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ABSTRACT 

Numerical simulations of the steady 2-D incompressible viscous flow in an arc-shaped cavity are presented. 

The Navier–Stokes equations in streamfunction and vorticity formulation are solved numerically using a body 

fitted mesh obtained by a conformal mapping. Our numerical results reveal that the arc-shaped cavity flow has 

multiple steady solutions above a bifurcation Reynolds number when the arc length ratio is less than 1/2  

( r <1/2). Multiple steady state solutions of the arc-shaped cavity flow with different arc length ratios ( r =2/5, 

1/3, 1/4, 1/5 and 1/6) are presented at a variety of Reynolds numbers. Our results show that the bifurcation 

Reynolds number at which a second solution starts to exist changes as the arc length ratio of the arc-shaped 

cavity changes. Among the considered different arc length ratios ( r =2/5, 1/3, 1/4, 1/5 and 1/6), the minimum 

bifurcation Reynolds number occurs at 1/3 arc length ratio with Re =5164. Detailed results are presented.  

Keywords: Arc-shaped cavity flow; Multiple steady state solutions; Bifurcation Reynolds number; 2-D 

incompressible viscous flow; Arc length ratio. 

 

1. INTRODUCTION 

The Navier-Stokes equations which govern the flow 

of a viscous fluid constitute a nonlinear system of 

equations. The governing nonlinear flow equations 

can exhibit multiple steady solutions for some 

particular flow problems, see (Shankar and 

Deshpande (2000)). Multiple solutions of any 

particular flow problem is both fascinating and 

interesting to fluid dynamics researchers. In the 

literature it is possible to find studies that present 

multiple steady numerical solutions of some 

particular flow problems having the same boundary 

conditions at the same Reynolds number. Two-sided 

(two facing side) driven rectangular cavity flow and 

also two- (two non-facing side) and four-sided driven 

square cavity flow are examples of flow problems 

that have multiple steady solutions above a 

bifurcation Reynolds number from the literature. 

Albensoeder et al. (2001) have studied the 

twodimensional steady incompressible flow in a 

rectangular cavity using a finite volume method 

which is driven by two facing side walls. They 

(Albensoeder et al. (2001)) found several 

bifurcations in the solution of the flow and presented 

different non-unique two-dimensional steady 

solutions of the rectangular flow with different 

aspect ratios at different Reynolds numbers. Similar 

to Albensoeder et al. (2001), Chen et al. (2013) have 

also presented multiple steady solutions of the two-

sided (facing walls) driven flow in a rectangular 

cavity with different aspect ratios. 

In the literature, multiple steady solutions of flow in 

a square cavity are presented by Lemée et al. (2015) 

and Prasad and Dass (2016) which is driven by two 

opposite facing walls, by Wahba (2009) and Perumal 

and Dass (2011) which is driven by two non-facing 

and also driven by four side walls respectively, by 

Zhuo et al. (2015) which is driven by four side walls. 

The flow problems in enclosures mentioned above, 

ie. rectangular or square cavity flows driven by two 

facing side walls or two non-facing opposite side 

walls or four side walls, that have multiple steady 

solutions presented in Albensoeder et al. (2001), 

Chen et al. (2013), Lemée et al.(2015), Prasad and 

Dass (2016), Wahba (2009), Perumal and Dass 

(2011), Zhuo et al. (2015) have two different type of 

solutions, mirror symmetric and non-symmetric. 

These flow problems actually have a mirror 

symmetry line due to the mirror symmetry in 

geometry and also due to the mirror symmetry in the 

boundary conditions. 

Flows in different enclosures always attract the 

Computational Fluid Dynamics (CFD) community 

since these flows usually have simple geometries 
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which are easy to apply CFD techniques in terms of 

coding while on the other hand they retain complex 

flow physics in just a simple geometry. Glowinski et 

al. (2006) introduced the driven semicircular cavity 

flow problem. They (Glowinski et al. 2006) solved 

the governing flow equations using unsteady 

operator-splitting/finite elements method on an 

unstructured mesh. Later Yang et al. (2012), Ding et 

al. (2009), have also studied the semi-circular cavity 

flow problem numerically. Migeon et al. (2000) 

conducted experiments and studied the flow 

establishment inside semi-circular cavity together 

with square and rectangular cavities. 

In the literature, Mercan and Atalık (2009) also 

studied the semi-circular cavity flow problem. Apart 

from Glowinski et al. (2006), Yang et al. (2012), and 

Ding et al. (2009) in their study Mercan and Atalık 

(2009) also introduced arc-shaped cavity flow with 

different arc length ratios which is a variety of the 

semi-circular cavity flow. They (Mercan and Atalık 

(2009)) have presented high Reynolds number 

solutions arc-shaped cavity flow with different arc 

length ratios. 

In Mercan and Atalık (2009), only at the arc-shaped 

cavity flow with arc length ratios less than 1/2 (ie. 

1/3, 1/4 and 1/5) we realize that at high Reynolds the 

flow topology changes dramatically. While 

investigating these dramatic changes in the flow 

topology, we reveal that the arc-shaped cavity flow 

with arc length ratios less than 1/2 have multiple 

steady solutions (at least two different solutions so 

far with this study) above a bifurcation Reynolds 

number. In their study, most probably without 

noticing the multiplicity in the steady solution 

Mercan and Atalık (2009) have presented different 

multiple solutions of the arc-shaped cavity flow as 

the behavior of the unique solution with increasing 

the Reynolds number. 

The arc-shaped cavity flow problem do not have a 

mirror symmetry line and therefore do not have a 

symmetric solution. To the best of our knowledge, in 

the literature there is not any example of flows in 

enclosures with a driven wall that has multiple steady 

solutions with non of them being symmetric. In this 

sense most probably the arc-shaped driven cavity 

flow is a unique flow example that has multiple non-

symmetric steady solutions in the literature to the 

best of our knowledge. In this study, we present 

multiple steady solutions of arc-shaped cavity flow 

with various arc length ratios which are all less than 

1/2 at various Reynolds numbers. In order to obtain 

a body fitted mesh, we use complex algebra that 

conformally maps the considered semicircular 

geometry into an infinite half domain analytically. 

The streamfunction and vorticity equations are 

solved iteratively for the wall-driven arcshaped 

cavity flow. By varying the Reynolds number we 

obtain the bifurcation Reynolds numbers of the arc-

shaped cavity flow which the solution change 

behavior and start to have multiple solutions. 

Detailed results are presented. 

cavity flow problem and considered arcshaped cavity 

with different arc length ratios 

2. NUMERICAL METHOD 

The flow problem at hand, the arc-shaped cavity 

flow, has a geometry that has the portion of a circle 

as shown in Fig. 1a. We follow Mercan and Atalık 

(2009) and characterize the arc-shaped cavity by the 

ratio (r) of the arc length of the curved bottom 

surface to the full angle which is equal to 2π. The 

r=1/2 case which is the semi circle cavity was studied 

extensively in Glowinski et al. (2006), Yang et al. 

(2012), Ding et al. (2009), Mercan and Atalık 

(2009). In this study we will only concentrate on the 

arc-shaped cavity geometries with arc length ratio 

less than 1/2 in which the flow has multiple steady 

state solutions. Following Mercan and Atalık (2009) 

in this study we consider arc-shaped cavities with 

1/3, 1/4 and 1/5 ratios which are are less than 1/2. 

Additional to these ratios, in these study we also 

consider the arc-shaped cavity with r=2/5 and r=1/6. 

