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ABSTRACT 

A theoretical model to predict the dynamics of a shelled micro-bubble driven by acoustic field in a tubular 
geometric confinement is proposed in the present study. The model is derived from first principle and may not 
be considered as a variant of Rayleigh-Plesset solution. A semi-analytical model is derived in the form of an 
ordinary differential equation connecting all parameters involved. Results obtained are in agreement with the 
available experimental data. The model is further linearized to obtain expression for the forced resonant 
frequency, which is shown to depend on geometric parameter of confinement as D/ L  where D and L are the 
tube diameter and length, respectively. Further, linear viscous damping coefficient is also studied and is found 
that an overdamped or an underdamped state exist base on shelled micro-bubble size and parameters of 
geometric confinement (L and D). The state of damping clearly indicate when the shelled micro-bubble in 
confinement would respond linearly or non-linearly under the influence of acoustic field.  

Keywords: Shelled micro-bubbles; Acoustics; Geometric confinement; Bubble dynamics; Bubble resonant 
frequency; Ultrasound contrast agents. 

NOMENCLATURE 

R1  internal radius of the UCA Vr  radial fluid velocity 

R2   external radius of the UCA Vz   axial fluid velocity 
L  half length of the tube   VCL  tube center-line fluid velocity 

ρF, ρS  density of the fluid and shell, respectively   U   fluid average velocity 

µF,µS  viscosity of the fluid and shell, respectively    D   diameter of the tube 

PG   pressure atmospheric fr  resonant frequency 

Pa    pressure surface t    time 

σ1, σ2  internal and external interface Vr  radial fluid velocity 

 

 
1. INTRODUCTION 

Shelled micro-bubbles have been conventionally 
used as Ultrasound contrast agents (UCAs) to 
improve the quality of acquired medical images. 
Typically, these UCAs are gas micro-bubbles in the 
size range of 0:5 - 10μm, and are encapsulated by a 
thin shell of albumin, polymer, or lipid (Doinikov 
and Bouakaz 2011). This thin shell structure around 
the shelled micro-bubbles aids in stabilizing against 
fast dissolution and coalescence. The shelled 
microbubbles have a higher compressibility 

compared to the surrounding fluid/tissue. As such, 
they act as high ultrasound scattering particles. 

The dynamical response (linear or non-linear) and 
resonant properties of these shelled micro-bubbles or 
UCAs are utilized to enhance the contrast of the 
acquired medical images, thereby, leading to better 
diagnostics. Recent uses of shelled microbubbles 
include several areas of applied research such as 
targeted drug and genes delivery (Dayton and Ferrara 
2002; Klibanov 2006), thrombus dissolution (Unger 
et al. 2002), gas embolotherapy (Qamar et al. 2012; 
Wong et al. 2011), sonoporation (Cosgrove and 
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Harvey 2009) and micro-pumping (Ryu et al. 2010). 
These newly emerging application areas would 
benefit from a better understanding and modeling of 
the dynamics of these shelled microbubbles, 
especially in small confined spaces such as blood 
vessels and channels of various sizes.  

Over the last several decades, extensive studies and 
mathematical models have been proposed to predict 
and elucidate the dynamics of unconfined shell 
micro-bubbles (surrounded by an infinite pool of 
fluid). The basis of all existing mathematical models 
is the Rayleigh-Plesset solution for the free bubble 
(unconfined and no-shell assumed). There also 
exists, a vast amount of literature on unconfined 
shelled micro-bubbles. A comprehensive review of 
these models and studies is presented in Refs. 
(Leighton 1994; Doinikov and Bouakaz 2011). 
However, modeling of constrained shelled micro-
bubbles or UCAs is fairly limited and not much is 
known about the dynamics of these shelled micro-
bubbles under confined spaces while driven by 
acoustic field. Experimental studies (Caskey et al.  
2006; Sassaroli and Hynynen 2004; Sassaroli and 
Hynynen 2006; Zhong et al.  2001; Zheng et al.  
2007; Caskey et al. 2005; Garbin et al.  2007) have 
shown that there is a significant alteration in dynamic 
response, when shelled microbubbles are sonicated 
in confined spaces such as small phantom vessels or 
channels. Few semianalytical mathematical models 
(Atkisson 2008) have been proposed for bubble 
sonication inside a confined space under idealistic, 
limiting assumptions (Atkisson 2008). Owing to the 
challenges associated with these models and their 
limiting assumptions, direct numerical computations 
(Qamar et al.  2012; Ye and Bull 2004) have also 
been carried to investigate bubble (noshell) 
expansion in small tubes undergoing sonication. 
These full scale numerical computations have 
provided useful insights into the various phenomena 
(particularly on evolving flow field) associated with 
micro-bubble sonication in confined spaces. 

