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ABSTRACT 

The present work considers transient electrothermal simulation of sub-micrometer silicon device and electron-phonon 

interactions in electrical and thermal fields. A coupled thermal and electrical model is developed for a silicon 
  nnn structure consisting of the hydrodynamic equations for electron transport and energy conservation 

equations for phonon. The results indicate that, for one electric field the lattice temperature gradient has significant 

effect on the magnitude of electric current. The transient phonon temperature affects the device performance due to 

the change of mobility and gradient temperature of electron. At an external voltage of 0.1 V, calculations show that 

an increase in the junction boundary temperature by 100 °C, cause increasing the drain current by 16% at 3 

picosecond and decreases it by 17% up to steady state condition. 

Keywords: Hydrodynamic, Semiconductor, Heat transfer, Phonon, Electron, Micro scale. 

NOMENCLATURE 

 

1. INTRODUCTION 

Increase of the device density on microelectronic chips 

could be constrained by the ability to dissipate the 

extremely high rates of heat generation. Thus, it is 

necessary to understand the mechanisms of heat 

generation and dissipation inside the device as well as 

their effects on electrical performance and reliability. 

The volumetric heat generation rate inside such a small 

semiconductor device can be expected to be very high 

since the device operating power cannot be reduced 

below a certain level. The energy gained by charge 

carriers due to an externally applied electrical field, can 

C  heat capacity 31  mJK  Greeks   

E  electric fields mV /    electric permittivity mVc ./  
e  electron charge c  k  electron thermal 

conductivity 

11  mKW  

J  electron current density 2/ mA  
  electron mobility sVm ./2  

Bk  Boltzmann constant 1JK  0  low field mobility sVm ./2  

*m  electron effective mass kg  sv  saturation velocity sm /  

DN  n-type doping concentration 3m  
  relaxation times s  

n  electron number density 3m   

Subscripts 

  

p  electron momentum density smkg ./ 2
 

e  electron  

Q  heat flow vector 2/ mW  
c  collision term  

T  temperature K  op  optical  

t  time s  a  acoustic  

V  electrostatic potential V  m  electron momentum  

v  electron drift velocity sm /  ph  phonon  

W  energy density 3/ mj     
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be transferred to the lattice. In equilibrium, the 

electrons and lattice exhibit similar energy levels. Yet, 

power device operation requires the application of large 

fields and high currents. Therefore, these devices 

normally operate in electrical nonequilibrium. Thermal 

nonequilibrium refers to the condition when charge 

carriers are not able to transfer their excess energy to 

the lattice efficiently. A temperature difference is 

created between electrons and the lattice resulting in 

localized heating in the active area of the device. At 

small scales, thermal transport in semiconductors is 

usually described in terms of quantized lattice 

vibrations called phonons.  

 

Numerical simulation of the transient electrical 

performance of silicon semiconductor devices such as 

current–voltage characteristics of semiconductor 

devices has been studied. Early numerical simulation 

programs referred to ‎Selberherr (1984) used the classic 

drift-diffusion equation for electron transport. Since the 

typical applied bias is of the order of 1 V and the device 

size has decreased to submicro scales, high electric 

fields are produced in the device. The energy which 

electrons gain from the electric field cannot be 

sufficiently removed by lattice during electron-lattice 

collision. Therefore, a nonequilibrium situation occurs 

resulting in the so-called hot electron 

transport. ‎Blotekjaer (1970) proposed a method to 

describe hot electron transport, which is now well 

known as the hydrodynamic model. Numerical 

simulation results of electron transport have been 

carried out assuming the lattice to be an isothermal 

reservoir‎‎(Meinerzhagen and  Engl 1988;‎ Chai et al. 

1992). An electron vorticity equation is also derived 

and used to investigate many aspects of electron flow 

structures ‎by Mohseni and Shakouri (2005). ‎ 

 

Rangel and Rodriguez (2007) extend the hydrodynamic 

model of the Boltzmann equation by taking into account 

the spin of the nonequilibrium carriers injected into 

semiconducting systems. This spin-resolved 

hydrodynamic description goes beyond the usual drift-

diffusion type approaches in a way that the temporal 

derivatives of the current densities are considered. This 

allows us to investigate the transient dynamics of spin-

polarized packets in the diffusive and ballistic transport 

regimes. The dc behavior of single-gate and double-

gate MOSFETs with gate lengths ranging from 5 to 

100 nm is simulated using drift-diffusion, 

hydrodynamic, and Monte Carlo approaches. It is 

shown that by simple adjustments of the drift-diffusion 

and hydrodynamic transport model parameters the 

Monte Carlo currents can be reproduced in the entire 

gate length range referred to ‎Granzner et al. (2006). 

This does not consider the heat generation or energy 

exchange between the lattice and the electrons and 

therefore cannot be properly used to study lattice 

thermal effects on electron transport. Since the energy 

removal rate from the electrons is restricted by the 

lattice energy, a lattice energy balance must be added to 

the hydrodynamic model.  

Wang (1985) has developed a model including the 

lattice energy transport equation. ‎Roberts and 

Chamberlain (1990) have also suggested that the lattice 

temperature equation must be included in the 

hydrodynamic equation. A similar model with 

numerical results was obtained by Katayama and 

Toyabe (1989). However, none of the articles carefully 

considered the phonon dispersion relations, which 

results in different phonon modes. In order to get 

physical insight into the thermal effects on the electron 

transport, the interaction of electrons with different 

phonons at different bias conditions needs to be studied.  

