocities of the 

excited wave packets at the roughness location 

which is calculated by extrapolation of the 

downstream amplitude. Figure 5 gives the initial 

amplitudes of the excited T-S wave packets with 

the different pressure-gradient coefficients Hβ . It 

shows that the initial amplitude RA  slowly 

increases as the pressure-gradient coefficient Hβ

decreases from favorable to adverse. And the 

greater APG (absolute value of pressure-gradient 

coefficient H| β | ) corresponds to larger initial 

amplitude, namely stronger receptivity, and 

opposite result is obtained for FPG. 

 

gradient boundary layers.-of excited wave packets in various pressureg Cgroup speeds  Table G 

βH 0.3 0.1 0.05 0 -0.05 -0.1 

Cg 0.357 0.347 0.342 0.334 0.332 0.330 
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Fig. 5. Variation of the initial amplitude of the 

excited T-S wave packets AR with the pressure-

gradient coefficient βH. 

 

3.3 Separated T-S Waves 

Subsequently, by using fast Fourier transform, the 

streamwise evolution of excited T-S waves with 

the frequencies F 40= and F 60= are extracted 

from the wave packets. Due to the small 

amplitudes of the excited waves, the subsequent 

development is almost linear and the wave-wave 

interactions are rather small that cannot affect the 

growth rate at the leading order. The results of 

FPG and APG are compared with the numerical 

results of ZPG ( 0)H = , i.e., those results from 

Shen and Lu (2016), Shen and Lu (2018). And the 

numerical results are also compared with the linear 

stability theory, which is based on Orr-

Sommerfeld equation, to identity and analysis the 

generated unstable waves. The distributions of 

streamwise velocity of separated waves along x -

direction at y 0.66= are shown in Fig. 6. The left 

y -axis scale is for the cases of FPG and ZPG, and 

the right y -axis scale is for the case of APG. The 

non-dimensional frequency is defined as
2 62 / 10F f U  =  . At F 40= (Fig. 6(a)), an 

unstable T-S wave is excited in the ZPG boundary 

layer, and a more unstable T-S wave with larger 

growth rate is excited by APG. In contrast, FPG 

suppress the growth of the T-S wave which is 

unstable in ZPG, and transforms it to a stable one. 

At F 60= (Fig. 6(b)), we can observe a stable T-S 

wave in ZPG, and a more stable T-S wave with 

larger decaying rate in FPG. Conversely, an 

unstable T-S wave is found in APG. The above 

observations demonstrate that APG is able to 

significantly enhance the receptive process, 

whereas FPG weakens the process. 

The average streamwise wave numbers and phase 

speeds of the excited waves can also be calculated, 

according to their spatial evolution in pressure-

gradient boundary layers. The obtained results are 

shown in Table 2. It is clearly seen that as the 

pressure-gradient coefficient Hβ increases, the 

real part of streamwise wave number rα of excited 

T-S waves with same frequency decreases 

gradually, and phase speed C increases. This 

means that for larger pressure-gradient coefficient 

Hβ , the excited waves have longer wavelength 

and travel faster in the streamwise direction. 

Further studies were made of the effect of the 

pressure gradient on the initial amplitude and 

growth rate of the excited T-S waves. Similarly, 

the amplitude of T-S waves is defined as 

2 2 1/2
TS TS TSA (u v )= + ,where 

2
TSu  and 

2
TSv are 

the mean squares of the velocity of T-S waves. The 

amplitudes near the roughness element including 

the initial amplitude are calculated by 

extrapolation of the downstream amplitude. 

Figures 7 and 8 give the streamwise evolution of 

the amplitude TSA  and growth rate iα− of the 

excited T-S waves with multiple frequencies in 

typical pressure-gradient boundary layers. At

F 40= , the APG transforms an unstable T-S mode 

into a more unstable T-S mode with greater growth 

rate. This T-S mode amplifies downstream, and its 

growth rate keeps positive and greater than those 

in ZPG. On the contrary, FPG converts an unstable 

T-S mode into a stable one. This T-S mode 

decreases quickly and the growth rate remains 

negative and smaller than those in ZPG. The  

 

 

gradient -various pressureof excited waves in C and phase speeds r treamwise wave numbers αTable S

).C, rboundary layers (α 

βH -0.1 -0.05 0 0.05 0.1 

F=30 (0.0975,0.3078) (0.0962,0.3119) (0.0947,0.3168) (0.0932,0.3220) (0.0916,0.3275) 

F=40 (0.1264,0.3165) (0.1252,0.3195) (0.1237,0.3234) (0.1219,0.3281) (0.1200,0.3334) 