The proposed model is derived by assuming a rigid 
tube wall, which physiologically can represents any 
arterial or ventricle vessel which can be assumed as 
structurally rigid. For small blood vessels, like 
capillaries, the flexibility of the wall is essential to 
consider. Under such scenario, the bubble generally 
has an lateral elongated shape during expansion 
phase. The emerging flow field inside the compliant 
vessel (or tube) needs to be solved to determine the 
pressure distribution. The pressure distribution 
inside the flexible tube will be different in radial and 
streamwise directions and can only be determined by 
full numerical solution of the compressible Navier-
Stokes (Qamar et al.  2006). Besides, for bubble the 
radial momentum equation is not applicable, and 
therefore a generalized form of the compressible 
equation using the interface tracking method 
(Gueyffier et al. 1999)will be required. On the other 
side, the compliance of a blood vessel and its 
mechanical response to evolving stresses are 
complex to model as blood vessels behave in a non-
linear fashion themselves (Humphrey and Na 2002; 
Misra and Singh 1983). Given these challenges, the 

flexible wall model is challenging to implement in 
symmetric models of UCAs. 

In the present study, a theoretical semi-analytical 
model is derived for the shelled micro-bubble in 
geometric confinement while undergoing sonication. 
The model is not based on the Rayleigh-Plesset 
solution. In fact, it may be viewed as a first principle 
derivation from the reduced Navier-Stokes equation. 
The primary objective of this work is to propose a 
model of the dynamics of a shelled microbubble or 
UCA in a tubular geometry with circular cross-
section. Furthermore the guiding principle of the 
analysis is to provide practitioners in this field with 
applicable formula for quantities such as resonant 
frequency and its influence on geometric 
confinement parameters. The choice of a circular 
cross-section stems from our interest in modeling the 
UCA dynamics in an blood vessel and this model can 
be easily extended/modified for other cross-sections 
by straight-forward adjustments to the derivation. 

2. THEORETICAL FORMULATION 

A schematic diagram in Fig. 1 , depicts the physical 
setup for the model derivation, along with the 
respective physical properties of the three 
components, G (gas bubble), S (shell), and F 
(surrounding liquid). A single shelled micro-bubble 
or UCA with an initial internal radius of 1 0( )R and 

an outer radius of 2 0( )R  (with shell thickness of 

0 12 0( ) ( )R R    is located at the center of the 

circular cross-section tube of diameter (D) and length 
(L). The tube is open at both ends with a known 
pressure LP . It is assumed that the bubble remains 

spherical throughout the acoustic radiation. This 
assumption is consistent with the experimental 
observations for confined UCAs (Zheng et al.  2007). 
Further, the shell material is assumed to behave like 
Newtonian viscous fluid as utilized in some previous 
studies for unconfined micro-bubbles (Doinikov and 
Bouakaz 2011). 

Apply Mass conservation around the bubble surface 
yields, 

2 22
24 4s r s

dR
R r V

dt
                                         (1) 

where, rV  is the fluid velocity in radial direction  

and s  is the density of the shell material.  

Therefore, the fluid radial velocity is given by,  

2
2 2
2r

R dR
V

dtr
                                                          (2) 

The radial momentum equation is given by: 

2

2

1 (  )

( )r r
s r

s s
rr rr

V V
V

t r

p r T T

r r rr

  
 

 

 
  
 

                                      (3) 
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Fig. 1. Schematic of the shelled micro-bubble in geometric confinement with typical acoustic pulse used 
in UCA sonication. 

