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ABSTRACT 

In this paper, transient flow in a pipe at Reynolds numbers (based on bulk velocity and diameter) ranged from 7000 

to 45200 is numerically simulated using four common turbulence models. The models considered are the Baldwin-

Lomax algebraic model, the - model with wall correction of Lam and Bremhorst, the - model and the --2 

model of Durbin. The results of these models are compared with those of the recent experiments reported in the 

literature. The predicted velocity and delay period using the models compared well with measured values for short 

and long ramp-up flow excursions. The delay period of the calculated turbulence kinetic energy close to the pipe 

centerline is around 4 sec which agrees with the experiments. The --2 model was found to provide the best results 

compared to the measured data in the region away from the wall. At the end of the excursion near the wall, however, 

the results of this model differs from those of the experiments. 
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NOMENCLATURE 

C Constant of - model Ub bulk velocity 

D pipe Diameter Ub0 initial bulk velocity 

Fkleb Klebanoff factor in B-L turbulence model Ub1 final bulk velocity 

Fmax Max. wake function in turbulence model u velocity of fluid 

Fwake wake function in B-L turbulence model x axial direction 

lmix Mixing length scale in turbulence model yw distance from the wall 

P pressure   dissipation rate 

r radius of the pipe  Dimensionless ramp rate parameter 

Re Reynolds Number(based on bulk velocity )  Turbulence kinetic energy 

Re0 initial Reynolds Number  Density 

Re1 final Reynolds Number  Shear stress 

Re Re Number(based on friction velocity)  Kinematic viscosity 

t time t Eddy viscosity 

TI turbulence intensity  Vorticity 

u friction velocity + Superscript for dimensionless parameters 

Uc centerline pipe velocity   
 

 

1. INTRODUCTION  

The study of unsteady turbulent pipe flow is of value in 

providing information which can lead to an improved 

understanding of the turbulence phenomenon. In such 

flows certain fundamental aspects of turbulent flow are 

exposed, which although present in steady turbulent 

flows, are not apparent under such conditions. In 

addition, due to the effect of inertia, some additional 

features of turbulence specific to transient flows can be 

present. Due to the technical difficulties involved, 

detailed measurements of turbulence in transient flow 

were not possible until quite recently. As a result of the 

availability of modern instrumentation and powerful 

computers, transient turbulent flow can now be readily 

investigated. Therefore, these flows are getting more 

Journal of Applied Fluid Mechanics, Vol. 3, No. 1, pp. 25-33, 2010. 

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.
DOI: 10.36884/jafm.3.01.11876



A. Khaleghi et al. / JAFM, Vol. 3, No. 1, pp. 25-33, 2010.  

 

26 

 

attention for research studies (He and Jackson, 2000). 

Unsteady turbulent pipe flows can be conveniently 

classified into two groups, namely periodic pulsating 

flows and non-periodic transient flows. Here we will 

describe the latter category briefly which in this article 

we will examine it. 

 

1.1 Non-Periodic Turbulent Flows 
 

In contrast to pulsating pipe flow, non-periodic 

transient pipe flow has received relatively little 

attention. The few studies of this kind undertaken so far 

have involved a variety of types of imposed excursions 

of flow rate. Kataoka et al. (1975) studied the start-up 

response to a step input of flow rate in a pipe. The study 

of Maruyama et al. (1976) was concerned with transient 

turbulent pipe flow following a stepwise increase of 

flow rate from an initial steady turbulent flow 

condition. Delays were observed in the response of 

turbulence, which were found to be greater for the 

centre of the pipe than the region close to the wall. 

Kurokawa and Morikawa (1986) studied flow transients 

with gradually increasing and decreasing flow rate in a 

pipe. Their study showed that the transition Reynolds 

number increased with ramp up rate and that, even for a 

very small imposed acceleration, transition from 

laminar to turbulent flow was significantly postponed. 

The experimental study of Lefebvre (1987) was 

concerned with accelerating flow in a pipe. Discussion 

was mainly concentrated on transition from laminar to 

turbulent flow based on results from single excursions. 

The mean velocity profiles and turbulent intensity 

profiles both generally exhibited a quasi-steady 

variation, although a reduction in turbulence intensity 

was clearly evident at the beginning of some of the 

transients. In the He and Jackson (2000) investigation, 

unsteady flow development was studied, following a 

„stepwise‟ increase in flow rate. Turbulence was 

generated initially in the near-wall region and 

subsequently propagated towards the centre of the pipe. 

