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ABSTRACT  

Aim of the paper is to investigate the effects of linearly varying viscosity and thermal conductivity on steady 
free convective flow of a viscous incompressible fluid along an isothermal vertical plate in the presence of heat 
sink. The governing equations of continuity, momentum and energy are transformed into coupled and non-
linear ordinary differential equations using similarity transformation and then solved using Runge-Kutta fourth 
order method with shooting technique. The velocity and temperature distributions are discussed numerically and 
presented through graphs. Skin-friction coefficient and Nusselt number at the plate are derived, discussed 
numerically and their numerical values for various values of physical parameters are presented through Tables. 
 
Keywords: Steady, free convection, variable viscosity, variable thermal conductivity, heat sink, skin-friction 
coefficient, Nusselt number.  
 

NOMENCLATURE  
g Acceleration due to gravity of the Earth 
x, y cartesian coordinates 
f  dimensionless velocity function 
Gr  Grashof number { = gβ ( T w – T∞  )x3/ν 2 } 
Nu Nusselt number  
Pr Prandtl number ( = μ Cp /κ ) 
Cf skin-friction coefficient 
Cp specific heat at constant pressure 
T temperature of the fluid 
Tw temperature of the plate 
T∞ temperature of fluid far from plate 
u, v velocity components along x- and y-     
               directions 
β coefficient of thermal expansion 

η similarity variable 
ε thermal conductivity parameter 
γ viscosity parameter 
θ dimensionless temperature  
               { = ( T – T∞ )/ ( Tw – T∞ )} 
μ∗ variable viscosity 
μ coefficient of viscosity  
κ∗ variable thermal conductivity 
κ thermal conductivity 
ν kinematic viscosity ( = μ /ρ ) 
ρ fluid density 
′ differentiation with respect to η 

 
1.  INTRODUCTION 

The natural convection process in the presence of 
heat source/sink is present in various physical 
phenomena such as fire engineering, combustion 
modelling, nuclear energy, heat exchangers, 
petroleum reservoir etc. Liquid metals having low 
Prandtl number (because of very large thermal 
conductivity) are generally used as coolants and have 

applications in manufacturing processes such as the 
cooling of the metallic plate, nuclear reactor etc. 
Liquid metal has ability to transport heat even if 
small temperature difference exists between the 
surface and fluid. For this reason liquid metal is used 
as coolant in nuclear reactor to transfer waste heat 
from the core region. Ideally, it is expected that 
coolant should never boil, hence the pressure is 
maintained at normal level to prevent leak out and 
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accidents. Further, temperature stability is desired for 
coolant. In this context, different parameter affecting 
the heat transfer must be studied carefully for proper 
and optimal performance of engineering system.  
Ostrach (1952) presented the similarity solution of 
natural convection along vertical isothermal plate. 
Kay (1966) reported that thermal conductivity of 
liquids with low Prandtl number varies linearly with 
temperature in range of 0°F to 400°F. Arunachalam 
and Rajappa (1978) considered forced convection 
flow of liquid metals (having low Prandtl number) 
with variable thermal conductivity and derived 
explicit closed form of analytical solution. Carey and 
Mollendorf (1978) studied the effect of temperature 
dependent viscosity on free convective fluid flow. 
Crepeau and Clarksean (1997) discussed similarity 
solution of natural convection with internal heat 
generation which decays exponentially. Chaim 
(1998) studied heat transfer in fluid flow of low 
Prandtl number with variable thermal conductivity. 
Chamkha and Khaled (2001) obtained similarity 
solution of natural convection on an inclined plate 
with internal heat generation / absorption in presence 
of transverse magnetic field. Seddeek and Salem 
(2005) discussed the effect of variable viscosity and 
thermal diffusivity on mixed convection flow along 
vertical stretching sheet. 
 
It is known that physical properties e.g. viscosity, 
thermal conductivity of fluids change with 
temperature. In most of the studies concerned with 
natural convection, generally, the simultaneous effect 
of temperature dependent viscosity and thermal 
conductivity occur. When these effects are included, 
the flow and heat transfer characteristic may change 
considerably. Hence, aim of the paper is to 
investigate the effects of varying viscosity and 
thermal conductivity on free convection flow of a 
viscous incompressible fluid and heat transfer along 
an isothermal vertical plate in the presence of heat 
sink. 