 

 

where, s
rrT  represent the normal stress in radial 

direction of shell material. Integrating above 
momentum equation from 1R  to 2R  yields, 
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where, 1 and 2 represents the surface tension at 

1R  and 2R   interfaces, while ,G sP P and LP

represents gas, shell and liquid pressure, 
respectively. The normal jump conditions at both 
interfaces 1R  and 2R  are utilized for pressure 

gradient term, given by: 
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                        (6) 

In Eq.(5), as discussed above the shell material is 
assumed to behaves as  Newtonian fluid, thus the 
integral term can be represented as, 

2   s r
rr s

V
T

r
 




                                                     (7) 

2
1 1
3

4  s
rr s

R dR
T

dtr
                                                 (8) 

2

1

2 1
1 3 3

2 1

3 1 1
4 [ ]sR

rr
s

R

T dR
dr R

r dt R R
                       (9) 

It is to be noted here that the any shell material (such 
as, pseudoplastic, dilatant, plastic or viscoelastic 
fluids) with known constitutive relationship can be 
utilized (Doinikov and Bouakaz 2011). Here, for 
simplicity, the shell is assumed to behave like 
viscous Newtonian fluid. Therefore, under 
Newtonian fluid assumption the final form of 
momentum equation governing the shell is given by: 

2
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         (10) 

The bubble pressure ( )GP t  is assumed to follow 

Polytropic Ideal gas law given by, 

3

1
( ) ( )o

G o a
R

P t P P
R

                                        (11) 

where oP  is the initial bubble pressure, aP  is the 

externally applied acoustic pressure,   is the 

Polytropic Coefficient (Qamar et al. 2010) ( 1   

for isothermal process and 1.4   for adiabatic 
process). For UCAs, nitrogen or perfluorocarbon gas 
cores are used in most medical applications (Lindner 
2004) with   values in range of 1-1.6.  
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The only unknown in Eq. (11) is 2( , )LP R t  which can 

be determined from the evolving fluid flow inside the 
circular tube. This can be achieved by integrating 
momentum equation along the center-line of the 
circular tube from 2R  to L. 

If the tube diameter is small, the symmetric bubble 
motion is greatly influenced during sonication, and it 
has a tendency to deviate from the spherical shape. 
From a mathematical perspective, no relationship 
exists to quantify D and Ro, when the symmetric 
bubble nature is compromised. However, for a 
simple gas bubble in a tube, Oguz and Prosperetti 
(Oguz and Prosperetti 1998) demonstrated that a 
bubble of approximately 2-3 times smaller than the 
tube could maintain a spherical symmetry. This was 
demonstrated by comparing the symmetric model 
with respect to the boundary integral method. Similar 
findings are observed in Caskey et al. (2006) 
experimental work. Narrow tubes in the range of 12-
195 μm were used to insonicate micro-bubble 
between 1-5 μm size, and mostly symmetric nature 
was observed during the high-speed imaging. The 
proposed simplified model relies on this symmetric 
assumption framework and is only useful for 
scenarios where it is evident that the bubble remains 
spherical during acoustic perturbation.  

During sonication, if the bubble remain spherical 
during the growth and collapse, then the flow induce 
by bubble motion is symmetric (Qamar et al.  2013; 
Doinikov and Bouakaz 2011). Therefore, following 
assumptions are reasonable valid: 

(a) Away from bubble, radial and swirl components 
of velocities are zero (i.e,  0rV V  ) 

(b) The flow is axisymmetric (i.e,  / 0   ) 

(c) Radial momentum diffusion is much greater than 
the axial momentum diffusion, therefore, axial 
momentum diffusion can be neglected (i.e,   

2 2/ 0zV z   ) 

Under the light of these valid assumptions, the axial 
momentum equation can be simplified as : 

1[ ( )]z z
F F

V p V
r

t z r r r
    

  
   

                 (12) 

It is to be noted that above equation is similar to 
Poiseuille flow axial momentum equation (Pritchard 
2011). Therefore, a general solution for axial 
velocity component can be given by, 

22
1 ( 1)[ ( ) ]z CL

r
V V

D
                                  (13) 

where, CLV  represent the tube centerline velocity 

and r is the radial coordinate. The constant   decide 
the shape of the boundary layer profile evolving 
within the tube by bubble oscillation due to 
sonication. If  2   is used, it will results in a 

parabolic profile, whereas 1   will result in a plug 

flow profile (2 1).   