More detailed investigation, involving ramp-up type 

increases in velocity, identified delays associated with 

turbulence production, energy redistribution and radial 

propagation of turbulence were reported. Finally, 

Greenblatt and Moss (2004) measured fully developed 

turbulent pipe flows subjected to temporal pressure 

gradients larger than those considered previously. 

Velocity profiles were initially characterized by 

significant reduction of their wake component. The 

final phase of the acceleration was characterized by 

reconstitution of the wake, producing a velocity profile 

inflection and the generation of turbulence in that 

vicinity. 

The fact that turbulence is out of equilibrium and that 

the relaminarization and retransition can take paths 

dependent on the frequency constitutes a severe 

challenge for conventional Unsteady Reynolds - 

Averaged Navier-Stokes (URANS) models. However, 

most of the models used in the literature are extensions 

of steady eddy-viscosity closures with different recipes 

to compute the eddy viscosity (Gundogdu and 

Carpinlioglu, 1999a, 1999b). Thus, a better 

understanding of the capabilities and limitations of 

URANS models is required. Direct, Large-eddy and 

experimental simulation data can be very useful in 

helping to achieve this goal.  

Hsu et al. (2000) used Large Eddy Simulation (LES) to 

validate a RANS model in the purely oscillating case. 

Scotti and Piomelli (2002) compared the performance 

of four well-established turbulence models for the 

unsteady Reynolds-averaged Navier-Stokes equations 

to the flow in a channel driven by a pressure gradient 

oscillating around a nonzero mean. The results were 

compared with those of experiments, DNS and LES. 

The --2 model was found to be generally superior to 

the other models considered. Chung and Malek-Jafarian 

(2005) performed direct numerical simulation for a 

turbulent flow subjected to a sudden change in pressure 

gradient. Four turbulence models were tested in their 

study to compare the DNS data and URANS models. 

They found that Baldwin-Lomax model is not suitable 

for unsteady flow calculations. On the other hand one 

and two equation models gave reasonable results in the 

near wall region. Recently, Yorke and Coleman (2004) 

used the results of direct numerical simulation for a 

Re=390 channel flow subjected to the strain and 

deceleration typical of Adverse Pressure Gradients 

(APGs), to the point of skin-friction reversal, as a 

reference for comparing four simple turbulence models. 

They found that the model accuracy varied 

significantly. 

The purpose of this study is to compare the predictions 

of four well-known turbulence models applied to the 

flow in a pipe with results from a recent experimental 

work of He and Jackson (2000). The statistics satisfy a 

one-dimensional unsteady problem and contain many of 

the complications associated with transient pipe flow, 

thus allowing a straight-forward but nontrivial 

assessment of the models for pipe flow, with defined 

boundary and initial conditions and an acceptable range 

of Reynolds number.   

 

2. TURBULENCE MODELS  

Because of the simple geometry, the URANS equations 

for the horizontal pipe in non-dimensional for simply 

become as: 
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In comparison with other works (Scotti and Piomelli, 

2002; Yorke and Coleman, 2004) where at most four 

different models for turbulence were considered, in this 

study, we have examined almost four commonly 

relative URANS models, too. In order of increasing 

computational complexity they are the Baldwin-Lomax 

(BL) algebraic model (Baldwin and Lomax, 1987) the 

standard - model with the wall correction of Lam and 

Bremhorst (1981), the - model of Wilcox (1988) and 

the --2 model of Durbin (1995). All models assume 

the existence of the eddy viscosity which is used to 

express the Reynolds stress as:  

r

u
vu t




 ''  (5) 

where t denotes the eddy viscosity. Next, we briefly 

review each model. 

2.1 Baldwin-Lomax (BL) 

The Baldwin-Lomax model (Baldwin and Lomax, 

1987) is a two-layer algebraic zero-equation model 

which gives the eddy viscosity, t, as a function of the 

local boundary layer velocity profile. The model is 

suitable for high-speed flows with thin attached 

boundary-layers, typically present in aerospace and 

turbomachinery applications. This model is commonly 

used in quick design iterations where robustness is 

more important than capturing all details of the flow 

physics. The Baldwin-Lomax model is not suitable for 

cases with large separated regions and significant 

curvature/rotation effects. Non-dimensional form of 

Baldwin-Lomax turbulence model is: 
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ymax is the value of y at which max. || achieves its 

maximum value. udif is the maximum value of u for 

boundary layers. For free shear layers, udif is the 

difference between the maximum velocity in the layer 

and the value of u at y=ymax. 