2.  FORMULATION OF THE PROBLEM 

Consider steady laminar two-dimensional free 
convection flow of a viscous incompressible fluid 
along a vertical plate kept at constant temperature Tw, 
in the presence of heat sink Q. The x-axis is taken 
along the plate and y-axis is normal to the plate. 
Incorporating the Buossinesq approximation within 
the boundary layer, the governing equations of 
continuity, momentum and energy [Schlichting 
(1968), Bansal (1977)], respectively are given by 
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The boundary conditions are 
  wTTvuy ==== ,0,0:0  

∞==∞→ TTuy ,0: .        (4) 
The variable viscosity [Carey and Mollendorf (1978)] 
and thermal conductivity [Kay (1966), Seddeek and 
Salem (2005)] are considered to vary linearly with 
temperature as given below, respectively 

( )[ ]2
11 −+=∗ θγμμ ,            (5) 

[ ]θεκκ +=∗ 1 .             (6) 
γ and ε  are fluid characteristic and measure of the 
steepness of relation between the viscosity and 
thermal conductivity with temperature. 

 
3.  METHOD OF SOLUTION 

Introducing the stream function ψ (x,y) such that 
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Following Crepeau and Clarksean (1997), the heat 
sink is taken as given below 
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where Gr is the Grashof number and S(< 0) is heat 
sink parameter. 
 
Substituting equations (8) and (9) into the equations 
(2) and (3), along with the equations (5) and (6), the 
resulting non-linear ordinary differential equations 
are 

( ){ } 0322
11 2 =+′′+′−′′′+′′′−+ θθγθγ fffff ,   (10) 

and
( ) 0Pr31 2 =+′+′+′′+ θθθεθεθ Sf .        (11) 

It is observed that the equation (1) is identically 
satisfied by ψ (x,y). The boundary conditions are 
reduced to 

.0)(1)0(,0)(,0)0(,0)0( =∞==∞′=′= θθ andfff
            (12) 
The governing boundary layer equations (10) and 
(11) are coupled non-linear differential equations and 
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solved using Runge-Kutta fourth order technique 
alongwith double shooting technique [Conte and 
Boor(1981)]. First of all, the higher order non-linear 
coupled differential equations (10) and (11) are 
decomposed into system of first order differential 
equations as given below 
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Now with the help of shooting technique V(0) and 
W(0) are approximated, as explained by Conte and 
Boor (1981). Hence the system of equations (13) to 
(17) is reduced to a system of initial value problem 
which is solved using Runge-Kutta technique. While 
shooting, to get the value of V(0) and W(0), care has 
been taken to shoot in steps and the shoots are 
improved in stages. While solving the system of 
equations, the step size is kept 0.005.  
 

4.  SKIN-FRICTION COEFFICIENT 

Skin-friction coefficient at the plate is given by 

( ) ( )0212 4
1

fGrC f ′′⎟
⎠
⎞⎜

⎝
⎛ += −γ .                      (18) 

 
5.  NUSSELT NUMBER 

 The rate of heat transfer in terms of the Nusselt 
number at the plate is given by  

( )( ) ( )01 4
1
θε ′+−= −GrNu .         (19) 

 
6.  PARTICULAR CASES 

1. In the absence of heat sink and for constant 
thermal conductivity i.e. S = 0, ε = 0; the results 
of present paper are reduced to those obtained by 
Carey and Mollendorf (1978) and Hossain et.al. 
(2001). 

2. In the absence of heat sink and constant viscosity 
and thermal conductivity i.e S = 0,  γ = 0 and ε = 
0; the results of present paper are reduced to 

those obtained by Crepeau and Clarksean (1997) 
and Chamkha and Khaled (2001). 

 
7.  RESULTS AND DISCUSSION 

It is observed from Table 1 that the numerical values 
of f ′′(0) and θ ′(0) for  ε = 0.0 and S = 0 obtained in 
the present paper are in good agreement with those 
obtained by Hossain et.al (2001) and Cary & 
Mollendorf (1978). 
 
It is seen from Table 2 that the numerical results of   
θ ′(0) of present paper are in good agreement with 
those obtained by Chamkha et.al (2001) and Crepeau 
& Claksean (1997) when γ = 0.0, ε = 0.0 and S = 0.0. 
 