F=50 (0.1537,0.3254) (0.1525,0.3278) (0.1512,0.3307) (0.1492,0.3351) (0.1470,0.3401) 

F=60 (0.1796,0.3340) (0.1787,0.3358) (0.1774,0.3382) (0.1756,0.3417) (0.1733,0.3462) 

F=70 (0.2049,0.3417) (0.2038,0.3434) (0.2025,0.3456) (0.2011,0.3481) (0.1989,0.3519) 

F=80 (0.2291,0.3492) (0.2282,0.3505) (0.2271,0.3523) (0.2256,0.3546) (0.2240,0.3571) 
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Fig. 6. Streamwise evolution of the excited T-S wave in various pressure-gradient boundary layers. (y = 

0.66,t = 2500) 

 

 

Fig. 7. Streamwise evolution of the amplitudes of excited waves ATS in various pressure-gradient 

boundary layers. 

 

 

Fig. 8. Streamwise evolution of the growth rates of excited waves −αi in various pressure-gradient 

boundary layers. 



L. Shen and C. Lu / JAFM, Vol. 14, No. 4, pp. 1103-1111, 2021.  

 

1110 

 
(a) Amplitudes 

 
(b) Phases 

Fig.9. Profiles of the amplitude and phase of the shape functions of the excited T-S waves in various 

pressure-gradient boundary layers. (x = 450) 

 

numerical results agree well with those of 
Ne

method and linear stability theory (LST) (Shen and 

Lu 2016; Shen and Lu 2018). At F 60= , APG 

transforms a stable T-S mode into an unstable one. 

It grows fast downstream with positive growth rate 

which is greater than those in ZPG. And FPG 

induce a more stable wave. Particularly, the results 

in APG deviate from those of 
Ne  method and 

linear stability theory in the downstream region, 

because the excited T-S amplitude is one order 

greater than that of F 40= , thus introduces 

significant nonlinear effect. 

The excited T-S waves of F 40= is chosen to 

show the profiles of the amplitude and phase of the 

shape functions. The wave amplitudes in Fig. 9 are 

normalized by the maximum amplitude of 

streamwise velocity of T-S waves in the ZPG 

boundary layer 0| u | . The shapes of amplitude 

profiles (Fig. 9(a)) in different pressure-gradient 

boundary layers are identical. But the amplitudes 

of the excited T-S waves in the APG boundary 

layer are obviously greater than those in the FPG 

and ZPG boundary layers. Moreover, the profile of 

the phase (Fig. 9(b)) in different pressure-gradient 

boundary layers match well, and agree with the 

eigenfunction of linear stability theory (Shen and 

Lu 2016; Shen and Lu 2018). It indicates that the 

shape functions of amplitude and phase of excited 

T-S waves are not changed by pressure-gradient 

effect. 

4. Conclusions 

A direct numerical simulation was performed to 

study the effect of pressure gradient of mean flow 

on boundary-layer receptivity due to the 

interaction of Low-level, isotropic free-stream 

turbulence and a rectangle micro roughness upon a 

flat plate. For convenience of comparison among 

the cases in APG, ZPG and FPG, Falkner-Skan 

similarity solution is introduced to produce the 

pressure-gradient boundary layers. 

The pressure-gradient effect on the excitation of 

wave packets is apparent. The excited wave 

packets in ZPG and APG are amplifying as it 

propagates downstream, and those in FPG is 

decaying downstream. The group speed decreases 

very slightly as pressure gradient coefficient H

decreases. The initial amplitude RA  of excited 

wave packets slowly increases as the pressure-

gradient coefficient Hβ  decreases from favorable 

to adverse. 

T-S waves are extracted from the wave packets by 

using fast Fourier transform. The observations of 
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the separated T-S waves in different pressure-

gradient boundary layers demonstrate that APG is 

able to significantly enhance the receptive process, 

whereas FPG weakens the process. For larger 

pressure-gradient coefficient H , the excited T-S 

waves have longer wavelength and faster 

propagation speeds. And the dispersion relations of 

excited T-S waves agree well with the results of 

linear stability theory. Moreover, APG can 

promote the growth of excited T-S waves, whereas 

FPG suppresses the growth of the excited T-S 

waves. The profiles of amplitude and phase of the 

excited T-S waves in different pressure-gradient 

boundary layers are similar. However, the 

amplitude profile in APG are obviously greater 

than those in FPG or ZPG. And the shape functions 

of amplitude and phase of excited T-S waves are 

not changed by pressure-gradient effect. 
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