 

2.2 - Two-Equation model 

The - model has become one of the most popular 

turbulence models used in simulations for many 

practical applications. The model determines the 

turbulence kinetic energy  and its dissipation rate  by 

the transport relations. Non-dimensional form of - 

turbulence model is: 
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Many formulations of this model exist such as Launder-

Sharma, Chien, Lam-Bremhorst, Shih-Mansour and 

Nagano-Tagawa models. Our choice is the model 

proposed by Lam-Bremhorst (1981), because in this 

model it is not required to find the instantaneous u. 

 

2.3 - Two-Equation model 

This model proposed by Wilcox (1988), does not use 

wall damping functions. Non-dimensional form of - 
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Where  is the vorticity, for which a transport equation 

(written for ) is given, including the effects of 

production, diffusion and dissipation. Unlike any other 

two-equation models, the - model does not involve 

damping functions and allows simple Dirichlet 

boundary conditions to be specified. Because of its 

simplicity, the - model is superior to other models, 

especially with regards to numerical stability. However, 

the - model (like many other models) does not 

correctly predict the asymptotic behavior of the 

turbulence for the region close to the wall. In addition, 

the - model does not accurately represent  and  

distribution in agreement with DNS data (Moser, 1999). 



A. Khaleghi et al. / JAFM, Vol. 3, No. 1, pp. 25-33, 2010.  

 

28 

 

2.4. --
2
 model 

The --2 model proposed by Durbin (1995) represents 

an extension of the standard - model. This model 

enables the correct kinematic boundary condition to be 

imposed on the normal component of turbulent 

intensity. Hence, wall blocking is represented. The 

virtue of this model is that arbitrary “damping 

functions” are not required. The eddy viscosity is taken 

to be: 

TvCvt
2    (26) 

The Non-dimensional form of --2 turbulence model 

proposed by Durbin is as: 
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Where  is a velocity scale (in pipe geometry 2 

represents the intensity of radial fluctuations). 

3. NUMERICAL ASPECTS  

The URANS equation (2) and the relevant model 

equations are solved using a finite-difference time-

marching code. The code employs the second-order 

Crank-Nicolson discretization on a non-uniform grid 

(stretched in the r direction) including the range of 

turbulence models, mentioned above. Because we 

invoke symmetry, therefore we solve the momentum 

and model equations over the half-channel or pipe 

domain and impose zero-slope boundary conditions at 

the centerline on u and the model transport variables. 

We utilize 400 grid points between the wall and the 

channel or pipe centerline for each model. A geometric 

grid stretching monotonically clusters the points near 

the wall, with the first grid point 0.1 initial wall units 

above the wall for all four models. The time step of 

5*10-2 initial wall units was chosen sufficiently small 

for all models. Therefore the results are grid 

independent with these values of grid and time step. 

 

4. RESULTS  

4.1 Evaluation with DNS data  

Evaluation of the models accuracy can be performed a 

priori by computing the velocity profile, Reynolds 

stresses and the other properties using the „true‟ 

velocity field represented here by the DNS data of 

Moser et al. at Re=590 (Moser, 1999). 

 

Figures 1 and 2 show the corresponding modeled mean 

velocity profiles for different models and compared to 

the DNS channel flow data (the solid curve). 

 

Figure 1 is a log-linear plot to show the wall region in 

more detail and is in wall units. On the other hand,   

Fig. 2 is a linear plot. All the models agree well with 

each others in the region close to the wall. Beyond 

y+=10 all profiles do not agree with each others. 

Predictions of the --2 model give the best overall 

agreement for u+ and 
cUu / compared with the DNS, 

when u and Uc normalizations are considered, 

respectively. The BL model overestimates the velocity 

profile (Fig. 2). 
 

 

Away from the wall, the exaggerated wake assumed by 

the BL closure is responsible for its consistent under-

prediction of the (smaller-wake) channel flow profile, 

which is emphasized by the Uc normalization used in 
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Fig. 1. DNS and model predictions of u+ 
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Fig. 2. DNS and model predictions of cUu /  
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Fig. 2 (Yorke and Coleman, 2004). The other model 

predictions like - and - are very close to each 

others.  

 

Profile of Reynolds shear stresses are displayed in     

Fig. 3. Agreement of all model predictions with the 

DNS data seems to be almost perfect, except BL and -

 models. The BL results are under-estimated and the 

- results are over-estimated. This comparison allows 

us to evaluate the validity of the modeling analysis in 

itself, removing possible errors that can be caused by 

the modeling of the terms in the equations. 

