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ABSTRACT 

This study aims to generate a fully developed turbulent boundary layer in the channel domain using LES (Large 

Eddy Simulation), suitable inflow conditions along with statistically reliable turbulent characteristics are 

required. This study clarifies the effect of the integral length scale from the existing data on the generation of 

turbulent boundary layers. In order to justify the work, an artificially created boundary layer is imposed on the 

inlet section, which gradually evolves into a fully developed turbulent boundary layer flow inside the numerical 

domain. In this study, the synthetic inflow method, which is based on an exponential correlation function, is 

used by imposing the spatial and temporal correlation between two different points on the inlet section. 

In addition, we conducted parametric length scale studies on the inlet section and compare our results with 

existing data. The results indicated that the cases of larger length scale in the span-wise direction were not only 

effective in achieving the target shape of a fully developed turbulent boundary layer, but also developed it faster 

than the smaller-length scales.  

Keywords: Statistical inflow data; Synthetic inflow generator; Integral length scale; Channel flow; 

Turbulent boundary layer; CFD. 

NOMENCLATURE 

ij ja    fluctuating part of iu  iu     instantaneous velocity 

jb   filter coefficient 
iu    mean part of iu  

sC   Smagorinsky constant 
ijS  filtered rate of strain tensor   

d   half height of the channel *t  non-dimensional time 

L   integral length scale u   friction velocity 

mr   random number Δx grid size 

ijRe   Reynolds stress 
ij    filtered static pressure 

Re   Reynolds number 
j   amplitude tensor 

T   Eulerian time scale m   velocity field 

 

 
1. INTRODUCTION 

The most direct method of generating a well-

developed turbulent boundary layer is to simulate a 

laminar inflow and allow it to develop spatially over 

a suitably long domain, i.e. over a hundred times the 

thickness of the eventual boundary layer depth of 

interest. However, even this 'simple' method would 

present difficulties associated with ensuring the 

correct surface conditions, such as the length scale 

and wall treatment. Further, the computational cost 

would be very high. Alternatively, using a time-

evolving large-eddy simulation (LES) or direct 

numerical simulation (DNS) with a periodic (Lee et 

al. 1992, Keating et al. 2004, Lim et al. 2009) or a 

‘modified periodic’ (Lund et al. 1998), the inlet-

outlet boundary condition can be used to generate the 

appropriate turbulent flow. For the latter, one of the 

authors used a sort of ‘precursor simulation’, in 

which the velocity field at an appropriate 

downstream station is stored and imposed in a 

suitably re-scaled form as the inflow data for the 
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primary computation. (Lim et al. 2009) The 

precursor simulation generates a realistic turbulent 

flow field. However, it is also expensive and has 

limitations, such as its applicability to simple 

geometries only. Therefore, it is difficult to 

determine the usefulness of such a method in actual 

urban-type scenarios.  

Procedures which are based on proper orthogonal 

decomposition (Druault et al. 2004, Johansson and 

Andersson 2004, Perret et al. 2006)may be less 

expensive than the above methods for the generation 

of inflow data provided that there are appropriate 

DNS/LES (Johansson and Andersson 2004)or 

experimental datasets (Druault et al. 2004, Perret et 

al. 2006)available for processing in order to obtain 

the most energetic modes, with an appropriate set of 

time-dependent projection coefficients that provide 

the phase information. The reconstructed inflow data 

for later LES/DNS are 'almost statistically realistic'. 

However, the experimental databases suffer from 

either low spatial resolution, which is common in 

measurements from hot-wire or laser Doppler 

anemometry (Druault et al. 2004), or low temporal 

resolution, as obtained from measurements using 

particle-image velocimetry (Perret et al. 2006). 

Special treatment must then be applied to resolve the 

issues pertaining to its low resolution. Consequently, 

such approaches are generally suitable only for very 

specific cases; synthetic turbulence generation is 

another option, and is of particular interest when only 

limited turbulence statistics data are available. Hanna 

et al. (2002) generated one-dimensional (1D) time 

series of inflow data based on an exponential 

correlation function to simulate flows over an array 

of cubes using LES. The time series were tailored to 

provide the required time scale and turbulence 

intensities, and the subsequent LES was able to 

reproduce the main characteristics of the 

measurements. The merit of that method is its very 

high efficiency; however, its accuracy is seriously 

limited because no spatial correlation was imposed 

at the inlet.  

Because of the features of the atmospheric boundary 

layer flows as an inflow condition, one of the 

representative studies would be the work of Xie and 

Castro (2008). They used the urban boundary layer 

flows, which should have a high Reynolds number, 

and fully developed turbulence driven by large-scale 

motions. They used a digital filter-based method, 

which allows spatially varying turbulence scales on 

non-uniform grids to be imposed at the inlet. It was 

developed independent of the works of Mare et al. 

(2006), Veloudis et al. (2007), whose methods are 

similar in some respects, and have already been used 

elsewhere (Jarrin et al. 2006). 