Using above generalized velocity profile the flow 
rate through the tube is  given by: 
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Now the average velocity can be computed using: 

(3 )

2 CL
Q

U V
A


                                             (15) 

The tube centerline velocity in terms of average tube 
velocity is then given by, 

(3 )
,

2CLV U where
  

                       (16) 

The average velocity and in turn the centerline 
velocity is primarily dependent on shelled micro-
bubble response under acoustic field. To obtain 
induced average velocity in the tube, mass 
conservation is applied to the entire tube length 
which yields: 

2 3 2
24

4 3 4
[ ]d L D R D

U
dt

                           (17) 

where,   represents the number of outlets in tube 

( 1or2).  Solving for U yields 

2 2
2 2 1 1
2 2

16 16R dR R dR
U

dt dtD D 
                                  (18) 

Therefore, centerline and tube axial velocity is given 
by (using Eq.(17) and Eq.(14)), 

2
2 2
2

16
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R dR
V

dtD



                                               (19) 

Thus, final expression for zV  is given by: 
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                     (20) 

In the above equations, the derivatives of 2R  and 

1R  derivatives are interchangeable, by using mass 

conservation of shell as,  

3 3 3 3
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Differentiating yields: 
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Equations (22) and (23) are frequently used in the 
subsequent derivation to convert first and second 
derivatives of 2R  to 1R  . 

Now the liquid pressure 2( , )LP R t  can be obtained 

to get close for solution for Eq.(10),  integrating Eq. 
(12) from shell interface to exit of the tube gives 
(along the centerline of tube): 
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and EP is the liquid pressure at the exit of the tube. 

Therefore, final equation governing the liquid flow 
along the centerline of the tube (r=0) is given by : 
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The final model equation governing the dynamics of 
shelled micro-bubble or UCA in a tubular 
confinement can now be obtained by combining 
Eq.(10) and Eq.(24-29) which yields : 
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3. RESULTS AND DISCUSSIONS 

The proposed model, Eq. (30), is a second a order 
ordinary differential equation that fully describes the 
dynamics of shell micro-bubble or UCAs in a 
confined tube under acoustic field. In order to derive 
the dynamics of shelled micro-bubbles in other 
geometry confinement only appropriate mass 
conservation, like Eq. (17) needs to be written and 
rest of the derivation is trivial. The above model can 
be rigorously solved using fourth order Runge Kutta 
(Butcher 2008) method by utilization material 
properties and parameters involved in the 
experiments. 

The proposed model was validated by numerically 
solving Eq. (30) against the experiment results of 
Zheng et al. (2007). Figure 2 shows the comparison 
of current model with the experiments. The 
parameters chosen to solve the model are the same 
acoustic and geometric parameters (acoustic 
frequency f=2.25 MHz, number of acoustic cycles 
N=20, at two peak negative pressures (PNP) of (a) 
PNP=175KPa and (b) PNP=325 KPa, with initial 
bubble radius R1o = 2μm, D = 200μm, L = 5cm as 
utilized in the experiments of Zheng et al. (2007). 

The values of fluid properties used in all calulation 

are 31000 / ,F Kg m  31200 / ,s Kg m 
20.001 /F Ns m  , 20.05 /s Ns m  ,

1 0.072 /N m  , 2 0.052 /N m  , 

 and 2101325 /oP N m  

respectively. The temporal variation of the shelled 
microbubbles radius is also compared with the 
Church model (Church 1995) (with shell, using 
constitutive model of Newtonian fluid) and the 
Rayleigh Plesset (Brennen 1995) model (free 
bubble without shell) derived for the unconfined 
gas-bubble in the same figure. It can be clearly 
seen that for same acoustic and geometric 
conditions, Rayleigh Plesset model for free 
unconfined bubble oscillates highest, followed by 
Church model and the proposed model 
respectively. Results of the present model, when 
compared to the results of the Church and 
Rayleigh-Plesset models, show good agreement 
with the maximum experimental R=R1o values. 
The effects of geometric confinement are visible in 
Fig. 2. Apart from the amplitude of oscillation, the 
temporal dynamics response in terms of the 
oscillation frequency is also quite dissimilar for 
each  
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Fig. 2. Temporal Evolution of bubble radius as a function of time for R1o = 2 micron at (a) PNP = 175 
KPa (Left) and (b) PNP = 325 KPa (Right) for f=2.25 MHz and N=20. 