 

0

100

200

300

400

500

600

0.0 0.2 0.4 0.6 0.8 1.0-u'v'/u(tau)

y
+

(DNS)

(BL)

(ke)

(kev2)

(kw)

 

Fig. 3. DNS and model predictions of 2/'' uvu  

The distribution of eddy viscosity of each model is 

shown in Fig. 4. They agree closely with each other and 

DNS data near the wall, especially for yw/h<0.1. Large 

discrepancies occur in the outer layer. The BL model is 

under predicted but the one- and two-equation t 

predictions are over predicted in the outer-layer. All of 

them differ from the DNS data by as much as 93% (for 

- model) or higher in particular at the centerline. The 

BL t is about 20% smaller than the DNS data in the 

outer layer. The maximum discrepancy is for -, and 

the other eddy viscosities fall roughly half-way between 

the - and DNS profiles. 
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Fig. 4. DNS and model predictions of T/ 

Figures 5-7 show the budgets computed from the DNS 

data and - model for the turbulent kinetic energy in 

local wall coordinates. The k-budget is largely 

dominated by dissipation and diffusion near the wall. 

While, away from the wall the production and 

dissipation terms are dominant. Turbulence diffusion 

term changes sign at y+=7. 

 

At the wall the dissipation rate balances the diffusion 

rate. There is a good agreement between the production 

term in all model equations and k-budget from the DNS 

(Figs. 5-7). But the large discrepancies of the - and -

 models compared to DNS for both the dissipation and 

diffusion terms are taken into account (Figs.5 and 7). 
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Fig. 5. DNS and k  model predictions of turbulence 

kinetic energy budget  
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Fig. 6. DNS and --2 model predictions of 

turbulence kinetic energy budget  
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Fig. 7. DNS and - model predictions of turbulence 

kinetic energy budget  

--2 model shows the best prediction for dissipation, 

production and diffusion terms in comparison with 

DNS data (Fig. 6). In the next section we will 
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demonstrate the performance of these models for 

unsteady turbulent flow in a pipe. 

5. COMPARING WITH EXPERIMENTS  

He and Jackson studied the accelerating and 

decelerating ramp-type turbulent flows in a pipe (He 

and Jackson, 2000). The ramp-up experiments were 

performed in which the ramp rate dUb/dt was varied by 

imposing excursions of flow rate during which the bulk 

velocity increased linearly with time from an initial 

value Ub0=0.138 m/s to a final value Ub1=0.891 m/s in 

periods of time which ranged from 2 sec to 90 sec. The 

corresponding initial and final Reynolds numbers (Re0 

and Re1) were constant at the values 7000 and 45200. 

Therefore the Reynolds numbers based on wall units 

and u (Re) are equal to 240.5 and 1243. But the 

dimensionless ramp rate parameter 











dt
dU

UU
D b

bo
.1.

0
  increased systematically 

from 0.34 (pseudo-steady flow) to 15.3 (unsteady 

turbulent flow). Their experimental results not only 

showed how mean flow and turbulence respond to 

imposed transients but also provided new insight into 

turbulence dynamics. We now compare the predictions 

of the URANS models with the experimental data of He 

and Jackson mentioned above for 45 and 5 seconds 

ramp-up flow excursions. 
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Fig. 8. Experiment and turbulence models predictions of 

local mean velocity in a 45sec time period ramp-up flow 

excursion 

Figure 8 shows the development of local mean velocity 

for 45 sec ramp-up flow excursion ( = 0.68). The 

results are plotted as a function of Reynolds number for 

a number of radial positions. The response of the local 

velocity in core and wall regions is different. The 

performance of BL model is poor and very under-

estimated for prediction of the turbulence transient flow 

at these conditions. The agreement between the other 

models and experiments are excellent for all radial 

positions, except in the core. All the models tend to 

under-estimate the velocity during the acceleration at 

centerline. 

 

The results for a ramp-up excursion of flow rate with a 

time period of 5 sec ( = 6.1) is shown in Fig. 9. The 

BL model significantly under-predicts the velocity. The 

results from all the other models are very close to each 

other and essentially match the experiments, except in 

the core region (Re>32000) at the end of the 

acceleration stage where the results differ from those of 

the experiments. But the --2 predictions are very 

close to experiments at these conditions (r=0 and 

Re>32000). 