As seen in Fig. 1a the top lid of the arc-shaped cavity 

is a chord line of a circle. For all the ratios (r) 

considered in this study the width of the top lid, ie. 

the chord, is equal to unity (L=1). Also as shown in 

Fig. 1a, the top lid moves with a velocity that is equal 

to unity (U=1). The arc-shaped cavity with different 

arc length ratios considered in this study are given in 

Fig. 1b all together for easy comparison. 

 

 

Fig. 1. Schematic view of the wall-driven 

arcshaped. 

 

The steady incompressible two-dimensional viscous 

flow inside the arc-shaped cavity is governed by the 

Navier-Stokes equation and we use the 

streamfunction and vorticity formulation of the N-S 

equations, such that 

xx yy  + =                                                        (1) 

( )
1

y x x y xx yy
Re

     − = +                            (2) 

where the Reynolds number ( Re ) is based on the top 

lid velocity ( U ) and the width of the top lid ( L ). 
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2.1 Governing Equations in Curvilinear 

Coordinates 

For the solution of the flow problem, we map the 

physical domain into a rectangular computational 

domain. The governing streamfunction Eq. (1) and 

vorticity Eq. (2) in curvilinear coordinates are given 

as 

2

2

J

        


− + + +
=             (3) 

         
21

 

y x x y

Re J

    

   

    

− =

− + + +     (4) 

where the Jacobian of the transformation is given as 

J x y x y   = −                                                     (5) 

and the coordinate system parameters appear as 

coefficients in the above equations are given as 

( ) ( )

( ) ( )

2 2

2 2

x y

x x y y

x y

y Dx x Dy

J

x Dy y Dx

J

 

   

 

 

 











= +

= +

= +

−
=

−
=

                                         (6) 

also where Dx  and Dy are defined as the following 

2Dx x x x    = − +  

2Dy y y y    = − +                                   (7) 

In this study, only the steady state solutions are of 

interest. For this reason, as discussed in Lomax and 

Steger (1975), we use a steady iterative numerical 

approach in solving the steady governing flow 

equations. Thus we use the Successive Over 

Relaxation (SOR) method for the numerical solution 

of the governing steady streamfunction Eq. (3) and 

vorticity Eq. (4). 

 

2.2 Body Fitted Mesh 

For numerical solution of a partial differential 

system, a body fitted orthogonal mesh is always 

desired in computational fluid dynamics. In order to 

generate the body fitted mesh for the arc-shaped 

cavity geometry we use the potential flow analysis 

and consider the superposition of a source and a sink 

with equal strengths of 2  located at (
1

2
− , 0) and 

(
1

2
,0) x - y -coordinates respectively, as shown in 

Fig. 2. The arc-shaped cavity geometry can be 

conformally mapped into a body fitted orthogonal 

coordinate system using the following complex 

function 

 

Fig. 2. Constant velocity potential function (blue) 

and stream function (red) lines of the 

superposition of the potential flow of a source 

and sink with equal strengths. 

 

1

2log
1

2

z

w

z

−

=

+

                                                         (8) 

Here z  is defined as z = x iy+ and w  is defined as

w i=  + where  is the velocity potential function 

and   is the stream function. 

When we separate the real and imaginary parts of the 

complex function w  in Eq. (8), the real part gives 

the velocity potential function as 

2
2

2
2

11

22
log log

1
1

2
2

z yz

z
z y

 
− +−  

 
 = =

 +
+ + 

 

                    (9) 

And similarly the imaginary part gives the stream 

function as 

arctan arctan
1 1

2 2

y y

x x

 = −

− +

                           (10) 

For any constant velocity potential function value 

(ie. c = ) rearranging Eq. (9) we obtain 

2
2 2

2

1 1
0

41

c

c

e
x y x

e

+
+ + + =

−
                                  (11) 

This equation represents coaxial circles whose 

centers are on the x -axis with center coordinates 

2

2

1 1
, 0

2 1

c

c

e
x y

e

+
= − =

−
 and also with radii that are 

equal to 

2
2

2

1 1
1

2 1

c

c

e
r

e

 +
= − 

 − 

. These coaxial 

circles are shown with blue color in Fig. 2.  

Following the same procedure, for any constant 

stream function value (ie. c = ) rearranging Eq. 

(10) we obtain 

2 2 1
0

tan 4

y
x y

c
+ − − =                                        (12) 



E. Erturk / JAFM, Vol. 14, No. 4, pp. 1147-1163, 2021.  

 

1150 

This equation represents coaxial circles whose 

centers are on the y-axis. These coaxial circles are 

shown with red color in Fig. 2. The center 

coordinates of these circles are 0x = ,
1

tan
2

y c= . 

Also these circles have radii that are equal to

( )
2

1 1
1

2 tan
r

c
= + . All of these circles with 

different radii pass through the source and the sink 

locations, i.e. through the points (
1

2
− , 0) and 

(
1

2
, 0). We note that the straight line connecting the 

(
1

2
− , 0) and (

1

2
, 0) points constitutes the top lid of 

the arc-shaped cavity. Also the bottom curved 

surface of the arc-shaped cavity coincides with the 

appropriate ψ c=  line depending on the considered 

arc length ratio. 

Using equations 11 and 12 we obtain the grid points 

inside the arc-shaped cavity. We choose the number 

of grid points such that the aspect ratio of the grid 

spacing 
x

y

 
 
 

is around unity in most of the 

computational domain, for example for r=2/5 arc-

shaped cavity we used 600  110 grid points in the 

mesh. At the top lid of the arc-shaped cavity we used 

600 equally spaced grid points and we obtain the 

velocity potential function values ( c = ) at these 

grid points. Similarly at the vertical line in the mid of 

the arc-shaped cavity at x 0=  we used 110 equally 

spaced grid points and we obtain the stream function 

values ( ψ c= ) at these grid points. In the interior 

domain the grid points are obtained at the 

intersection points of these calculated velocity 

potential lines and the streamfunction lines. Figure 3 

shows the mesh we used in this study for considered 

different arc length ratios ( r ). 

 

 

Fig. 3. Body fitted mesh used for arc-shaped 

cavity (1 out of every 10 grids is shown). 

 

2.3 Transformation Metrics and Wall 

Boundary Conditions 

In order to solve the streamfunction Eq. (3) and 

vorticity Eq. (4) numerically we need the values of 

the mapping transformation metrics that appear in 

Eqs. (5), (6) and (7). These transformation metrics 

are calculated numerically using finite difference. 