Therefore, this study investigated the flow 

characteristics in a channel with a smooth wall by 

imposing synthetic inflow data having a statistically 

varying length scale. Various inflow length scales 

were imposed to examine their effect on the whole 

flow domain with the aim of observing the 

relationship between the length scale and the 

development of the turbulent boundary layer. This 

paper is organised as follows: In Section 2, the 

governing equation and synthetic inflow generation 

using the digital filtering method for the LES inlet 

condition are introduced and summarised. This is 

confirmed by making a comparison with the 

turbulent statistics from an existing DNS database. 

In Section 3, the synthetic inflow generation 

technique was validated by the simulation of a 

smooth wall-bounded channel flow. Furthermore, 

the characteristics of the turbulent boundary layers 

simulated by LES using inlet data imposed by the 

synthetic inflow generation are analysed. In addition, 

the effects of the inlet length scales on the 

development of a flow structure inside the flow 

domain are also investigated. Finally, Section 4 

concludes this study. 

2. NUMERICAL ANALYSIS 

2.1 Governing equation 

To resolve the incompressible flow, we must 

estimate the flow structure for a wide range of scales. 

The DNS method can resolve a wide range of scales, 

from large ones to the Komogorov, which is the 

smallest scale. However, until now, its 

computational cost has been too high for it to be used 

as a design tool. LESs can adequately substitute the 

DNS method in simulating turbulent flow. 

Furthermore, it has a substantially reduced 

computation cost, and has become one of the main 

methods for investigating complex turbulent flows 

with a relatively high Reynolds number. LESs 

resolve only a large scale of motion, and the effect of 

smaller scales is modelled by the sub-grid scale 

(SGS) modelling. The LES scheme has had a 

considerable influence on the development of 

turbulent flows.  

In LESs, the governing equations for a large eddy are 

applied after a spatial filtering operation. The spatial 

filtering operation is given by  

( ) ( ) ( )f x G x x f x dx                                       (1) 

where f  is a turbulent field and G  is a spatial filter. 

The continuity and momentum equation for 

incompressible flows are obtained by filtering the 

Navier–Stokes equations. The filtered Navier–

Stokes equations are given by 
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where r
ij  is the residual stress tensor. r

ij  is given 

by 

r
ij i j i ju u u u                                                       (4) 

In Eq.(4), the residual stress tensor is unknown and 

should be modelled.  
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The eddy viscosity Boussinesq hypothesis is used for 

modelling the residual stress tensor as follows: 

1
2

3

r
ij t ij kk ijS                                               (5) 

where t  is the turbulent viscosity of the sub-grid 

scale. The isotropic part of ij  is added to the filtered 

static pressure term without being modelled. In 

Eq.(5), ijS  is the filtered rate of strain tensor and is 

defined by 

1

2

ji
ij

j i

uu
S

x x

 
  

   

                                              (6) 

The Smagorinsky-Lilly model was used as a subgrid-

scale model. In this study, the Smagorinsky constant 

sC , was set to 0.065 (Moin and Kim 1982). 

2.2 Modelling of inflow generator 

We investigate a synthetic inflow generator having a 

variety of length scales, which is based on Xie and 

Castro’s method (Xie and Castro 2008). In this 

section, we present a brief review of their model, 

which imposes correlations using an exponential 

function to satisfy the prescribed space and time 

correlations. The instantaneous value of the velocity 

iu  may be written as 

i i ij ju u a                                                          (7) 

where iu  is the mean, and ij ja   is the fluctuating 

part of iu , which is called Reynolds decomposition. 

The fluctuating part can be separated into two parts, 

ija , which is the amplitude tensor, and j , which 

is the unscaled fluctuation with zero mean ( 0j  ), 

a unit variance ( 1j j   ), and zero covariance with 

the other distributions ( 0,j j i j    ). The term 

ija  using Reynolds stress ijR  is the Cholesky 

decomposition of the Reynolds stress by Le and 

Moin (2005) as follows, 

11
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(8) 

where ijR  is the Reynolds stress tensor obtained 

from the experimental or previously calculated 

numerical simulation data. If the boundary layer is 

homogeneous in the lateral direction, 31 32 0R R  ; 

therefore, 31a   and 32a  can be removed.  

The synthetic inflow generation technique using 

digital filtering aims to find the unscaled fluctuation 

( j ), which is a 1-dimensional number sequence 

with zero mean, unit variance, and spatial 

correlation. The correlations in the most turbulent 

shear flow have similar features. The advantage of 

the correlation function is that it approximates the 

relation of two different points to the form of an 

exponential function. The exponential function is 

exp( / )r L  , where    is a constant. However, 

in the quation,   is not clearly defined, and its 

function remains unclear. In this study, the 

exponential function was carefully tested and 

subsequently modified. Kim et al. 2013 used the 

modified exponential function as follows (Kim et al. 