 

investigated model. At lower PNP = 175KPa (Fig. 
2(a)), the bubble compression frequency is primarily 
dominated by a single frequency for the Rayleigh 
Plesset model, a subharmonic for the Church model, 
and several subharmonics are observed (small 
perturbations on primary curve) for the proposed 
model. For higher acoustic pressure, PNP = 325 KPa 
(Fig. 2(b)), Rayleigh Plesset and proposed model 
solution indicate a rise in per cycle amplitude after 
3.8 μs and 2.2 μs, respectively. However, for the 
Church model, per cycle response in amplitude is 
fairly constant. In addition, for the proposed model 
case, the subharmonic frequency is significantly 
reduced compared to the low PNP case. It is 
potentially attributed to the diffusion of surface and 
parametric instabilities. The Rayleigh Plesset model 
has no shell encapsulation, and bubble response is in 
an infinite liquid pool. Thus, for this case, the fluid 
inertial forces dominate, and higher chances of 
inducing interfacial instabilities are possible. The 

Church model provides diffusive dampening due to 
the shell support at the interface. For the proposed 
model, apart from the shell diffusion, evolving fluid 
flow is restricted by the resistance created by the tube 
walls. It results in a more dampening and low 
dynamic response of the bubble during insonication. 
Thus, as anticipated, the geometric confinement not 
only dampens shelled micro-bubble oscillation but 
also affects the driving frequency. 

From an applied perspective, an estimation of the 
resonant frequency of UCA in geometric 
confinement is important. For the case of free 
bubble, Oguz and Prosperetti (1998) have 
theoretically computed the resonant frequency under 
varying configuration of geometric confinement in a 
rigid tube. However, for shelled microbubbles , there 
are no theoretical studies that can be used to estimate 
the resonant frequency in geometric confinement. 
The present model for the  
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Fig. 3. Variation of linear resonant frequency with initial UCA radius (a) Comparisons with resonant 
frequency of free bubble (without shell) in a tube of L/D=5 with Oguz and Prosperetti theory and 

boundary element calculations. (b) Resonant frequency for various confinement diameter. (c) Resonant 
frequency for various confinement length. (d) Scaled resonant frequency for various L/D ratios. 

 

shelled micro-bubbled in geometric confinement, 
Eq. (30), is linearised in a manner similar to that in 
(Church 1995). This is done in order to obtained the 
linear harmonic equation which yield the expression 
for the resonant frequency of the shelled micro-
bubble or UCA in circular cross-section 
confinement. The resonant frequency is quite useful 
from applied perspective especially in medical 
imaging and drug delivery, where bubble response to 
acoustic field is critical to avoid unreasonable 
outcomes. The proposed model is linearized and 
arranged in the form of a linear harmonic oscillator 
equation given by: 

22 0tot rX X X                                             (35) 

with linearization achieved using 1 1 (1 )
o

R R X   

and 2 2 (1 )
o rR R R X  , where, 3 3

1 2/
o orR R R  and 

X is the perturbation amplitude  as implemented by 
(Church 1995). After linearization, the resonant 
frequency for shell-micro-bubble is explicitly given 
as: 
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         (36) 

It is noteworthy, that resonant frequency for shelled 
micro-bubble with geometric confinement depends 
on geometric parameters of the confinement (L, D,
 ) and surrounding fluid properties ( , )F F  . 

