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ABSTRACT 

Viscous and Joule dissipation effects are considered on MHD nonlinear flow and heat transfer past a stretching 

porous surface embedded in a porous medium under a transverse magnetic field.  Analytical solutions of highly 

nonlinear momentum equation and confluent hypergeometric similarity solution of heat transfer equations in the case 

when the plate stretches with velocity varying linearly with distance are obtained.  The effect of various parameters 

like suction parameter, Prandtl number, Magnetic parameter, and Eckert number entering into the velocity field, 

temperature distribution and skin friction co-efficient at the wall are discussed with the aid of graphs. 
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NOMENCLATURE 

Cp specific heat at constant pressure 

Ec Eckert number 

j electric current density 

K thermal conductivity 

M2 Magnetic parameter 

n heat flux parameter 

Pr Prandtl number 

R1 permeability parameter 

T       temperature of the fluid 

 

u,v      velocity components 

vw       suction velocity 

x, y    Cartesian coordinates 

I       kinematic viscosity 

     electrical conductivity 

           density   of the fluid 

           coefficient of viscosity 

s  


        skin friction coefficient 

kp        permeability of the porous medium 

1. INTRODUCTION  

The study of magnetohydrodynamic flows with viscous 

and Joules dissipation has many important industrial, 

technological and geothermal applications such as high-

temperature plasmas, cooling of nuclear reactors, liquid 

metal fluids, MHD accelerators and power generation 

systems.  

Javeri and Berlin (1975) dealt with the effect of viscous 

dissipation and Joule heating on the fully developed 

MHD flow with heat transfer in a channel.  The exact 

solution of the energy equation was derived for constant 

heat flux with small magnetic Reynolds number. 

Hossain (1992) considered the MHD free convection 

flow with viscous and Joules heating effects past a semi 

infinite plate with variable plate temperature.  

Analytical results were obtained by Vajravelu and 

Hadjinicolaou (1993) for the heat transfer in viscous 

fluid flow over a stretching sheet with viscous 

dissipation and internal heat generation. The solutions 

of the energy equation for the boundary layer flow of an 

electrically conducting fluid under the influence of a 

constant transverse magnetic field over a linearly 

stretching non-isothermal flat sheet was carried out by 

Chaim (1997).  Effects due to dissipation, stress work 

and internal heat generation are considered.  

Combined effect of viscous and Joules dissipation on 

MHD forced convection over a non-isothermal 

horizontal cylinder embedded in a fluid saturated 

porous medium have been studied by Amin (2003). 

Lahjomri et.al. (2003) analytically studied thermally 

developing laminar Hartmann flow through a parallel 

plate channel with prescribed transverse uniform 

magnetic field, including viscous dissipation, Joule 

heating and axial heat conduction with uniform heat 

flux.  Viscous and Joule heating effect on forced 

convection flow of ionized gases adjacent to isothermal 

porous surfaces is analyzed numerically by Duwairi 
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(2005). He found that heat transfer rate is decreased due 

to viscous dissipation effect in both the cases of suction 

or injection in the fluid. Abo-Eldahab and Aziz (2005) 

analyzed the effects of viscous and Joules heating on 

MHD free convection flow past a semi-infinite vertical 

flat plate in the presence of the combined Hall and ion-

slip currents for the case of power-law variation of the 

wall temperature. In (2005), Tak and Arty Lodha 

analysed the flow and heat transfer due to a stretching 

porous surface in the presence of transverse magnetic 

field including heat due to viscous dissipation.  

Very recently authors (2007 & 2008) made an attempt 

to analyze the nonlinear Hydromagnetic flow with heat 

and mass transfer of a fluid through a porous medium 

over a stretching porous surface with constant heat and 

mass flux. In order to analyse the effects of viscous and 

Joules dissipation on nonlinear MHD flow with heat 

transfer over a stretching porous surface embedded in a 

porous medium, the present investigation is made. 

 

2. MATHEMATICAL ANALYSIS  

Consider the steady two-dimensional hydromagnetic 

laminar boundary layer flow of an incompressible, 

viscous and electrically conducting fluid past a 

stretching porous surface embedded in a porous 

medium with viscous and Joule dissipation.  Let the x 

and y axes be taken parallel and normal to the wall in 

the direction of motion of the flow and u and v are 

velocity components in the x and y directions 

respectively.  A non-uniform magnetic field )(xB


 is 

applied in the transverse direction such that 

jxBxB ˆ)()( 


.  Neglecting the induced magnetic field 

(which is allowed at small magnetic Reynolds numbers) 

the problem is now governed by the following 

boundary layer equations 
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The corresponding boundary conditions are  
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where qw is the rate of heat transfer, E0 is the positive 

constant, n is the heat flux parameter, vw is the suction 

velocity and T∞ is the temperature far away from the 

surface. Following Chaim (1995) and Afzal (1993), it is 

assumed that 
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where a and  B0 are  dimensional constants, m is a 

power-law exponent (m  -1).  