Table 3 represents the values of f ′′(0) and -θ ′ (0) for 
different values of Pr and S as these are required for 
the evaluation of skin-friction and Nusselt number. It 
is seen that with the increase in the Prandtl number 
the skin-friction decreases, while the rate of heat 
transfer increases. The decrease in heat sink 
parameter S causes decrease in the skin-friction and 
increase in the rate of heat transfer. With the increase 
in the value of ε, skin-friction increases, while rate of 
heat transfer decreases. On the contrary, as the value 
γ increases skin-friction and rate of heat transfer 
decreases irrespective of the value of S. 
 
Figure 1 represents that with the increase in the value 
Pr the velocity profiles decrease considerably when 
0.1 ≤ Pr ≤ 1.0. Also it can be observed that boundary 
layer thickness also decreases considerably with 
increase in Prandtl number. It is interesting to note 
that the maximum of velocity profiles is achieved at 
almost same value of η. The temperature profiles and 
thermal boundary layer thickness decrease with the 
increase in Prandtl number which is seen from Fig. 2. 
It is observed from Figs. 3 and 4 that both velocity 
and temperature profiles decrease with the decrease 
in heat sink parameter S. Both the boundary layer and 
thermal boundary thicknesses decrease with decrease 
in heat sink parameter S.  
 
Figures 5 and 6 show that variation of thermal 
conductivity affects velocity and temperature 
profiles. With the increase in the value of ε, the 
velocity and temperature of fluid increase, hence the 
variation of thermal conductivity cannot be neglected 
in case of low Prandtl number. From Figs. 7 and 8, 
effects of variation in viscosity on the velocity of 
fluid is seen near the plate, while negligible effect is 
noted on the temperature of fluid. In the case of lower 
values of γ, the velocity profiles are steeper and on 
temperature profiles the effects are negligible. 
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8.  CONCLUSIONS 

1. The velocity and the temperature of the fluid 
decrease with the increase in Prandtl number. 

2. The velocity and thermal boundary layers 
thickness decrease with increase in Prandtl 
number. 

3. The velocity and the temperature of the fluid 
decrease with the decrease in heat sink parameter 
S. 

4. The velocity and thermal boundary layers 
thickness decrease with decrease in heat sink 
parameter S. 

5. The increase in thermal conductivity parameter ε 
increases the velocity and temperature of fluid 
irrespective of value of heat sink parameter S. 

6. The increase in viscosity parameter γ decreases 
the velocity of fluid near the plate however the 
effect of viscosity parameter γ  is negligible on 
the temperature of the fluid. 

7. Skin-friction coefficient increases, while rate of 
heat transfer decreases with the increase in 
Prandtl number. 

8.  Skin-friction coefficient decreases, while rate of 
heat transfer increases with the decrease in the 
heat sink parameter S. 

9. Skin-friction coefficient increases, while rate of 
heat transfer decreases with the increase in 
thermal conductivity parameterε. 

10. Skin-friction increases with the increase in 
viscosity parameter γ and the effects are 
negligible in the case of rate of heat transfer. 

 
REFERENCES 

Arunachalam, M. and N.R. Rajappa (1978). Forced 
convection in liquid metals with  variable thermal 
conductivity and capacity. Acta Mechanica 31, 25-31. 

 
Bansal, J.L. (1977). Viscous Fluid Dynamics, Oxford & 

IBH Pub. Co., New Delhi, India. 

Carey, V.P. and J.C. Mollendorf (1978). Natural 
convection in liquid with temperature dependent 
viscosity. Proc. 6th International Heat Transfer 
Conference, Toronto, 2, 211-217. 

 
Chaim, T.C. (1998). Heat transfer in a fluid with variable 

thermal conductivity over stretching sheet. Acta 
Mechanica 129, 63-72. 

 
Chamkha, A.J. and A.R.A. Khaled (2001). Similarity 

solutions for hydromagnetic simultaneous heat and 
mass transfer by natural convection from an inclined 
plate with internal heat generation or absorption. Heat 
and Mass Transfer 37, 117-123. 

 
Conte, S.D. and C. Boor (1981). Elementary Numerical 

Analysis, McGraw-Hill Book Co., New York. 
 
Crepeau, J.C. and R. Clarksean (1997). Similarity solution 

of natural convection with internal heat generation. 
ASME J. of Heat Transfer 119, 183-185. 

 
Ostrach, S. (1952). An analysis of laminar free convective 

flow and heat transfer about a flat plate parallel to 
direction of the generating body force. NACA Technical 
Report 1111. 

 
Kay, W.M. (1966). Convective Heat and Mass Transfer. 

McGraw-Hill Book Co., New York. 
 