For this we transform the body fitted curvilinear 

mesh in physical space (x,y) to a rectangular uniform 

mesh in computational space (ξ,η) with uniform grid 

spacing which is equal to unity (∆ξ=∆η=1). Since the 

transformation metrics appear explicitly in the 

coefficients of the governing streamfunction Eq. (3) 

and vorticity Eq. (4), the numerical errors associated 

with finite difference approximation of the mapping 

transformation metrics can affect the numerical 

solution accuracy. For the numerical solution of the 

streamfunction Eq. (3) and vorticity Eq. (4) we use 3 

point second order accurate central differencing, O 

(∆ξ2,∆η2). In finite difference calculation of the 

transformation metrics we decided to use higher 

order accuracy and we used fourth order accurate 

finite differencing, O(∆ξ4,∆η4). For the 

transformation metrics at the interior grid points we 

use the following 5 point fourth order finite 

difference equation 

( ) , 2 , 1 , 1 , 2

,

8 8

12

i j i j i j i j

i j

f f f f
f

− − + +− + −
=           (13) 

where the subscripts i and j are the grid index and 

f can be x or y in our case. Using Eq. (13) ξf  is 

also calculated similarly. The transformation metrics 

at the first grid points adjacent to the wall are 

calculated as the following 

( ) ,0 ,1 ,2 ,3 ,4

,1

3 10 18 6

12

i i i i i

i

f f f f f
f

− − + − +
=     (14) 

where the subscripts 0 denotes the grid points on the 

wall boundary, 1  denotes the first set of grid points 

adjacent to the wall points and so on. Also at the grid 

points on the wall, the transformation metrics are 

calculated as the following 

,0 ,1 ,2 ,3 ,4
,0

25 48 36 16
 (

12
)

3i i i i i
i

f f f f f
f

− + − + −
= (15) 

We calculate the transformation metrics x , x , 

y , y with fourth order accuracy 
4 4( , )  O

using the 5 point finite difference equations given 

above. We note that using higher order accuracy for 

the transformation metrics increases the accuracy of 

the solution of the governing equations. 

For the wall boundary conditions, using the velocity 

of the moving lid, at the top wall of the arc-shaped 

cavity the vorticity value is calculated as the 

following 

,0 ,12
2 2i i

J

xJ 


 

 
= + 

 
 

                                     (16) 

Similarly on the bottom curved wall we calculate the 

vorticity value as the following 

,0 ,12
2i i

J


 =                                                            (17) 
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3. RESULTS 

Using the numerical procedure described in the 

previous section we solved the governing flow 

equations for the wall driven arc-shaped cavity flow 

problem iteratively. While investigating the sudden 

dramatic change in the flow topology presented in 

Mercan and Atalık (2009) for the arc-shaped cavity 

flow with arc length ratios that are equal to 1/3, 1/4 

and 1/5, we discover that the arc-shaped cavity flow 

has multiple steady solutions at high Reynolds 

numbers. Multiple steady solutions of the arc-shaped 

cavity flow exist only when the arc length ratio of the 

cavity is less than 1/2 (ie. 1/ 2r  ). We note that for 

the 1/ 2r =  case we did not experience multiplicity 

in steady solutions. However for the 1/ 2r   cases 

depending on the initial guess used for the iterative 

numerical scheme, the iterations converged to 

different numerical solutions for the same Reynolds 

numbers above a bifurcation Reynolds number. 

As a measure for convergence, during the iterations 

we monitor the difference in the streamfunction and 

vorticity variables between two consecutive iteration 

steps and normalize it by the streamfunction and 

vorticity value at the previous iteration step as the 

following  

1
, ,

,

max

k k
i j i j

k
i j

residual
 



+ −
 =
 
 

 

1
, ,

,

max

k k
i j i j

k
i j

residual
 



+ −
 =
 
 

                        (18) 

where the superscript shows the iteration step and 

max  denotes the maximum absolute value in the 

computational domain. In our numerical solutions 

we carry the iterations until both residual  and 

residual are less than 
610− . This means that in our 

study we consider the convergence is achieved when 

the streamfunction and vorticity variables change 

only one millionth of their values in absolute value 

between two iteration steps at a grid point as the 

maximum and in the rest of the grid points the change 

is even less. This very low convergence limits show 

that our numerical solutions of the steady arc-shaped 

cavity flow are indeed very accurate. 

In the present study at first we consider the arc-

shaped cavity with arc length ratio 1/ 3r = . Using a 

homogeneous initial guess for the streamfunction 

 ( ) and vorticity ( ) variables we solve the arc-

shaped cavity flow for a low Reynolds number. We 

use this obtained solution as initial guess and then 

solve for the next higher Reynolds number 

repeatedly. By incrementing the Reynolds number 

each time, we obtain numerical solution of the arc-

shaped cavity flow with r 1/ 3=  until Reynolds 

number of 14000. At higher Reynolds number above 

14000, we could not obtain a converged numerical 

solution. Figure 5 and Fig. 6 show the streamfunction 

contours of the arc-shaped cavity flow with 1/ 3r =  

until Re 5000=  and Re 14000=  respectively ( 1st

solution) and in Table 1 we tabulate the min and max 

streamfunction values, their ( )x, y locations and the 

vorticity value at those points. 

 

 

Fig. 4. The 1st solution of arc-shaped cavity flow 

with r=1/3 for various Reynolds numbers until 

Re=5000. 

 

 

Fig. 5. Multiple solutions of arc-shaped cavity 

flow with r=1/3 for the same Reynolds numbers, 

the 1st soluiton on the left, the 2nd solution on the 

right. 

 

 

Fig. 6. The 2nd solution of arc-shaped cavity 

flow with r=1/3 for various Reynolds numbers 

until Re=20000. 

 

When we compare our results (1st solution) for arc 

length ratio r=1/3 with that of Mercan and Atalık 

(2009) we see that at low Reynolds numbers our  
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Table 1 Minimum and maximum streamfunction, (x,y) location and vorticity for the 
st1 solution of arc-

shaped cavity flow with r=1/3. 

 Re x y 𝜓 𝜔 
𝜓
𝑚
𝑖𝑛

 

0 0 -0.0924 −4.1542 × 10−2 7.4518 

1000 0.1857 -0.1053 −4.5034 × 10−2 8.8656 

2000 0.2235 -0.0981 −4.2288 × 10−2 9.9186 

3000 0.2575 -0.0904 −3.9251 × 10−2 11.0364 

4000 0.2827 -0.0840 −3.6681 × 10−2 12.1025 

5000 0.3011 -0.0789 −3.4529 × 10−2 13.1118 

6000 0.3160 -0.0745 −3.2697 × 10−2 14.0757 

8000 0.3374 -0.0678 −2.9750 × 10−2 15.8986 

10000 0.3537 -0.0623 −2.7454 × 10−2 17.6355 

12000 0.3667 -0.0578 −2.5590 × 10−2 19.3300 

14000 0.3779 -0.0537 −2.4037 × 10−2 21.0060 

𝜓
𝑚
𝑎
𝑥
 

1000 -0.0818 -0.2515 9.9563 × 10−5 -0.5722 

2000 -0.0981 -0.1785 3.0539 × 10−3 -1.9139 

3000 -0.1631 -0.1592 4.6093 × 10−3 -2.4042 

4000 -0.1914 -0.1502 5.8028 × 10−3 -2.6467 

5000 -0.1979 -0.1460 6.6096 × 10−3 -2.6803 

6000 -02026 -0.1423 7.1036 × 10−3 -2.7127 

8000 -0.2155 -0.1340 7.6210 × 10−3 -2.8372 

10000 -0.2323 -0.1270 7.8357 × 10−3 -2.9656 

12000 -0.2455 -0.1209 7.8992 × 10−3 -3.0866 

14000 -0.2569 -0.1153 7.8922 × 10−3 -3.2006 

 

 

results agree well with each other, however at high 

Reynolds numbers our results are not even close with 

that of Mercan and Atalık (2009). For example for 

Re=8000, the streamfunction contours shown in Fig. 

5c is completely different than the same in Mercan 

and Atalık (2009) to the point as if they are two 

different flow problems. While trying to figure out 

the reason for this, by coincidence we start a 

numerical iteration at a high Reynolds number using 

a homogeneous initial guess for both the 

streamfunction (ψ) and vorticity (ω) variables 

instead of using the previous smaller Reynolds 

number solution. When we obtain the numerical 

solution we see that for the considered Reynolds 

number this time we obtain a completely different 

solution which looks very similar to the solutions of 

Mercan and Atalık (2009) at high Reynolds numbers. 