 

Equations (1) to (3) subjected to boundary condition (4) 

admit self-similar solution in terms of the similarity 

function F() and the similarity variables are defined 

by 
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 where,  λ > 0 for suction at the stretching plate and  

is the stream function such that 
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Clearly u and v in equation (7) satisfy the equation of 

continuity (1).  Employing the transformations (6)  

utilizing (5) the nonlinear partial differential equations 

(2) to (3)  with boundary conditions (4) are reduced to 

the following nonlinear ordinary differential equations 
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It may be noted that, when m = 1, the velocity of the 

stretching plate is a x, i.e.  the plate stretches with a 

velocity varying  linearly  with distance.   
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Equation (8) with boundary conditions (10), is 

independent of (9) and admit a solution of the form 
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Hence the exact solution is 
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To obtain the solution of equation (9), a new 

independent variable  is introduced 







 e

2

Pr
                                           (12) 

 

Using (11) and (12), (9) yields 

 















Pr

222
Ec

-    2    ]   )
1

K-[(1    
2

2

 
M

d

d

d

d 
      (13) 

where 

 















 



2

21

11Pr
1



MR
K

 

 

with corresponding boundary conditions 
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Equation (13) is confluent hypergeometric equation 

(Abramowitz and Stegun, 1965) with non-

homogeneous part, the solution of which may be 

expressed as follows 
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where C and D are constants which can be obtained by 

using the boundary condition (14). Substituting the 

values of C and D, the equation is reduced as 
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The function   interms of variable   can now be 

expressed as 
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2.1 Skin friction coefficient 

The non-dimensional form of skin-friction (or) skin 

friction coefficient at the wall can be calculated as 
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3. DISCUSSION OF THE RESULTS  

A boundary layer problem for momentum, heat transfer 

over a stretching porous surface with prescribed heat 

flux in the presence of a transverse variable magnetic 

field is examined in this work.  Porous medium, viscous 

and Joule's dissipation are taken into consideration in 

this study.  The MHD boundary layer equations of 

momentum and heat transfer are solved analytically and 

different analytical expressions are obtained for non-

dimensional velocity and temperature profiles for 

prescribed heat flux case.  Computation results are 

carried out for different values of suction parameter  , 

Magnetic parameter 2M , Prandtl number Pr, Eckert 

number Ec and permeability parameter 1R .  

 

Figure 1 shows the effect of magnetic parameter 2M on 

non-dimensional transverse velocity profile. It is found 

that the effect of magnetic parameter is to reduce the 

transverse velocity and also noted that, as we move 

away from the wall the effect of magnetic field is found 

to be uniform.  Figure 2 is depicted for velocity profile 

for different values of  .  From this figure, it is 

apparent that the effect of porosity is to enhance the 

transverse velocity. 

Figure 3 shows the dimensionless longitudinal velocity 

for different values of 2M . It is found that the effect of 

magnetic parameter is to decelerate the longitudinal 

velocity.  This is due to the increase of 2M , signifies 

the increase of Lorentz force that opposes the horizontal 

flow in the reverse direction.  The effect of porosity 

over dimensionless longitudinal velocity is disclosed 

and is shown in Fig. 4. Further, it is noted that a 

decrease in longitudinal velocity accompanies a rise in 

 , with all profiles tending asymptotically to the 

horizontal axis.  In all cases, the non-dimensional 

velocity is observed maximum at the wall.  It is also 

noted that the boundary layer thickness is reduced due 

to the effect of porosity. 

 

Figure 5 is plotted for temperature distribution for 

different values of 2M  when Pr = 0.71,  =3, Ec = 0.2 
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and 1R  = 100.  It is interesting to note that there is a 

significant enhancement of temperature on the wall 

when it is porous.  The application of magnetic field 

introduces additional skin-frictional heating which 

results in higher temperature on the wall with the 

increase of thermal boundary layer thickness.  The 

effect of suction parameter  over the temperature 

distribution is represented in Fig. 6.  It is clear that the 

temperature is reduced due to the increase in suction 

parameter. 

 

Figure 7 shows the temperature profile for different 

values of Pr.  It reveals that the temperature decreases 

with increase in Pr which implies that thermal 

boundary layer thickness decreases. Figure 8 

demonstrates the temperature distribution for different 

values of Eckert number Ec.  It is observed that 

increasing values of Ec is to increase the temperature 

distribution in flow region.  This is due to the heat 

energy stored in the liquid because of the frictional 

heating.  

 

Figure 9 illustrates the skin friction against permeability 

parameter for various values of magnetic parameter.  

The effect of magnetic parameter is to decrease the skin 

friction coefficient.  Figure 10 represents the skin 

friction coefficient against permeability parameter for 

various values of suction parameter.  The influence of 

suction parameter is to suppress the skin friction 

coefficient. 

4. CONCLUSION 

MHD flow with heat transfer in a porous medium over 

a stretching porous surface with viscous and Joule 

dissipation effects are analyzed.  Analytical results of 

the transformed MHD boundary layer equations have 

been obtained. The results obtained were validated 

against those of Anjali Devi and Ganga (2008). In the 

absence of the dissipation effects and porous medium 

the results are in very good agreement when m=1. The 

following specific conclusions were obtained: 

 

 Magnetic parameter decreases both dimensionless 

longitudinal and transverse velocity significantly. 

 The effect of suction parameter is to accelerate the 

dimensionless transverse velocity where as its 

effect over nondimensional longitudinal velocity is 

to decelerate it.  

 There is a significant increase in temperature when 

the wall is porous. 

 The temperature decreases with increasing suction 

parameter. 

 It is interesting to note that temperature reduces due 

to increase in Prandtl number. 

 Thermomagnetic layer becomes thick due to 

increase in Eckert number. 

 Magnetic parameter and suction parameter 

decreases the skin friction coefficient at the wall. 
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Fig. 1. Non-dimensional Transverse Velocity profiles for 

various M2 
Fig. 2. Effect of λ on dimensionless Transverse Velocity 

 
 
  

Fig. 3. Dimensionless longitudinal velocity  

profiles for various M2 
Fig. 4. Non-dimensional Longitudinal Velocity profiles for 

different λ 
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Fig. 5. Temperature Distribution  for various values of 

M2 
Fig. 6. Temperature Distribution for different λ 

 
 
  

Fig. 7. Effect of Pr over Temperature distribution  Fig. 8. Temperature profiles for Different Ec 

 
 
  

Fig. 9. Skin friction coefficient for various values of M2 

 
Fig. 10. Skin friction coefficient for various  

 

 