2013): 

( ,0,0) ( )
4

r
R r exp

L


                                           (9) 

where L  is the integral length scale. The filter is 

designed to process a series of random numbers 

using an exponential function. Taking a filter 

coefficient and a series of random numbers into 

account, the velocity field is derived as follows: 

N

m j m j

j N

b r 



                                              (10) 

where m , jb , and mr  are the velocity field, filter 

coefficient, and a series of random numbers with 

zero mean ( 0mr  ), respectively, and unit variance 

( 1m mr r  ). In addition, the integral length scale 

( L ) can be considered as a multiple of the grid size 

(Δx) and expressed as L n x  . In addition, N  is 

determined by the integral length scale. The relation 

between N  and n  was also carefully tested for 

2N n , and finally, 2N n  was accepted. In this 

study, the variation of the length scale was made in 

the inlet section. Using Eqs. (9) and (10), the filter 

coefficient jb  could be defined as shown in Eq.(11). 
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   
 
    (11) 

Based on these equations, 1D data satisfying the 

required length scale L , mean 0m  , and 

variance 1m m    can be obtained. The filter 

coefficient for a two-dimensional (2D) plane can be 

obtained by the convolution of two 1D filter 

coefficients, jk j kb b b . It is expressed as follows: 

, ,

N N

m l jk m j l k

j N k N

b r  

 

                                (12) 

 In the first time step, the velocity data of a plane are 

generated by applying the filter to the random 

number on the 2D plane. The data ( , , )j t y z  of the 

2D plane is set to have a constant length scale, 

i i iL n tx  , in the vertical direction and in the span-

wise direction. To impose a more precise length 

scale, it is also possible to divide the region of the  
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Fig. 1. Schematic diagram of computational domain. (total number of cells: 600 60 70  ). 

 

inlet plane and apply different length scales at each 

region. The time scale should be considered for 

application of the plane velocity field data for the 

next time step. Based on Taylor's hypothesis, the 

Lagrangian time scale can be expressed as follows: 

/T L u                                                             (13) 

where L  is the length scale and u  is the local mean 

velocity. In addition, the Eulerian time scale, T , can 

be obtained from experimental or previous numerical 

analyses. The velocity of the next time step can be 

calculated by Eq. (14) using the velocity at the 

previous time step. 

i i

0.5

t
(t+ t, y,z)= (t, y,z)exp -

4T

( , , ) 1
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i

t
t y z exp

T


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

 
  

 

  
    

  

ψ ψ

  (14) 

where i  is obtained using a new set of random 

data; however, iψ  is the plane velocity field data of 

the current or next time step and T  is a constant 

value for the entire inlet plane representing the 

Eulerian time scale. Note that i  is fully random in 

time, its variance is unity, and it is an independent 

variable from (t,y,z)iψ . 

2.3 Implementation of boundary condition 

and inflow length scale 

In this study, a hexahedral grid system was used for 

the numerical simulation of an efficient turbulent 

flow. To improve the convergence efficiency in the 

solution of the governing equations, a stretched mesh 

was used so that the grid was concentrated on the 

wall surface and the resolution was sufficiently high 

close to the wall, but coarse at the far field from the 

wall. The Reynolds number ( Re ) on the smooth 

wall-bounded channel flow was 150 based on the 

friction velocity (u ) and the half height ( d ) of the 

channel. The size of the whole computational 

domain was 60 2 3.5d d d   in the streamwise 

 ( x ), wall normal ( y ), and spanwise ( z ) 

directions, respectively. The number of cells in the 

whole domain was approximately 2.5 million, as 

shown in Fig.1. To improve the convergence of the 

analysis, a stretched mesh satisfying 1y    in the 

first cell center was considered for the wall-normal 

direction. For the x  and z  directions, uniform 

meshes were used and the resolutions were 

15, 7.5x z     . The number of cells in each 

direction was 600 60 70   in the x , y , and z  

directions, respectively. All statistics were averaged 

by *40t , where * /t tu d  is a non-dimensional 

time. Averaging for the statistical analysis was 

performed after the initialisation period of *20t . The 

Smagorinsky subgrid-scale model was adopted with 

a constant 0.065sc   (Iwamoto et al. 2002). The 

time step satisfies the condition that the CFL number 

should be smaller than 1. The corresponding 

* / 0.001t t u      . A second order implicit 

scheme was used for time discretization, and a 

second order central difference scheme was used for 

spatial discretization. Furthermore, the transient 

incompressible flow solver was used, and the PISO 

algorithm was adopted as the velocity-pressure 

coupling scheme. In addition, the PRESTO 

algorithm was used as a discretization technique for 

pressure. 

The boundary conditions of this channel flow are: 

no-slip condition on the top and bottom walls, 

periodic boundary condition in the lateral direction, 

and a zero-gradient condition with no diffusion of all 

the flow variables on the outlet. The synthetic 

turbulence obtained by the synthetic inflow 

generator was interpolated into the cell centre of the 

inlet plane. The turbulence information, including 

the first and second moment statistics and the 

integral length scales used as input parameters to 

generate the synthetic inflow, were obtained from the 

DNS database that analysed the plane channel flow 

(Iwamoto et al. 2002). The integral length scale iL  

is obtained using Eq.15 with a two-point correlation 

and ( )iR x  in the DNS database. 

0
( ) ,   1,2,3i i iL R x dx i



                                (15) 
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Fig. 2. Integral length scales (symbol: two-point correlation in DNS data; line: inflow generation). 

 

Figure 2 shows the length scale obtained from the 

DNS database and the simplified length scale applied 

to the synthetic inflow generation. Figure 2(a) shows 

the distribution of the streamwise direction length 

scale, xL , along the wall-normal direction.  