 

0

0.2

0.4

0.6

0.8

1

1.2

7000 12000 17000 22000 27000 32000 37000 42000

Re

U
 [

m
/s

]

u (r=0 mm KE) u (r=21 mm KE) 

u (r=0 mm KEV2) u (r=21 mm KEV2) 

u (r=0 mm K-W) u (r=21 mm K-W) 

u (r=0 mm BL) u (r=21 mm BL) 

u (r=0 mm Exp.) u (r=21 mm Exp.)

 

0

0.2

0.4

0.6

0.8

1

1.2

7000 12000 17000 22000 27000 32000 37000 42000

Re

U
 [

m
/s

]

u (r=12 mm KE) u (r=23.5 mm KE) 

u (r=12 mm KEV2) u (r=23.5 mm KEV2) 

u (r=12 mm K-W) u (r=23.5 mm K-W) 

u (r=12 mm BL) u (r=23.5 mm BL) 

u (r=12 mm Exp.) u (r=23.5 mm Exp.)

 
Fig. 9. Experiment and turbulence models predictions 

of local mean velocity in a 5sec time period ramp-up 

flow excursion 

The development of the turbulence kinetic energy (k) 

during a 5 sec ramp-up flow excursion is shown in   

Fig. 10 for several radial positions. As can be seen, 

there is a delay effect to the imposed flow transient in 

the response of velocity fluctuations. All of the models 

predict the delay effect as well as experiment. The 

response for the excursion with a marked change is very 

slow in the core region; however the response becomes 

faster near the wall (r=23.5 mm). He and Jackson 

(2000) defined the delay period () as “the period of 

time from the start of an excursion to the point at which 

the faster response starts”. As can be seen, this 

parameter is clearly a function of radial position. It is 

less than 1 sec near the wall. At the centre it approaches 

4 sec. The response of turbulence kinetic energy to the 

imposed excursion starts in the wall region and is 
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transmitted towards the centre of the pipe, at a certain 

speed (He and Jackson, 2000). At all positions except 

near the wall (at Re>25000), --2 significantly agrees 

with experiments, for the entire ramp-up excursion. 

Whereas - agree only at high Reynolds number with 

experiment near the wall (r=21, 23.5 mm). But they 

underestimate the turbulent kinetic energy at low 

Reynolds number (Re<25000). - model predictions 

are poor at the end of flow excursion in the core 

(Re>32000, r=0 mm).  
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Fig. 10. Experiment and turbulence models predictions 

of kinetic energy in a 5sec time period ramp-up flow 

excursion 

The development of the turbulence intensity 

bUkTI /3/2  in 5 sec time period ramp-up 

excursion is plotted in Fig. 11. The turbulence intensity 

is attenuated in accelerating transient flow. The k 

distribution (Fig. 11) remains at or near to their initial 

values at the beginning of excursion (delay period). On 

the other hand, the bulk velocity increases at this time.  

So the reduction in turbulence intensity is a 

consequence of the delayed response of the turbulence 

quantities. Near the wall (r=21, 23.5 mm) --2 and -

 predictions are poor when Reynolds number 

increases, whereas - model agree better than --2 

and -. But the --2 and - predictions are good at 

the beginning of excursion and vice-versa for -. 

Away from the wall (r=0, 12 mm), --2 has a good 

agreement with experiments. The other models are 

more under-predicting or over-predicting. The reason 

that --2 could not predict the turbulent intensity 

accurately near the wall is related to the prediction of k 

(turbulence kinetic energy). It derives from the above 

definition bUkTI /3/2 . However, --2 predicts 

well the turbulent kinetic energy (Fig. 10), near the wall 

at the region of delay time (Re<10000). After that the 

discrepancies appear. Therefore, these discrepancies 

develop to the turbulent intensities (See the TI 

definition).  

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

7000 12000 17000 22000 27000 32000 37000 42000

Re

In
te

n
s
it

y

Int (r=0 mm KE) Int (r=21 mm KE) 
Int (r=0 mm KEV2) Int (r=21 mm KEV2) 
Int (r=0 mm K-W) Int (r=21 mm K-W) 
Int (r=0 mm BL) Int (r=21 mm BL) 
Int. Exp. r=0 mm Int. Exp. r=21 mm

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

7000 12000 17000 22000 27000 32000 37000 42000

Re

In
te

n
s
it

y

Int (r=12 mm KE) Int (r=23.5 mm KE) 
Int (r=12 mm KEV2) Int (r=23.5 mm KEV2) 
Int (r=12 mm K-W) Int (r=23.5 mm K-W) 
Int (r=12 mm BL) Int (r=23.5 mm BL) 
Int. Exp. r=12 mm Int. Exp. r=23.5 mm

 
Fig. 11. Experiment and turbulence models predictions 

of turbulence intensity in a 5sec time period ramp-up 

flow excursion 

The development of turbulent shear stress in the 5 sec 

ramp-up flow excursion is shown in Fig. 12 for various 

radial positions. This Figure exhibits the features of 

delay and propagation. The development of the 

turbulent shear stress is similar to that of turbulent 

kinetic energy (Fig. 10). The delay is dependent on the 

distance from the wall at positions in the core region. 