After many repeated runs we find out that at a given 

Reynolds number the flow problem at hand, the arc-

shaped cavity flow, has two different steady state 

solutions at high Reynolds numbers. After this 

discovery of the multiplicity of steady state solutions 

in arc-shaped cavity flow, in order to obtain the 

whole Reynolds number range for this newly found 

second solution we used this obtained second 

solution as initial guess and increment the Reynolds 

number to higher and also lower values. In Fig. 5 and 

Fig. 6, we present the streamfunction contours of the 

newly found second solution of the arc-shaped cavity 

flow with r=1/3 until Re=14000 and Re=20000 

respectively (2nd solution). Also for this second 

solution in Table 2. 

we tabulate the min and max streamfunction values, 

their (x,y) locations and the vorticity value at those 

points. When we compare our 2nd solutions with the 

solutions of Mercan and Atalık (2009) at high 

Reynolds numbers we see that they agree well with 

each other. At this point it was clear that, with out 

realizing that the arc-shaped cavity flow have 

multiple steady state solutions, Mercan and Atalık 

(2009) have presented mixed results of 
st1 solutions 

and 
nd2  solutions at different Reynolds numbers (ie. 

st1 solutions at low Reynolds numbers and 
nd2  

solutions at high Reynolds numbers). 

At low Reynolds numbers when we tried several 

different initial guesses, we consistently obtain the 
st1  solutions only. Hence at low Reynolds numbers, 

we find only one solution for any considered 

Reynolds number and in this study we refer to this 

solutions as the ''
st1 solutions''. At high Reynolds 

numbers we obtain a second set of solutions and we 

refer to this new solutions as the ''
nd2 solutions''. In 

order to see the differences of these two solutions 

better, in Fig. 5 we plot the streamfunction contours 

of the two solutions for the same particular Reynolds 

numbers next to each other. 

For the considered case of the arc-shaped driven 

cavity with arc length ratio r =1/3, in order to obtain 

the bifurcation Reynolds number that the flow starts 

to have multiple solutions we consider many runs 

with incrementing or decrementing the Reynolds  
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Table 2 Minimum and maximum streamfunction, (x,y) location and vorticity for the 
nd2  solution of 

arc-shaped cavity flow with r=1/3. 

 Re x y 𝜓 𝜔 

𝜓
𝑚
𝑖𝑛

 

5164 0.2512 -0.0942 −4.2377 × 10−2 11.2622 

6000 0.2597 -0.0921 −4.1610 × 10−2 11.6453 

8000 0.2816 -0.0864 −3.9327 × 10−2 12.6297 

10000 0.2983 -0.0817 −3.7212 × 10−2 13.5900 

12000 -0.0480 -0.1288 −3.7822 × 10−2 6.1817 

14000 -0.0213 -0.1297 −3.8519 × 10−2 6.1862 

16000 0.0018 -0.1328 −3.8895 × 10−2 6.2150 

18000 0.0232 -0.1325 −3.9045 × 10−2 6.2610 

20000 0.0428 -0.1319 −3.9019 × 10−2 6.3205 

𝜓
𝑚
𝑎
𝑥
 

5164 -0.0059 -0.2078 5.2560 × 10−3 -3.3184 

6000 0.0331 0.2042 5.7674 × 10−3 -3.4533 

8000 0.0873 0.1996 6.3444 × 10−3 -3.9145 

10000 0.1255 -0.1938 6.5677 × 10−3 -4.3554 

12000 0.1577 -0.1873 6.6066 × 10−3 -4.7802 

14000 0.1837 -0.1809 6.5386 × 10−3 -5.1849 

16000 0.2065 -0.1769 6.4080 × 10−3 -5.5772 

18000 0.2246 -0.1711 6.2388 × 10−3 -5.9695 

20000 0.2426 -0.1648 6.0429 × 10−3 -6.3560 
 

 

number by only 1. We note that as seen in Fig. 4 

below Reynolds number of 5000 we obtain only the 
st1  solution. Also by using the previous smaller 

Reynolds number solution as initial guess and we 

were able to obtain the 
nd1  solution until Reynolds 

number of 14000 as seen in Fig. 5 even though the 
nd2 solution exist above Re 6000=  also as seen in 

Fig. 5. Therefore the bifurcation Reynolds number 

for having multiple steady solution must be in the 

range between Re 5000=  and Re 6000= . In order 

to pinpoint the exact bifurcation Reynolds number 

we used two different approaches. As mentioned 

above, we obtain the second solution when we used 

a homogeneous initial guess for the iterative 

numerical scheme at high Reynolds numbers. 

Therefore as the first approach, we use a 

homogeneous initial guess for the streamfunction (

ψ ) and vorticity ( ω ) variables each time and run 

many cases with incrementing the Reynolds number 

between Re 5000=  and Re 6000= . With using a 

homogeneous initial guess we find that while at  

Re 5163= we obtain the 
st1  solution as the 

converged solution, at exactly Re 5164= we start to 

obtain the 
nd2 solution as the converged solution. 

The streamfunction contours for the obtained the 
st1  

solution at Re 5163=  and the 
nd2  solution at 

Re 5164=  are given in Fig. 7. Also as mentioned 

above, no matter how different initial guesses we 

used for the iterative numerical scheme, at low 

Reynolds numbers the only obtained numerical 

solution is the 
st1  solution. Therefor as the second 

approach, which also works as a check to our finding 

of the first approach, we used the 
nd2  solution 

obtained at Re 5164=  given in Fig. 7b as the initial 

guess and we run for Re 5163= . Since below the 

bifurcation Reynolds numbers there exist only the 
st1 solution, in this exercise we expected to obtain 

the st1  solution at Re 5163=  even though we used 

the 
nd2  solution obtained at Re 5164= as an initial 

guess. In this exercise, as expected, we see that at the 

convergence we obtain the 
st1  solution seen in Fig. 

7a. After applying these two approaches one after the 

other, we find that for the arc-shaped cavity flow 

with arc length ratio r=1/3 the bifurcation Reynolds 

number for having multiple steady solutions is 

Re 5164= . Above Re 5164=  there exist two 

different steady solutions until the highest Reynolds 

number of 14000 for the 
nd1  solution. Above 

Re 14000= we obtain only the the 
nd2  solution 

until Re 20000=  which is the highest Reynolds 

number we can obtain for the 
nd2  solution. 

 

 

Fig. 7. Solutions of arc-shaped cavity flow with 

r=1/3 at the bifurcation Reynolds number. 

 

We note that for both the 
st1  solution and the 

nd2  

solution, away from the bifurcation Reynolds 

number the convergence is monotonic and rather fast 

for example when a previous smaller Reynolds 

number solution of the 
st1  solution is used as a guess 
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Fig. 8. Variation of vorticity at the point of minimum streamfunction for the 
st1  solution. 

 

 

Fig. 9. Variation of vorticity at the point of minimum streamfunction for the 
nd2  solution. 

 

solution. The same is also true for the nd2 solution. 

However, as also mentioned earlier, if the nd2  

solution is used as an initial guess for Reynolds 

number below the bifurcation Reynolds number at 

which there exist only the st1 solution, the 

convergence is very slow and not monotonic. In this 

case at first the iterations starts to convergence up to 

some level but then the residuals starts to increase for 

some iterations after which the residuals then starts 

to decrease monotonically to full convergence. For 

this reason in arc-shaped cavity flow the 

convergence limit must be low enough to guarantee 

that the final converged steady state is achieved. 