If the relative turbulence intensities are sufficiently 

low, according to Taylor's hypothesis, the length 

scale can be determined by the local mean velocity 

u  and the Eulerian time scale T . Therefore, 

( ) ( )xL y T u y   is applicable (Taylor 1938). In 

the equation, T  is a constant, and the local mean 

velocity in the stream-wise direction increases with 

the distance from the wall, and the stream-wise 

length scale also becomes large. In this study, the 

turbulence intensity of the flow simulation is smaller 

than 0.3, and Taylor's hypothesis can therefore be 

applied across the entire domain. However, the 

stream-wise length scale obtained from the actual 

DNS is highest close to the wall and gradually 

decreases in the freestream. To impose a precise 

stream-wise length scale of actual DNS data as the 

inlet condition, the three-dimensional (3D) domain 

should be considered when generating the 

fluctuating part, i . The advantage of the inflow 

generation technique considered in this study is that 

it can generate efficient inlet velocity field data at 

every time step only on the 2D plane, while matching 

the second-order turbulent statistics obtained from 

the experiment or a previously calculated simulation. 

Figure 2(b) shows the length scale for the y  and z  

directions. Notably, there are no DNS data of a 

length scale in the wall-normal direction ( y ) in the 

existing literature. Therefore, because it is 

in-homogeneous for the wall-normal direction, we 

assumed in the study that 0.67y zL L  for the length 

scale in the y  direction. (see Iwamoto et al 2002) 

As mentioned above, the entrance plane can be 

divided into several sections, and different values of 

yL  and zL  have been applied to each section. 

2.4 Variation of inflow length scale 

In this study, the flow characteristics were observed 

with variations in the integral length scales at the 

inlet section. As mentioned earlier, the stream-wise 

local length scale, ( )xL y , is determined by the local 

mean velocity, ( )u y , and the constant time scale, 

T , where the constant T  could be obtained by xL  

and u  at / 1y d  . The span-wise length scale 

could be applied as a multiple of 
*
zL , where 

*
zL  is 

the reference span-wise length scale, which is 

equivalent to the value zL  used in Fig. 2. To observe 

the effect of the zL  distribution on the flow field, 

this study chose several different values, such as 

*0 zL  (white noise), 
*0.15 zL , 

*0.3 zL , 
*0.5 zL , 

*2 zL , 

*3 zL  (see Table 1). To achieve a precise matching 

with the 
*
zL  distribution of the existing DNS 

database, in the length scales 
*
zL  the domain needed 

to be divided into three different zones. These zones 

were separated in several salient positions at

/ 0.1,0.2y d  . Table 1 presents the configuration 

of each case depending on the size of the length scale 

in each zone. For instance, Case 02 does not consider 

the length scale in the inlet condition, whereas Cases 

01, 07, and 08 have a uniform span-wise length scale 

in zL . Besides, to observe the effect of different 

length scales on different zones, Cases 03, 04, 05, 

and 06 would play an important role, in addition to 

studying the variation of flow statistics based on 

length scales. In particular, Cases 07 and 08 have 

length scales that are two and three times larger, 

respectively, than that of Case 01 for all the stream-

wise, vertical, and span-wise directions. 

2.5 Filtering process and correlation 

This study adopted the filtering process in which 

random data are filtered and correlated to obtain 

fluctuating data in m . When the series of random 

numbers is filtered through the synthetic inflow 

model used in this study, the filtered velocity field 

data, which are similar to the fluctuating part of the 

flow, are obtained. To apply this algorithm to the 

synthetic inflow generator, the velocity field data are 

first generated in a 2D equi-spaced uniform mesh, 

and then interpolated into a non-uniform mesh with  
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Table 1 Size of length scales applied in the simulation. 

Name y/d<0.1 0.1<y/d<0.2 y/d>0.2 

Case 01 1Lz∗ 1Lz∗ 1Lz∗ 

Case 02 0, random 0, random 0, random 

Case 03 0.15Lz∗ 0.15Lz∗ 0.5Lz∗ 

Case 04 0.3Lz∗ 0.3Lz∗ 1Lz∗ 

Case 05 0.5Lz∗ 0.5Lz∗ 1.5Lz∗ 

Case 06 0.3Lz∗ 1Lz∗ 1Lz∗ 

Case 07 2Lz∗ 2Lz∗ 2Lz∗ 

Case 08 3Lz∗ 3Lz∗ 3Lz∗ 

 

 

Fig. 3. Statistical profiles from DNS and synthetic inflow generator. 

 

the aim of fitting it into the more realistic inlet 

domain as an inlet condition. 

Figure 3 compares the DNS database with the data 

from the synthetic inflow generator for the mean and 

turbulent statistics. The non-dimensional parameters 

used here can be defined as follows: 

2
,   ,  

u y u u v
y u u v

u u



 


     
                     (16) 

In the figure, the ordinate axis shows the non-

dimensional mean and stress profiles, and the 

abscissa represents the non-dimensional distance 

from the wall ( y 
). In the mean velocity profile u 

, the current result agrees well with the overall range 

of the domain, such as the law of the wall at 5y    

and the logarithmic law at 30y   . In addition, it 

can be seen that the axial and shear stresses from the 

synthetic inflow generator are in good agreement 

with the DNS data. 