But in the wall region turbulent shear stress exhibits a 

distinct delay for a period which is independent of the 

location, and then it builds up. BL predictions are poor, 

but the other models predict the correct behavior during 

the acceleration, especially away from the wall (r=0, 12, 

21 mm). Near the wall and at the beginning of 

acceleration, all models predict the experiment data as 

well. But the models predictions overestimate the shear 

stress after the acceleration continue. Of the four 

models, --2 appear to be the most accurate. 

 

If we pay more attention to the way of calculation t in 

--2 model, it can be inferred that it is inherently 

different with -, - and BL models for the region 

close to the wall. This is because of the effect of y 

component of velocity employed in this region. 

Furthermore, there is a term including yk  with 

minus sign in the k-equation of - model, which does 

not exist in --2 model. Therefore, in the - model, 

the amount of k will be much less than that of the --

2 model for the points adjacent to the wall, where y 

gradients of the properties are very high. However, for 
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the region close to the pipe centre where y gradients of 

all properties diminish, the two models approach each 

other. Furthermore, the  equation of the two - and -

-2 models are only different in the term including 
22 yu  added in the --2 model. It is clear that this 

term will be disappeared after a distance from the wall, 

and the two models approach each other. 

 

He and Jackson (2000) found that the delays are more 

or less the same for all cases at a particular position 

despite the imposed acceleration being very different. 

Their calculation showed that the responses at the 

centre of the pipe deviate slightly after a mean value of 

about 4 sec. A comparison of the responses of turbulent 

kinetic energy at the centre of the pipe for various 

ramp-up flow excursions is shown in Fig. 13. 
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Fig. 12. Experiment and turbulence models predictions 

of turbulent shear stress in a 5sec time period ramp-up 

flow excursion 
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Fig. 13. Comparison of the responses of turbulent 

kinetic energy calculated with --2 model for various 

ramp rates at pipe centre 

This figure presents accurate calculations of --2 

model. The change-over points of the response curves 

are indicated with arrows. The absolute delays for 

numerical and experimental data of He and Jackson are 

given in Table 1. As observed, the --2 predictions 

and experiments deviate after a mean value of about 4 

sec. This deviation is little for experiments and is a little 

bit more for numerical predictions at some ramp time 

periods, like 5, 25 and 45 sec. 

 

Table 1 Absolute delay at the centre of the pipe  

Ramp time period (sec) 5 10 15 25 45 

Dimensionless ramp rate () 6.1 3.1 2 1.5 0.68 

Delay (sec) – experiments 3.9 4.1 4.0 3.9 4.0 

Delay (sec) – --2 

predictions 

3.78 3.91 4.11 3.58 4.7 

 

6. CONCLUSIONS  

Temporal accelerating transient flow in a pipe was 

simulated using four different RANS turbulence 

models. Simulation results were compared with those of 

DNS data (Moser, 1999) and the experiments 

performed by He and Jackson (2000). The models 

considered are the Baldwin-Lomax algebraic model, the 

- model with wall correction of Lam and Bremhorst, 

the - model of Wilcox, and the --2 model of 

Durbin.  

 

To evaluate the accuracy of these models, the velocity 

profile, Reynolds stresses and the other properties at 

Re=590 were calculated using the „true‟ velocity field 

represented by the DNS data (Moser, 1999). It was 

shown that the --2 model has the potential for giving 

a fairly accurate estimate of the k-budget, velocity 

profile and Reynolds stress. 

 

The results of BL model did not agree well with 

experimental results. All of the other models predicted 

the velocity and the delay period close to those of the 

experiment for short and long ramp-up flow excursions. 

The delay period of the calculated turbulence kinetic 

energy in the core region was around 4 sec which 

agreed with the experiments. The models accuracy 

varied widely. The --2 scheme gave the best overall 

agreement with the measured data of kinetic energy and 

turbulence shear stress, in the region away from the 

wall (r=0, 12, 21 mm). The --2 results deviated from 

experiment at the end of excursion near the wall (r=23.5 

mm). 
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