However, for the case of free bubble (Church 1995) 
in unconfined space it is quite different which is 
given by : 

1 1

31 2(3 1)

2
o

free
o F F o

P
f

R R

 
  


              (37) 

Figure 3(a) shows a comparison between the shelled 
micro-bubble resonant frequencies of the proposed 
model, with the free bubble case of Oguz and 
Prosperetti (1998) and that obtained by the use of the 
Boundary Element method (Oguz and Zeng 1995), 
in a tube of the same geometric dimensions. The 
resonant frequency is expected to be lower than free 
bubble case of (Oguz and Prosperetti 1998) and 
(Oguz and Zeng 1995), attributed to additional 
dampening created by shell material. The proposed 
model resonant frequency trend is similar to that of 
the free bubble in confinement with reduced resonant 
frequency as the initial micro-bubble size is 
increased. Furthermore, Fig. 3(b)-(c) shows the 
effect of variations in the geometric parameters (L, 
D) on the resonant frequency. The trends are similar 
to those unconfined free bubble case (Eq. (38)), i.e., 
the resonant frequency is inversely related to the 
initial 
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Fig. 4. Variation of linear viscous dampening coefficients with the initial shelled micro-bubble radius 
for various length (a) and diameter (b). 

 

bubble radius. For a small shelled micro-bubble, the 
resonant frequency is higher when compared to that 
for a large shelled micro-bubble as in the case of free 
bubble. For a shelled micro-bubble of fixed size, the 
resonant frequency is observed to vary 
proportionately to the diameter and inversely to 
square root of the tube length. Based on the 
selfsimilar nature of the behavior of the resonant 
frequency with geometric parameters, we utilize 
scaling arguments to collapse the resonant frequency 
data into a single curve. Figure 3(d) shows 
the variation of the scaled frequency (scaled by 

L D ) for various L=D ratios. For practitioners 
in this field, a curve fit in the form of a power law, is 
presented in Fig. 3(d) to estimate the resonant 
frequency of the shelled micro-bubbles or UCA in 
circular crosssection confinement. 

Further, the linear dampening mechanism for the 
confined shell micro-bubble is also investigated. The 
viscous dampening coefficients are obtained, by 
linearising the proposed model according to Eq.(36), 
which yields : 

 m
tot
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                                                             (38) 

Where, 
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It can be observed from above expression that for the 
constrained shell micro-bubble, viscous dampening 

is contributed by shell, liquid and geometric 
properties. Figure 4 shows the variation of viscous 
dampening coefficient as a function of initial 
microbubble size by varying the length, Fig. 4 (a), 
and diameter, Fig. 4 (b), of the tube, respectively. It 
can be seen that for a small R1o, the total dissipation 
is higher for all D and L values. Further, an 
overdamped solution ( 1)tot   exists in case of 

small shelled micro-bubble, suggesting no micro 
bubble oscillation, until triggered by oscillatory 
acoustic waves. In this phase the micro-bubble is 
expected to linearly follow the acoustic pressure 
pulse signature. In addition, as the diameter of the 
tube is increased the size of micro-bubble achieving 
overdamping state increases, Fig. 4(b). However, 
opposite trend is observed as the length of increased, 
Fig. 4(a). This may be attribute to the lower average 
fluid velocities in the tube when compared to the 
larger size shelled micro-bubbles. For the case when 
the bubble size shows underdamp solution by 
variation of L and D, it will be interesting to note that 
bubble response under acoustic field will be highly 
non-linear and proposed model such as described by 
Eq.(30) should be solved to clearly elucidate the 
dynamics of the shelled micro-bubble or UCA under 
geometric confinement. 

4. CONCLUSIONS 

A semi-analytical model for shelled micro-bubble in 
a geometric confinement, mimicking a rigid phantom 
vessel or tube is proposed. The model explicitly 
correlates all geometric, acoustic and fluid 
parameters to the dynamics of the shelled micro-
bubble in confinement. Results of the model are 
compared with experimental data and reasonable 
comparison is observed. The natural linear resonant 
frequency and viscous damping coefficient are also 
derived.  Resonant frequency is found to follow 
similar trend as in case of free bubble cases under 
confinement, but with more damping effects.  A 
universal power fit law is also provided to predict the 
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resonant frequency based on the dimensions of 
geometric confinement. Future studies will focus on 
extending the model to flexible confinement and 
incorporation of the base flow (pulsatile and uniform 
flow that exist in physiological conditions or 
applications where uniform flow prevails)  to mimic 
real systems. 
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