3. RESULTS AND DISCUSSION 

3.1 Channel flow simulation using synthetic 

inflow generator 

Given that the synthetic inflow generator was 

available, the channel flow simulation on the LES 

platform was initially conducted with the aim of 

observing the development of the turbulent flow in 

the whole domain. The channel flow starts with the 

data from the synthetic inflow generator, adopting it 

in the inlet section, and develops the flow 

downstream to the smooth wall-bounded channel. 

The development of axial and shear stress profiles 

are very important for identifying the fully developed 

flow, (Kim et al. 2013, Deck et al. 2011)as well as 

obtaining an appropriate turbulent flow downstream.  

Figure 4 shows the development of dimensionless 

axial and shear stress distributions. Figure 4(a) 

indicates the variation in the wall shear stress close 

to the surface from the inlet to downstream of the  
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Fig. 4. Spatial development of (a) dimensionless wall shear stress, (b) shear stress, (c) axial stress 

(longitudinal), (d) axial stress (vertical), (e) axial stress (spanwise). 

 

channel; the ordinate axis indicates the non-

dimensional wall shear stress, defined as 

2/ ( )w w u     , and the abscissa represents the 

stream-wise distance (x) from the inlet normalised by 

the half height (d) of the channel. To observe the 

effect of the longitudinal domain size, two different 

domains ( / 12x d   and 60) were designed and 

calculated. As shown in the figure, the wall shear 

stress decreases near the inlet of the channel and 

slowly recovers downstream, becoming almost 

constant at around / 30x d   (see solid line). 

Moreover, the short domain case  /   12x d   did 

not recover (see dashed line), and the difference 

between the highest and lowest magnitudes of w
   

was much larger than that of the domain size 

/ 60x d  . Therefore, if the domain size is set to be 

less than / 30x d  , the wall shear stresses would 

be very low. Figure 4(b) shows the Reynolds stress 

profiles at several equi-spaced positions, x/d = 0, 10, 

20, 30, 40, and 50, and the abscissa indicates the 

wall-normal distance from the wall surface 

normalised by d.  

Figure 4(c-e) indicates the variation of axial stress 

profiles along the whole domain. Note here that the 

solid lines in the figure represent the existing DNS 

data. The axial (longitudinal) stress profiles begin 

initially with the data from the synthetic inflow 

generator; however, they gradually develop and 

reach the fully developed profile downstream, which 

corresponds to the existing DNS data. The vertical 

and span-wise stress profiles were also not properly 

developed upstream, but they had almost fully 

developed downstream. 

Figure 5 shows the gradient of the dimensionless 

shear stress, /w x    , in the stream-wise direction 

with the aim of identifying more precisely the critical 

point indicating a fully developed boundary layer. As 

shown in Fig.5 , there is a steep gradient near the 

inlet, and the values /w x     gradually recover 

and converge to an almost constant value (i.e. around 

zero) in the region where / 40x d  .  

 

 

Fig. 5. Variation of dimensionless wall shear 

stress per grid size. 
 

Figure 6 shows the mean and turbulent statistics in 

the channel flow, and compares them with the 

existing DNS data (Kim et al. 1987). In the figure, 

the fully developed profile was obtained at x/d = 50, 

and the inlet data from the inflow generator and the 

DNS results for the reference and existing data were 

also compared. As shown in the figure, most of the 

profiles agree perfectly well with each other, which 

is very satisfactory. The turbulent statistics for both 

cases, that is, the inlet and x/d = 50, also show a 

similar pattern. In particular, the non-dimensional 

mean velocity, u 
, is almost identical. The axial 

longitudinal stress profile, u u    at x/d = 50 also 

shows a similar distribution near the wall surface 

compared to that at the inlet. However, when y/d is 

between 0.1 and 0.4, it is relatively lower than that at 

the inlet, whereas it is relatively high for y/d between 

0.4 and 1.0. The axial vertical stress profile, v v   

, and the shear stress, u v    , at x/d = 50 were  
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Fig. 6. Mean and turbulent statistics in channel flow at the inlet, x=d = 50, in an existing study. 

 (Kim et al. 1987) 

 

  

Fig. 7. Development of dimensionless wall shear stress with different length scales. 

 

slightly overestimated compared to the data at the 

inlet. The difference between the turbulent boundary 

layers at the inlet and x/d = 50 is due to a relatively 

coarse resolution of the LES in the core region. 

3.2 Effect of inlet length scale on wall shear 

stress 

Figure 7 shows the distribution of the non-

dimensional wall shear stress w
   for all the cases 

of different inlet length scales. Notably, the stream-

wise length scales are the same for all those cases. To 

observe the effect of the length scale close to the 

wall, the span-wise length scale was set from a 

minimum of 0.15
*
zL  to a maximum of 

*3 zL . It 

should be noted that the variation in the inlet length 

scale has a significant effect on the recovery of the 

wall shear stress downstream. As shown in Fig.7(a), 

Case 01 reveals that the wall shear stress recovered 

fairly well at x/d = 40. The wall shear in other cases 

having a relatively smaller length scale than that in 

Case 01 is mostly unstable and does not properly 

recover downstream, except in Case 06.  