In Fig. 8a we plot the vorticity at the min 

streamfunction point as a function of the Reynolds 

number for the 
st1  solution that is tabulated in Table 

1. In Fig. 8a after seeing the linear behavior of the 

vorticity with respect to the Reynolds number, we 

decided to include the limiting case of the Stokes 

flow, ie. Re 0= , to our analysis in order to see if this 

linear behavior goes all the way down to Re 0= and 

we solve the arc-shaped cavity flow for Re 0= . As 

seen in Fig. 8a, for the 
st1 solution the vorticity at the 

core of the primary vortex (the first vortex at the very 

top closest to the lid of the arc shape cavity) increases 

almost linearly as the Reynolds number increases all 

in the range from Re 0=  to Re 14000= . 

Similarly, in Fig. 9a we plot the vorticity at the min 

streamfunction point as a function of the Reynolds 

number for the 
nd2  solution that is tabulated in 

Table 2. In Fig. 9a we can see that between 

Re 5164=  and Re 10000=  the vorticity increases 

almost linearly. However, at Re 12000=  there is a 

sudden decrease in the vorticity and as the Reynolds 

number increases further between Re 12000=  and 

Re 20000= the vorticity slightly increases linearly. 

In streamfunction contours of the 
nd2  solution in 

Fig. 5 we can see that there are two local centers in 

the biggest top vortex closest to the lid, one towards 

the top right corner of the arc-shaped cavity and one 

towards slightly the left of the mid of the arc-shaped 

cavity. When we examine the x  and y  location of 

the minimum streamfunction point given in Table 2 

and trace this point in the contour figures of the 
nd2

solution in Fig 5, we see that between Re 5164=  

and Re 10000=  the location of the minimum 

streamfunction point coincides with the local minima 

towards top right corner of the the first vortex at the 

very top closest to the lid. However the location of 

the minimum streamfunction point shifts to the other 

local minima towards slightly the left of the mid of 

the closest vortex to the lid between Re 12000=  and

Re 20000= . 

In Fig. 10a and Fig. 11a we do the same and plot the 

vorticity at max streamfunction point as a function of 

the Reynolds number both for the 
st1  solution and 

the 
nd2  solution respectively. In Fig. 10a we see that 

for the 
st1  solution the max streamfunction point 

coincides with the secondary vortex throughout the 

whole Reynolds number range. Also, for the 
nd2

solution in Fig. 11a, we see that the max 

streamfunction point do not shift vortices and the 

vorticity at this location increases (in absolute value) 

almost linearly with respect to the Reynolds number. 

When we examine the 
st1  solution of the arc-shaped 

cavity flow with arc length ratio r =1/3 in Fig. 4, Fig. 

5 and Fig. 7, we see the appearance of a new 

secondary vortex between Re 0= and Re 10000=  

and a new tertiary vortex between Re 5163= and 

Re 6000=  in the flow field and the size of these 

vortices grow bigger as the Reynolds number 

increases. At the highest Reynolds number of 14000 

there are three vortices in the flow field in the 
nd1  

solution. On the other hand, when we examine the 
nd2  solution of the arc-shaped cavity flow with arc 

length ratio r=1/3 in Fig.  5, Fig. 6 and Fig. 7, we  

see that the 
nd2 solution has three vortices at the  
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Fig. 10. Variation of vorticity at the point of maximum streamfunction for the 
st1 solution. 

 

 

Fig. 11. Variation of vorticity at the point of maximum streamfunction for the 
nd2  solution. 

 

bifurcation Reynolds number of Re 5164= . 

Between Re 6000= vand Re 8000=  a new 

quaternary vortex and also between Re 12000= and 

Re 14000=  a new quinary vortex appear in the flow 

field. At the highest Reynolds number of 20000 there 

are five vortices in the flow field in the nd2 solution. 

 

 

Fig. 12. The 1st solution of arc-shaped cavity 

flow with r=1/4 for various Reynolds numbers 

until Re=5000. 

 

We carry the same analysis to the arc-shaped cavity 

flow with arc length ratio r=1/4, 1/5, 2/5 and also 1/6. 

Following the same procedure, in all these cases we 

first obtain the 
st1 solution by considering a low 

Reynolds number. Then using this smaller Reynolds 

number as an initial guess for the next higher 

Reynolds number we obtain the 
st1 solution of the 

arc-shaped cavity flow until the highest Reynolds 

number we can obtain. Then using a homogeneous 

initial condition we solve for a high Reynolds 

number and obtain the 
nd2  solution at the 

considered Reynolds number. Then again using the 

previous Reynolds number solution as initial guess 

we obtain the 
nd2 solution the whole Reynolds 

number range by incrementing or decrementing the 

Reynolds number. Finally we follow the two 

approaches described above for finding the 

bifurcation Reynolds number and we obtain the 

bifurcation Reynolds numbers for the considered arc 

length ratios. The similar figures and also tables for 

the arc length ratios r=1/4, 1/5, 2/5 and also 1/6 are 

given in Fig. 12 to Fig. 27 and in Table 3 to Table 10. 

 

 

Fig. 13. Multiple solutions of arc-shaped cavity 

flow with r=1/4 for the same Reynolds numbers, 

the 
st1  soluiton on the left, the 

nd2  solution on 

the right. 

 

 

Fig. 14. The 
nd2  solution of arc-shaped cavity 

flow with r=1/4 for various Reynolds numbers 

until Re=24000. 
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Fig. 15. Solutions of arc-shaped cavity flow with 

r=1/4 at the bifurcation Reynolds number. 

 

 

Fig. 16. The 
st1  solution of arc-shaped cavity 

flow with r=1/5 for various Reynolds numbers 

until Re=5000. 

 

 

Fig. 17. Multiple solutions of arc-shaped cavity 

flow with r=1/5 for the same Reynolds numbers, 

the 
st1  soluiton on the left, the 

nd2  solution on 

the right. 

 

 

Fig. 18. The 
nd2  solution of arc-shaped cavity 

flow with r=1/5 for various Reynolds numbers 

until Re=19000. 

 

 

Fig. 19. Solutions of arc-shaped cavity flow with 

r=1/5 at the bifurcation Reynolds number. 

 

For the arc length ratio r=1/4, in Fig. 12 and Fig. 13 

we can see that between Re=1000 and Re=2000 a 

secondary vortex and between Re=8000 and 

Re=10000 a tertiary vortex appear appear in the flow. 

At the highest Reynolds number of 13000 for the nd1

solution, there are three vortices in the flow field. For 

the considered r=1/4 case the bifurcation Reynolds 

number at which a second solution start to exist is 

Re=5586. At this bifurcation Reynolds number of 

Re=5586, the nd2 solution has three vortex in the 

flow field as seen in Fig. 15. Also as seen in Fig. 13 

between Re=8000 and Re=10000 and also between 

Re=10000 and Re=12000, a new quaternary and a 

new quinary vortex appear in the nd2  solution 

respectively. 

 

 

Fig. 20. The 
st1  solution of arc-shaped cavity 

flow with r=2/5 for various Reynolds numbers 

until Re=5000. 

 

 

Fig. 21. Multiple solutions of arc-shaped cavity 

flow with r=2/5 for the same Reynolds numbers, 

the 
st1 soluiton on the left, the 

nd2  solution on 

the right. 