Seddeek, M.A. and A.M. Salem (2005). Laminar mixed 

convection adjacent to vertical continuously stretching 
sheet with variable viscosity and variable thermal 
diffusivity. Heat and Mass Transfer 41, 1048-1055. 

 
Schlichting, H. (1968). Boundary Layer Theory, McGraw-

Hill Book Co., New York. 
 

 
 
 
 

Table 1 Values of f ′′(0) and θ ′(0) for different values of γ when Pr = 1.0 and S = 0 are compared with the 
results obtained by Hossain et.al (2001) and Carey & Mollendorf (1978). 

γ 
Hossain et.al (2001) Carey & Mollendorf (1978) Present paper 
f ′′(0) θ ′(0) f ′′(0) θ ′(0) f ′′(0) θ ′(0) 

0.0 0.6421 -0.5671 0.6422 -0.5671 0.642187 -0.567145 
0.8 0.5050 -0.5469 0.5050 -0.5469 0.505014 -0.546940 
1.6 0.4222 -0.5281 0.4233 -0.5315 0.422341 -0.531531 
-1.6 2.0411 -0.6514 2.0416 -0.6514 2.041617 -0.651368 
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Table 2 Values of θ ′(0) for different values of Pr are compared with the results obtained by Chamkha et.al 
(2001) and Crepeau & Clarksean (1997) when S = 0.0. 

Pr Chamkha et.al (2001) Crepeau & Clarksean (1997) Present paper 
θ ′(0) θ ′(0) θ ′(0) 

0.1 -0.2119 -02302 -0.230136 
1.0 -0.5646 -0.5671 -0.567145 
10 -1.1720 -1.169 -1.166270 

 
Table 3 Values of f ′′(0) and -θ ′(0) for different values of Pr and S. 

 γ  = -0.4 γ  = 0.0 γ  = 0.4 
S = 0.0 
Pr = 0.01 

f ′′(0)  -θ ′ (0) f ′′(0)  -θ ′ (0) f ′′(0) -θ ′ (0) 

ε = 0.0 1.118735 0.081007 0.987754 0.080592 0.8918468 0.080222 
ε = 0.1 1.221255 0.076171 0.9913039 0.075793 0.895466 0.075456 
ε = 0.3 1.127786 0.068516 0.997233 0.068196 0.901519 0.07910 
S = 0.0 
Pr = 0.023 

 

ε = 0.0 1.083838 0.120014 0.952202 0.119131 0.856223 0.118351 
ε = 0.1 1.088379 0.112941 0.956866 0.112134 0.860912 0.111420 
ε = 0.3 1.096049 0.101735 0.964749 0.101046 0.868843 0.100435 
S = -0.1  
Pr = 0.023 

 

ε = 0.0 0.960866 0.332112 0.828767 0.331572 0.733861 0.331110 
ε = 0.1 0.969182 0.311975 0.836995 0.311474 0.741909 0.311044 
ε = 0.3 0.983516 0.280223 0.851179 0.279784 0.755798 0.279407 
S = -0.2  
Pr = 0.023 

 

ε = 0.0 0.898653 0.457014 0.768852 0.456592 0.676233 0.456237 
ε = 0.1 0.908308 0.429227 0.778209 0.428831 0.676824 0.427979 
ε = 0.3 0.925107 0.385430 0.794511 385078 0.700987 0.384781 

 

Fig. 1. Velocity distribution versus η when ε = 0.0, 

 γ  = 0.0 and S = 0.0. 

Fig. 2. Temperature distribution versus η when ε = 0.0, 
 γ  = 0.0 and S = 0.0. 

  



N.C. Mahanti and P. Gaur / JAFM, Vol. 2, No. 1, pp. 23-28, 2009. 

28 
 

Fig. 3. Velocity distribution versus η when ε = 0.0, 
γ  = 0.0 and Pr = 0.023. 

Fig. 4. Temperature distribution versus η when ε = 0.0,  
γ  = 0.0 and Pr = 0.023. 

Fig. 5. Velocity distribution versus η when γ  = 0.0 
and   Pr = 0.023. 
 

 
Fig. 6. Temperature distribution versus η when γ  = 0.0 and    
Pr = 0.023. 

Fig. 7. Velocity distribution versus η when ε = 0.0 

and Pr = 0.023. 

 

Fig. 8. Temperature distribution versus η when ε = 0.0 and  

Pr = 0.023. 

 