In Case 02, which is the worst case having no length 

scale implemented in the inflow, the wall shear stress 

continuously decreases downstream, and the wall 

shear stress substantially drops to approximately 

50 \% at the outlet compared to that at the inlet. Case 

03, in which the length scale is 
*0.15 zL , is used in  
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Fig. 8. Mean streamwise velocity profiles. y=d = 0:1;0:2 denote y+ = 15:2;30:3, respectively. 

 

the range y/d < 0.2, and is shown to be similar to Case 

02, although it is slightly larger in terms of shear 

stress. This is similar to the case having a short 

domain size of x/d=12 shown in Fig. 4(a), which 

implies that the domain needs to be at least longer 

than this size in the stream-wise direction to obtain 

fully developed turbulent statistics. 

Case 04, which has a smaller length scale (i.e. 

*0.3 )zL  in the range / 0.2y d  , indicates that the 

shear stress has a local minimum turning point under 

this condition, and this means that the shear stress 

decreases and gradually recovers at a specific point 

around x/d = 20. However, the shear stress continues 

to increase, and finally becomes unstable at a point 

approximately 14 % higher than that of Case 01. For 

Case 05, in which the length scale is slightly smaller 

(i.e. 
*0.5 zL ) in the range y/d < 0.2, but larger (i.e. 

*1.5 zL ) for the rest of the range, the wall shear stress 

appears to be quite close to that of Case 01 in the inlet 

region; however, it appears scattered, wavy, and 

unstable downstream. Apart from Case 04, it does 

not tend to continue increasing continuously near the 

outlet, but it reaches a value that is 10 % higher than 

that in Case 01. In this study, we tried to adjust the 

size of the length scale in certain zones, such as 

*0.3 zL  in 
*
zL  and 

*
zL  in y/d > 0.1, with the aim of 

understanding the effect of zone height on flow 

development. Interestingly, we foundthat the shear 

stress agrees fairly well with that in Case 01. This 

implies that depending on how the length scales are 

imposed in the zones, the wall shear stress would be 

adjusted in a target shape inside the domain.  

Figure 7(b) shows the wall shear stress distribution 

for the cases with a larger inlet length scale 

(approximately two and/or three times) than that of 

Case 01 (i.e., 
*
zL ). Interestingly, Cases 07 and 08 

(i.e.  
*2 zL  and 

*3 zL ) show a faster recovery of the 

wall shear stress compared with Case 01. As shown 

in the figure, Case 08 has a higher length scale than 

Case 07, but the distance required to recover in the 

shear stress would be almost the same, whereas the 

earlier drop in the shear stress close to the inlet in 

Case 08 was steeper than that in Case 07. 

In case of the shear stress distribution of Case 01, 

Case 04, and Case 06 (see Fig. 7), these three cases 

have the same span-wise length scale of 
*1 zL at y/d > 

0.2, but the conditions differ at y/d < 0.2. As shown 

in the figure, Cases 01 and 06 have very similar shear 

stress distributions, whereas Case 04 exhibits a 

markedly different tendency. The difference among 

these three cases is that the region with 
*0.3 zL exists 

at y/d < 0.2 for Case 04, and at y/d < 0.1 for Case 06. 

It can be observed that the change in the span-wise 

length scale in the range 0.1 < y/d < 0.2 plays a 

significant influence on the development of the 

turbulent boundary layer.  

Figure 8 shows the averaged turbulent boundary 

layer profile, and y/d = 0.1, 0.2 corresponds to 

15.2,30.3y  , respectively, i.e. y/d = 0.1 is placed 

in the buffer layer and y/d = 0.2 in the logarithmic 

layer. With respect to the turbulence characteristics 

near the wall, some studies (Hinze 1975; Kline et al. 

1967; Grass 1971) reported that the region close to 

the wall has a highly active turbulence movement, 

which is associated with the behaviour of low-speed 

streaks and horizontal shear stress in the span-wise 

direction. In addition, there is a breakup in the region

10 30y  , which is called ‘bursting’, 

contributing as much as 70 % of the turbulence. 

Kasagi et al. (1986) and Smith and Schwartz (1983) 

have identified counter-rotating stream-wise vortices 

in the region 14 25y  , which contains the most 

energetic vortices.  

According to existing research, the 10 30y 

region contributes greatly to the generation of 

turbulence. As shown in Fig. 7 , Cases 01 and 06 

have the span-wise length scale of 
*1 zL , which is a 

relatively large scale in 15 30y  , whereas Case 

04 has 
*0.3 zL , which means that it has a lower-length 

scale in this region, which is insufficient to generate 
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turbulence statistics. In addition, the lower-length 

scale reduces the energy production such that the 

minimum distance to recover the shear stress close to 

the wall is longer. It can be seen here that the change 

in the length scale in the region 15y    does not 

significantly impact the recovery of the shear stress. 

Therefore, the results of Case 01 and Case 06 are 

very similar. The change in the length scale in the 

approximate region of 15(0.1) ( / ) 30(0.2)y y d   

contributes significantly to the generation of 

turbulent energy near the wall surface.  

 

 

Fig. 9. Variation of dimensionless wall shear 

stress and deviation in the domain with changing 

length scales for (a) Case 05, (b) Case 06, (c) 

Case 01, (d) Case 08. 