 

From Fig. 16 and Fig. 17, in the arc-shaped cavity 

flow with arc length ratio r=1/5, a secondary vortex 
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Table 3 Minimum and maximum streamfunction, (x,y) location and vorticity for the 
st1  solution of arc-

shaped cavity flow with r=1/4. 

 Re x y 𝜓 𝜔 

𝜓
𝑚
𝑖𝑛

 

0 0 -0.0673 −3.0218 × 10−2 10.0828 

1000 0.1995 -0.0700 −3.2001 × 10−2 12.6458 

2000 0.2288 -0.0700 −3.1320 × 10−2 13.8672 

3000 0.2642 -0.0640 −2.9161 × 10−2 15.6821 

4000 0.2909 -0.0588 −2.7093 × 10−2 17.4335 

5000 0.3109 -0.0546 −2.5374 × 10−2 19.0628 

6000 0.3258 -0.0513 −2.3947 × 10−2 20.5934 

8000 0.3472 -0.0463 −2.1709 × 10−2 23.4419 

10000 0.3636 -0.0421 −1.9996 × 10−2 26.1202 

12000 0.3767 -0.0387 −1.8631 × 10−2 28.6897 

13000 0.3816 -0.0374 −1.8045 × 10−2 29.9527 

𝜓
𝑚
𝑎
𝑥
 

2000 0.0220 -0.1576 8.5702 × 10−4 -2.2739 

3000 0.0144 -0.1423 2.1066 × 10−3 -3.0125 

4000 -0.0839 -0.1311 3.0091 × 10−3 -3.2552 

5000 -0.1331 -0.1232 3.6872 × 10−3 -3.6617 

6000 -0.1665 -0.1183 4.2985 × 10−3 -4.0331 

8000 -0.1831 -0.1108 5.1924 × 10−3 -4.1780 

10000 -0.1982 -0.1057 5.6219 × 10−3 -4.3254 

12000 -0.2133 -0.1006 5.8276 × 10−3 -4.5170 

13000 -0.2218 -0.0988 5.8771 × 10−3 -4.6118 

 

 

Table 4. Minimum and maximum streamfunction, (x,y) location and vorticity for the 
nd2  solution of 

arc-shaped cavity flow with r=1/4. 

 Re x y 𝜓 𝜔 

𝜓
𝑚
𝑖𝑛

 

5586 0.2762 -0.0636 −2.9725 × 10−2 16.8789 

6000 0.2796 -0.0629 −2.9489 × 10−2 17.1660 

8000 0.0052 -0.0880 −2.8674 × 10−2 8.7708 

10000 0.0396 -0.0901 −2.9425 × 10−2 8.9493 

12000 0.0705 -0.0889 −2.9629 × 10−2 9.2088 

13000 0.0844 -0.0906 −2.9607 × 10−2 9.3569 

15000 0.1102 -0.0888 −2.9381 × 10−2 9.6817 

17500 0.1393 -0.0862 −2.8856 × 10−2 10.1397 

20000 0.1667 -0.0832 −2.8139 × 10−2 10.6613 

22500 0.1922 -0.0798 −2.7276 × 10−2 11.2593 

24000 0.2075 -0.0776 −2.6701 × 10−2 11.6612 

𝜓
𝑚
𝑎
𝑥
 

5586 0.0893 -0.1508 2.8595 × 10−3 -5.3826 

6000 0.1020 -0.1494 2.9936 × 10−3 -5.5153 

8000 0.1506 -0.1424 3.3821 × 10−3 -6.0370 

10000 0.1909 -0.1321 3.5723 × 10−3 -6.4737 

12000 0.2219 -0.1226 3.6279 × 10−3 -7.0829 

13000 0.2357 -0.1190 3.6193 × 10−3 -7.4472 

15000 0.2580 -0.1127 3.5556 × 10−3 -8.0853 

17500 0.2818 -0.1053 3.4108 × 10−3 -8.9290 

20000 -0.2919 -0.0782 3.4525 × 10−3 -3.9395 

22500 -0.2986 -0.0764 3.5784 × 10−3 -4.1337 

24000 -0.3036 -0.0750 3.6385 × 10−3 -4.2390 
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Table 5 Minimum and maximum streamfunction, (x,y) location and vorticity for the 
st1  solution of arc-

shaped cavity flow with r=1/5. 

 Re x y 𝜓 𝜔 

𝜓
𝑚
𝑖𝑛

 

0 0 -0.0534 −2.3842 × 10−2 12.6328 

1000 0.1909 -0.0537 −2.4137 × 10−2 15.2657 

2000 0.2198 -0.0545 −2.5217 × 10−2 16.9258 

3000 0.2503 -0.0524 −2.4261 × 10−2 18.8088 

4000 0.2770 -0.0485 −2.2810 × 10−2 20.8833 

5000 0.2987 -0.0451 −2.1405 × 10−2 22.9024 

7500 0.3352 -0.0387 −1.8688 × 10−2 27.4936 

10000 0.3567 -0.0345 −1.6835 × 10−2 31.5609 

12500 0.3732 -0.0312 −1.5480 × 10−2 35.3036 

15000 0.3847 -0.0287 −1.4435 × 10−2 38.8404 

𝜓
𝑚
𝑎
𝑥

 

2000 0.0784 -0.1520 5.5525 × 10−6 -0.7189 

3000 0.0902 -0.1215 7.0950 × 10−4 -3.6741 

4000 0.1019 -0.1137 1.3207 × 10−3 -4.4901 

5000 -0.0175 -0.1090 1.9044 × 10−3 -4.2352 

7500 -0.1180 -0.0989 2.9394 × 10−3 -4.8204 

10000 -0.1680 -0.0931 3.8089 × 10−3 -5.5957 

12500 -0.1814 -0.0892 4.3583 × 10−3 -5.7780 

15000 -0.1947 -0.0852 4.6365 × 10−3 -6.0381 

 

 

Table 6. Minimum and maximum streamfunction, (x,y) location and vorticity for the 
nd2  solution of 

arc-shaped cavity flow with r=1/5. 

 Re x y 𝜓 𝜔 

𝜓
𝑚
𝑖𝑛

 

6945 0.2904 -0.0464 −2.2744 × 10−2 22.5838 

7500 0.0491 -0.0644 −2.2521 × 10−2 11.8725 

10000 0.0883 -0.0675 −2.3468 × 10−2 12.1201 

12500 0.1222 -0.0655 −2.3509 × 10−2 12.7157 

15000 0.1528 -0.0653 −2.3192 × 10−2 13.4213 

17500 0.1815 -0.0626 −2.2662 × 10−2 14.2178 

19000 0.1967 -0.0610 −2.2274 × 10−2 14.7466 

𝜓
𝑚
𝑎
𝑥
 

6945 0.1495 -0.1126 1.8541 × 10−3 -7.6052 

7500 0.1568 -0.1137 1.9361 × 10−3 -8.2628 

10000 0.2001 -0.1063 2.1528 × 10−3 -9.1175 

12500 0.2357 -0.0969 2.2505 × 10−3 -9.5373 

15000 -0.2456 -0.0764 2.4321 × 10−3 -4.3740 

17500 -0.2523 -0.0751 2.7238 × 10−3 -4.6455 

19000 -0.2554 -0.0727 2.8517 × 10−3 -4.7662 

 

 

Fig. 22. The 
st1  solution of arc-shaped cavity 

flow with r=2/5 for various Reynolds numbers 

until Re=22500. 