 

Figure 9 shows the stream-wise development of the 

wall shear stress w
   in the domain with the 

deviation, which indicates the magnitude of data 

variability as error bars. As the length scale near the 

wall becomes smaller (Case 05), the deviation 

becomes larger. Interestingly, as shown in the figure, 

Cases 01 and 06 are very close to each other, whereas 

the shear stress deviation of Case 06 is relatively 

large. In this case, the only difference is that Case 06 

has a length scale of 
*0.3 zL  in the region y/d < 0.1 

(i.e., 15y   ). Therefore, if the span-wise length 

scale is small, the spatial correlation between two 

different points becomes lower such that this case 

requires a relatively long longitudinal length and 

time to fully develop in the domain. As the length 

scale increases, the wall shear stress tends to recover 

quickly. However, when the length scale is 
*2 zL  or 

more, the distance required for the full development 

of the boundary layer does not change significantly. 

Figure 10(a) shows the change in the wall shear 

stress in the channel domain. In particular, Fig.10 

(b), (c), (d), and (e) show the distribution of 

Reynolds stress profiles, , ,u u v v w w              at 

each longitudinal position of x/d. As depicted in the 

figure, Case 01 reveals that the downstream region 

has fully recovered the shear stress; however, Case 

03 has a poor distribution in the domain. This implies 

that the size of the inlet length scale close to the wall, 

greatly influences the development of the shear 

stress. In addition, if the wall shear stress is fully 

recovered, the axial stresses , ,u u v v w w              

remain constant in the whole domain. 

Figure 11 compares the turbulent statistics in the 

boundary layer flow obtained downstream, at x/d = 

50, from Case 01, Case 06, Case 07, and Case 08 

with the data from the synthetic inflow generator in 

the inlet. As shown in the figure, the turbulent 

statistics at the inlet and downstream at x/d=50 

clearly have a similar tendency. In Fig.11 (a), the 

axial longitudinal stress u u     at x/d=50 appears 

similar near the wall surface compared to the inlet. 

However, when y/d is between 0.1 and 0.4, it is 

relatively lower than that of the inlet, and in the range 

0.4 to 1.0, u u     is relatively high. For x/d=50, all 

cases have a similar u u     distribution. In Fig.11 

(b), (c), and (d), the vertical v v     and span-wise 

w w     components of the axial and shear stresses, 

u v     at x/d = 50 were all slightly over-estimated 

compared to that at the inlet. When x/d = 50, it can 

be seen that the case having a larger inlet length scale 

has slightly lower stresses, except for u u    . This 

appears to be caused by the fact that the LES 

resolution is lower than that of DNS. 

3.3 Effect of inlet length scale on the integral 

length scale in the domain 

Figure 12 shows the longitudinal integral length 

scale of the stream-wise and vertical velocity (i.e. 

( )xL u  and ( )xL w ) at the inlet section (Fig.12 (a) 

and (c)) and at x/d = 50 (Fig.12 (b) and (d)). As 

shown in Fig.12 (a) and (c), in the cases close to the 

inlet, the magnitude of the integral length scale 

( ) /xL u d  close to the wall surface presents a large 

discrepancy when compared with existing DNS data. 

On the contrary, the length scales away from the wall 

(i.e. y/d > 0.5) are more similar. In particular, Case 

09 (i.e. the case having the largest integral length 

scale at the inlet) has values very similar to the 

existing DNS data. The discrepancy between the 

length scales close to the wall may be due to the fact 

that the stream-wise length scale obtained from the 

actual DNS is for the fully developed profile; 

therefore, it is higher than that of the current study 

close to the wall and gradually decreases in the 

freestream. Interestingly, even though the length  
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Fig. 10. Development of dimensionless wall shear stress and axial stresses. In the figure, at the left: 

Case 01, at the right: Case 03, solid line: DNS data, ○: simulation results. 

 

 

Fig. 11. Mean and turbulent stress profiles at x/d = 50. In the figure, (a) u u
   , (b) v v

   , 

 (c) w w
   , (d) u v

   . 

 

scale is different at the inlet (see Case 02 having no 

integral length scale at the inlet), the boundary layer 

develops, and the integral length scale profiles are 

almost equivalent downstream. This region is fully 

developed, except for regions that are proximal to the 

wall. As shown in Fig.12 (a) and (c), the longitudinal 

integral length scale of the vertical velocity (i.e. 

( )xL w ) at the inlet section would have the same  
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Fig. 12. Longitudinal integral length scale profiles at inlet section (a, c) and at x/d = 50 (b, d), Lx(u)/d: 

(a, b), Lx(w)/d: (a, b). In the figure, (a) denotes longitudinal integral length scales of streamwise velocity 

component at inlet section, (b) longitudinal integral length scales of streamwise velocity component at 

x/d = 50, (c) longitudinal integral length scales at the inlet section of spanwise velocity component, 

 (d) longitudinal integral length scales of spanwise velocity component at x/d = 50, 

 (  : Case01,  : Case09, • : DNS database). 

 

 

Fig. 13. Lateral integral length scale distribution at inlet and downstream sections. In the figure, (a) 

denotes all the lateral integral length scales at the inlet section (  : Case01, □: Case03,  : Case06, 

 : Case07,  : Case08, • : DNS database), and (b) the lateral integral length scale of streamwise 

velocity components at x/d = 50 (•: DNS database, : Averaged Lz(u)), and (c) the lateral integral 

length scale of spanwise velocity components at x/d = 50 (•: DNS database, : averaged Lz(w)). 