 

Fig. 23. Solutions of arc-shaped cavity flow with 

r=2/5 at the bifurcation Reynolds number. 
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Table 7. Minimum and maximum streamfunction, (x,y) location and vorticity for the 
st1  solution of 

arc-shaped cavity flow with r=2/5. 

 Re x y 𝜓 𝜔 

𝜓
𝑚
𝑖𝑛

 
0 0 -0.1156 −5.1450 × 10−2 6.0464 

1000 0.1625 -0.1371 −5.6629 × 10−2 6.7954 

2500 0.2159 -0.1284 −5.2138 × 10−2 7.6374 

5000 0.2710 -0.1126 −4.5527 × 10−2 9.1007 

7500 0.3056 -0.0984 −4.0548 × 10−2 10.5284 

10000 0.3286 -0.0897 −3.6898 × 10−2 11.8465 

12500 0.3465 -0.0824 −3.4038 × 10−2 13.1132 

15000 0.3587 -0.0754 −3.1697 × 10−2 14.3658 

17500 0.3699 -0.0706 −2.9735 × 10−2 15.6174 

19000 0.3762 -0.0677 −2.8697 × 10−2 16.3759 

20000 0.3794 -0.0663 −2.8052 × 10−2 16.8873 

22500 0.3872 -0.0627 −2.6578 × 10−2 18.1949 

𝜓
𝑚
𝑎
𝑥
 

1000 -0.1867 -0.2533 6.2296 × 10−4 -0.8088 

2500 -0.2137 -0.1807 5.4303 × 10−3 -1.8247 

5000 -0.1958 -0.1744 8.7170 × 10−3 -1.8739 

7500 -0.2134 -0.1605 9.5825 × 10−3 -2.0507 

10000 -0.2286 -0.1530 1.0063 × 10−2 -2.1632 

12500 -0.2401 -0.1464 1.0262 × 10−2 -2.2619 

15000 -0.2524 -0.1423 1.0276 × 10−2 -2.3532 

17500 -0.2619 -0.1363 1.0213 × 10−2 2.4388 

19000 -0.2688 -0.1338 1.0148 × 10−2 -2.4887 

20000 -0.2722 -0.1325 1.0097 × 10−2 -2.5215 

22500 -0.2799 -0.1271 9.9511 × 10−3 -2.6023 

 

Table 8. Minimum and maximum streamfunction, (x,y) location and vorticity for the 
nd2  solution of 

arc-shaped cavity flow with r=2/5. 

 Re x y 𝜓 𝜔 

𝜓
𝑚
𝑖𝑛

 

6142 0.2340 -0.1264 −5.3548 × 10−2 8.4037 

7500 0.2444 -0.1234 −5.2284 × 10−2 8.7328 

10000 0.2625 -0.1153 −4.9803 × 10−2 9.3038 

12500 0.2761 -0.1109 −4.7617 × 10−2 9.8102 

15000 0.2879 -0.1069 −4.5723 × 10−2 10.2642 

17500 0.2980 -0.1034 −4.4073 × 10−2 10.6782 

19000 0.3030 -0.1016 −4.3177 × 10−2 10.9120 

𝜓
𝑚
𝑎
𝑥
 

6142 -0.0659 -0.2409 8.1185 × 10−3 -2.5398 

7500 -0.0270 -0.2471 8.7970 × 10−3 -2.8206 

10000 0.0209 -0.2506 9.3554 × 10−3 -3.1800 

12500 0.0568 -0.2550 9.5589 × 10−3 -3.4845 

15000 0.0881 -0.2512 9.5823 × 10−3 -3.7539 

17500 0.1114 -0.2506 9.5084 × 10−3 -3.9993 

19000 0.1244 -0.2513 9.4323 × 10−3 -4.1368 

 

and also a tertiary vortex appear in the 
nd1  solution 

between Re=1000 and Re=2000 and Re=1000 and 

Re=12500 respectively. The highest Reynolds 

number we can obtain for the 
nd1 solution is 

Re=15000 and at this Reynold number there are three 

vortices in the  
nd1 solution flow field. For r=1/5 

case, we find the bifurcation point for multiple steady 

solutions is Re=6945 as shown in Fig. 19. At this 

bifurcation Reynolds number there are three vortices 

in the flow field. Between Re=12500 and 

Re=15000and also between Re=15000 and 

Re=17500 we see the appearance of a new 

quaternary and a new quinary vortex respectively in 

the 
nd2 solution as seen in Fig. 17 and Fig. 18. 
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Table 9. Minimum and maximum streamfunction, (x,y) location and vorticity for the 
st1  solution of 

arc-shaped cavity flow with r=1/6. 

 Re x y 𝜓 𝜔 
𝜓
𝑚
𝑖𝑛

 
0 0 -0.0447 −1.9719 × 10−2 15.0471 

1000 0.1478 -0.0428 −1.9525 × 10−2 16.8701 

2000 0.2170 -0.0436 −2.0547 × 10−2 20.0794 

3000 0.2356 -0.0435 −2.0670 × 10−2 21.4076 

4000 0.2575 -0.0428 −2.0026 × 10−2 23.3764 

5000 0.2792 -0.0401 −1.9091 × 10−2 25.4007 

6000 0.2976 -0.0377 −1.8116 × 10−2 27.4641 

7000 0.3126 -0.0356 −1.7216 × 10−2 29.4698 

8000 0.3259 -0.0336 −1.6416 × 10−2 31.3991 

9000 0.3358 -0.0321 −1.5713 × 10−2 33.2479 

10000 0.3458 -0.0305 −1.5097 × 10−2 35.0261 

12000 0.3590 -0.0283 −1.4080 × 10−2 38.3504 

14000 0.3706 -0.0264 −1.3277 × 10−2 41.4335 

16000 0.3788 -0.0249 −1.2621 × 10−2 44.3365 

17500 0.3838 -0.0240 −1.2201 × 10−2 46.4278 

𝜓
𝑚
𝑎
𝑥
 

3000 0.1128 -0.1169 4.3233 × 10−3 -1.8707 

4000 0.1286 -0.1004 4.6536 × 10−3 -4.9141 

5000 0.1471 -0.0941 8.2788 × 10−3 -5.9210 

6000 0.0138 -0.0959 1.0912 × 10−3 -4.6476 

7000 0.0155 -0.0915 1.5419 × 10−3 -5.1355 

8000 0.0017 -0.0893 1.8307 × 10−3 -5.3061 

9000 -0.0481 -0.0863 2.0886 × 10−3 -5.4592 

10000 -0.0668 -0.0834 2.3054 × 10−3 -5.6593 

12000 -0.1456 -0.0799 2.7221 × 10−3 -6.5139 

14000 -0.1643 -0.0779 3.1599 × 10−3 -6.9936 

16000 -0.1728 -0.0769 3.4761 × 10−3 -7.2096 

17500 -0.1777 -0.0744 3.6382 × 10−3 -7.2941 

 

Table 10. Minimum and maximum streamfunction, (x,y) location and vorticity for the 
nd2  solution of 

arc-shaped cavity flow with r=1/6. 

 Re x y 𝜓 𝜔 

𝜓
𝑚
𝑖𝑛

 

8825 0.3026 -0.0370 −1.8311 × 10−2 28.4075 

9000 0.1011 -0.0514 −1.8591 × 10−2 15.7154 

10000 0.1113 -0.0531 −1.9079 × 10−2 15.5421 

12000 0.1349 -0.0518 −1.9339 × 10−2 15.9444 

14000 0.1569 -0.0524 −1.9276 × 10−2 16.5593 

16000 0.1771 -0.0509 −1.9060 × 10−2 17.2580 

𝜓
𝑚
𝑎
𝑥
 

8825 0.1883 -0.0887 1.3152 × 10−3 -10.0619 

9000 0.1869 -0.0908 1.3334 × 10−3 -10.6963 

10000 0.2005 -0.0887 1.4018 × 10−3 -10.8898 

12000 0.2227 -0.0849 1.4909 × 10−3 -12.4440 

14000 -0.1896 -0.0729 1.6217 × 10−3 -4.6041 

16000 -0.2116 -0.0700 1.8660 × 10−3 -5.1375 

 

When we look at Fig. 20, Fig. 21 and Fig. 22 for the 

arc length ratio r=2/5 case, we see that a secondary, 

a tertiary and a quaternary vortex appear in the 
st1  

solution between Re=0 and Re=1000, between 

Re=2500 and Re=5000 and between Re=17500 and 

Re=19000 respectively. At the highest Reynolds 

number of Re=22500 for the 
st1  solution of r=2/5 

case, there are four vortices in the flow field. We find 

the bifurcation Reynolds number for the r=2/5 case 

as Re=6142 where there are four vortices in the flow 

field of the 
nd2  solution. Between Re=12500 and 
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Re=15000 a quinary vortex appear in the nd2  

solution, and at the highest Reynolds number of 

19000 for the nd2 solution the flow has five vortices. 

 

 

Fig. 24. The 1st solution of arc-shaped cavity 

flow with r=1/6 for various Reynolds numbers 

until Re=8000. 

 

 

Fig. 25. Multiple solutions of arc-shaped cavity 

flow with r=1/6 for the same Reynolds numbers, 

the 
st1  soluiton on the left, the 

nd2  solution on 

the right. 

 

 

Fig. 26. The 
st1 solution of arc-shaped cavity 

flow with r=1/6 at Re=17500. 

 

 

Fig. 27. Solutions of arc-shaped cavity flow with 

r=1/6 at the bifurcation Reynolds number. 

 

Finally in the flow field of the arc-shaped cavity with 

arc length ratio r=1/6, as seen in Fig. 24, Fig. 25 and 

Fig. 26, a secondary vortex appear between Re=2000 

and Re=3000 and also a tertiary vortex appear 

between Re=16000 and Re=17500. The 
st1  solution 

has three vortices in the flow field at the highest 

Reynolds number of 17500. For r=1/6 arc length 

ratio case, the bifurcation Reynolds number for 

existence of a second set of solution is 8825 as seen 

in Fig. 27 and at this Reynolds number the nd2  

solution has three vortices in the flow field. At the 

highest Reynolds number of 16000, there are still 

three vortices in the flow field of the 2𝑛𝑑 solution. 

When we look at Fig. 8, we see that for all the arc 

length ratios considered (ie. r=1/3, 1/4, 1/5, 2/5 and 

1/6) in the 1𝑠𝑡  solution, at the minimum 

streamfunction location the vorticity increases 

almost linearly with respect to the Reynolds number 

from the Stokes regime (Re=0) to the maximum 

obtained Reynolds number. 

In Fig. 9 we see that in the 2𝑛𝑑  solution, except at 

r=2/5, the location of the minimum streamfunction 

point shifts from one local minima to an other local 

minima. In the 2𝑛𝑑  solution, as seen in Fig. 11, we 

see that the location of the maximum streamfunction 

shifts also for the smaller arc length ratios (ie. r=1/6, 

1/5 and 1/4). However, the shift in the maximum 

streamfunction location is different than the shift we 

see in the minimum streamfunction location. The 

shift in the minimum streamfunction location occurs 

in the primary vortex in which the flow rotates in 

clockwise direction and the shift occurs from one 

local minima to the other local minima. On the other 

hand the shift in maximum streamfunction location 

occurs from one counterrotating vortex on the right 

bottom side of the arcshaped cavity to the other 

counter-rotating vortex on the left bottom side of the 

arc-shaped cavity. When the arc length ratio is high 

(ie. r=2/5 and 1/3) the maximum streamfunction 

location always coincides with the center of the 

counter-rotating vortex on the right bottom side of 

the arc-shaped cavity for the whole range of the 

Reynolds number considered. 

In our numerical solutions, as the arc length ratio of 

the arc-shaped cavity changes the highest Reynolds 

number we can obtain a numerical solution for the 1st 

solution and also for the 2nd solution change. The 

bifurcation Reynolds number at which multiple 

solutions start to exist also changes as the arc length 

ratio changes. The bar charts Fig. 28, Fig. 29 and Fig. 

30 show the variation of the highest Reynolds 

number that we can obtain a numerical solution for 

the 1st solution and for the 2nd solution and also the 

bifurcation Reynolds number as a function of the arc 

length ratio respectively. As shown in Fig. 28, the 

highest Reynolds number that we can achieve a 

numerical solution for the 1st solution first decreases 

and then increases as the arc length ratio decreases 

from r=2/5 to r=1/6 where the minimum is at r=1/4. 

The highest Reynolds number that we can achieve a 

numerical solution for the 2nd solution shows an 

opposite behaviour and first increases with having 

the maximum at r=1/4 then decreases as the arc 

length ratio decreases from r=2/5 to r=1/6 as given 

in Fig. 29. Finally, in Fig. 30 we can see that the 

bifurcation Reynolds number first decreases and then 

increases as the arc length ratio decreases from r=2/5 

to r=1/6 having the minimum bifurcation Reynolds 

number at r=1/3 arc length ratio. 
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Fig. 28. Highest achieved Reynolds number for 

the 
st1  solution of the arc-shaped cavity flow. 

 

 
Fig. 29. Highest achieved Reynolds number for 

the 
nd2  solution of the arc-shaped cavity flow. 

 

 
Fig. 30. Bifurcation Reynolds number of the arc-

shaped cavity flow. 

 

CONCLUSIONS 

In this study steady two-dimensional 

incompressible viscous flow inside a wall driven 

arc-shaped cavity is analyzed numerically. Using a 

body fitted mesh obtained by a conformal 

mapping, the numerical solutions of the arc-shaped 

cavity flow with a variety of arc length ratio of 

r=2/5, 1/3, 1/4, 1/5 and 1/6 are obtained. We find 

that for the arc-shaped cavity flow with arc length 

ratio less than 1/2 (r<1/2) there exist multiple 

steady solutions such that above a bifurcation 

Reynolds number two different solutions exist for 

a particular given Reynolds number. The wall-

driven arcshaped cavity flow problem is not 

symmetric due to the geometry and also due to the 

boundary conditions and so is the two multiple 

solutions. We investigate the behaviour of the two 

different solutions as the Reynolds number 

changes and also as the arc length ratio of the arc-

shaped cavity changes and we tabulate detailed 

results for future references. Our numerical 

solutions show that the bifurcation Reynolds 

number changes as the as the arc length ratio 

changes with the minimum bifurcation Reynolds 

number of 5164 at 1/3 arc length ratio. We think 

that the arc-shaped cavity flow problem with arc 

length ratio r<1/2 is a unique flow problem for 

computational fluid dynamics field of study and 

further research on the arc-shaped cavity flow 

might reveal more solutions than the two solutions 

presented in this study. 
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