 

tendency as the length scale of the stream-wise 

velocity (i.e. ( )xL u ). 

Figure 13 shows the lateral integral length scale of 

the stream-wise and vertical velocity (i.e. ( )zL u  and  
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Fig. 14. Iso-surface of the Q-criterion at y=d < 0.25 and the value of Q > 1. 

 

( )zL w ) at the inlet section (Fig.13 (a)) and at x/d = 

50 (Fig.13 (b) and (c)). As mentioned earlier, 

regardless of the integral length scale at the inlet, the 

profiles observed downstream were similar, that is, 

they were fully developed. 

3.4 Second invariant flow structure near the 

wall  

A second invariant of the velocity gradient tensor can 

be used to visualise the flow structure near the wall. 

The related Q-criterion is defined as follows: 

 
1

2
ij ij ij ijQ S S                                            (17) 

where 1
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j i

uu

x x
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x x

 
  

   

. 

ij  denotes the rotation rate, and ijS denotes the 

rate of the strain. From the equation, when Q  is 

positive, it means that the intensity of the rotation 

rate is higher than the deformation rate. 

Figure 14 shows the iso-surface of the Q-criterion in 

the range y/d<0.25 near the wall. The Q distribution 

shows a remarkably similar tendency to that of the 

wall shear stress w
  distribution in Fig.7. In fact, 

Case 03, as shown in Fig.7 tends to have a 

continuous reduction in the shear stress w
  from 

the inlet to x/d < 5, and this is also similar in the Q 

distribution. In Case 04, as shown in Fig.14(b), the Q 

structure was not observed in the region of 1 < x/d < 

35. This means that when the shear stress is lower 

than 0.8, the vorticity strength is weak and therefore 

not enough to form the vortex. Thus, the vortex does 

not form. In addition, as the shear stress recovers, the 

vortex reforms when the shear stress is higher than 

0.8. 

In Fig. 14 (d), that is, in Case 05 and the cases having 

a length scale higher than 0.5 near the wall, the shear 

stress is higher than 0.8 in the entire region, and the 

vortex appears in the whole area. The vortex 

structure shows a slight discrepancy depending on 

the shear stress and the size of the length scale. 

Interestingly, in the region where the boundary layer 

is fully developed, the Q structures in all cases (Case 

01, Case 07, Case 08) are similar. 

Figure 15 shows the energy spectrum distribution at 

the inlet and for y/d = 50 compared to the existing 

DNS data. Figures 15(a) and (b) include the results 

of Case 01 (c) and (d) Case 09. As mentioned earlier, 

Case 09 has length scales that are two times larger in 

the stream-wise and span-wise directions compared 

with those of Case 01. In the figure, the symbol k is 

the wave number, which is defined as 2 / mf U . 

Figure 1522(a) and (c) show that the energy 

spectrum at the inlet has an appropriate level at the 

low wave number region; however, in the higher 

wave number region, it does not agree with the DNS 

data. In the figure, a dashed line has a slope of -5/3 

in the spectrum. Regardless of the integral length 

scale at the inlet, the energy spectrum in the fully 

developed region agrees well with the DNS data. 

4. CONCLUSION 

To generate turbulent boundary layer flow in a 

numerical domain, a synthetic inflow generator 

having statistically well defined length scales was 

applied. It is based on spatial and temporal 

correlation functions, which have the form of an 

exponential function. To validate the turbulent 

boundary layer profiles that are obtained by using the 

synthetic inflow generator, the results obtained were 

precisely compared with existing data. From the 

results, it can be concluded that the turbulent 

boundary layer was successfully generated. In the 

mean velocity profileu 
, the boundary layer agrees 

well with the overall range of the domain, and the 

axial and shear stresses were in good agreement with 

the DNS data.  

To observe the effect of the inflow length scales 

imposed at the inlet section on the development of a 

turbulent boundary layer, the length scales were 

varied with a focus on studying their effect. The 

results show that a larger length scale in the inlet  
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Fig. 15. Energy spectrum distribution at the inlet (a, c) and for y/d = 50 (b, d). In addition, (a) and (b) 

are the results from Case01, and (c) and (d) from Case09. 

 

section had a faster rate of recovery in terms of the 

wall shear stress, which implies that larger length 

scales in the inlet section would be essential to the 

rapid development of the boundary layer, and 

thereby the realisation of a fully developed turbulent 

boundary layer. 

In addition to the variation of the inlet length scale, 

the inlet plane was separated into two different zones 

with the aim of imposing two or three different 

length scales on each zone. The proximity of the wall 

was chosen to be approximately y/h = 0.1 and 0.2 so 

that the two ranges are first 0 15y   (in the 

middle of the buffer layer zone) and 15 150y   , 

and secondly, 0 30y   (in the buffer layer zone) 

and 30 150y   . Based on the results obtained, it 

can be seen that the length scale variation in the 

region 15y    does not significantly impact the 

recovery of the wall shear stress. However, the size 

of the length scale in the region of approximately 

15 30y    contributes significantly to the 

generation of turbulent energy near the wall surface.  
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