 

A similar model including both the lattice and electron 

transport was developed for sub-micron GaAs devices 

by ‎Fushinobu et al. (1995). The thermal and electrical 

characteristics of sub-micrometer silicon semiconductor 

devices have studied by considering the nonequilibrium 

nature of hot electron, optical phonon, and acoustic 

phonon for steady state conditions by ‎Lai and 

Majumdar (1996). Numerical simulations were 

presented of in detail for the transient simulation of the 

highly coupled non-linear partial differential equations 

of the full electrons hydrodynamic model ‎(Romano and 

Russo 2000; ‎Aste and Rudiger 2003) but these results 

of electron transport have been carried out assuming the 

lattice to be an isothermal reservoir. The thermal 

nonequilibrium was determined from phonon 

temperature distributions obtained using a common 

electronic solution and three different heating models 

(Joule heating, electron/lattice scattering, phonon 

scattering) by ‎Raman et al. (2003).  

 

In this work, 2-D simulations were performed in a 

partially coupled manner to analyze the electrical and 

thermal characteristics of the devices. The commercial 

simulator (ATLAS) was used to perform the electrical 

characterization. Results from the electrical analysis, 

such as electron concentrations and electron 

temperatures, were imported into an in-house 

semiconductor heating model. Therefore, the results of 

the electronic solution were used as thermal source 

terms in the thermal solution. The results of the thermal 

solution are not coupled back to the electrical analysis. 

The objective of this article is to concurrently transient 

study both the thermal and electrical characteristics of 

sub-micrometer silicon semiconductor devices by 

considering the nonequilibrium nature of hot electron 

and phonon, also their interactions in electrical and 

thermal fields. In the following sections, a coupled 

thermal and electrical model is developed consisting of 

the hydrodynamic equations for electron transport and 

energy conservation equations for phonon. 

 

2. GOVERNING EQUATIONS 

At low and moderate electric fields, mV /106E , 

the electrons mainly interact with acoustic phonons 

because not many electrons have sufficient energy to 

excite optical phonons. The ensemble electron drift 

velocity v  linearly increases with the electric field E, 

i.e., ,Ev   where   is the electron mobility.  
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This electron transport regime follows Ohms law. 

However, under a high electric field, mV /106E , 

the electrons become energetic enough to interact with 

optical phonons. In addition, the electron and optical 

phonon interaction rate can be high enough to saturate 

the electron drift velocity referred to ‎Wang (1989). 

Since the electrons interact with the phonons during 

their transport, the electron mobility is a function of 

both the electron and the lattice energies referred to ‎ 

Sze (1981).  

 

The electron current density varies as vJ ne , where 

velocity v  is proportional to the mobility for a given 

electric field. So, we can expect the lattice temperature 

to influence the device current and therefore the 

electrical characteristics. It is therefore clear that the 

semiconductor device characteristics should be 

determined by the coupled electrical and thermal 

behavior. A rigorous device simulation must use a 

concurrent electrical and thermal model that takes into 

account the lattice heating effect. It is clear that in a 

nonequilibrium situation, two sub-systems of electrons, 

phonons, need to be considered in silicon 

semiconductor devices. The Monte Carlo method is an 

elegant approach to describe charge transport in 

semiconductors referred to ‎Jacoboni and Reggiani 

(1983). However, when phonons have to be 

incorporated, it is too time consuming and 

uneconomical to be used for engineering design and 

analysis of devices.  

 

The hydrodynamic equation is a good engineering-

oriented approach to simulate the sub-micron 

semiconductor devices as long as meaningful 

expressions of electron transport in terms of average 

electron velocity and effective electron temperature are 

valid. The basic equations can be derived from the 

Boltzmann transport equation, namely the zeroth, first 

and second-order moments, which represent the 

electron charge, momentum, and energy conservation, 

respectively referred to ‎Rudan and Odeh (1986). They 

are 
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where n is the electron number density, v  is electron 

drift velocity, E is electrical field, and eT  is electron 

temperature. The electron momentum density p  and 

energy density eW  can be written as vp nm*  

and  2*32/1 vW nmTnk eBe  , respectively. All the 

last terms with subscript c in the above equations 

represent the quantities changing due to collision 

referred to ‎Schlichting (1979). In the electron 

momentum conservation equation, the driving forces 

are the electric field and electron number density as 

well as temperature gradients, whereas the drag force is 

electron–phonon collision. The heat flow vector eQ  

can be found from higher order moments of the 

Boltzmann transport equation. The Fourier law was 

suggested to get a better approximation. Therefore, 

eee Tk Q                                                              (4) 

Where ek  is the electron thermal conductivity. The 

energy conservation equations for optical and acoustic 

phonons are 
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Where opW  and aW  are optical and acoustic phonon 

energy densities, respectively, each of which is related 

to the heat capacity C as CdTd W , and ak is the 

lattice thermal conductivity. The heat capacities of 

optical phonons Cop and acoustic phonons Ca can be 

estimated from the Einstein and Debye models, 

respectively referred to Wang (1989). 

When mV /106Ε , the electrons lose energy directly 

to acoustic phonons as expressed by 

c

e
aa

a

t
Tk
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
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Referred to ‎Arora et al. (1982), all the collision terms 

can be phenomenologically expressed using the 

relaxation time approximation as 
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where m , phe , and aop  are relaxation times for 

electron momentum, electron energy, and optical 

phonon, respectively, phT  can be either optical or 

acoustic phonon temperature depending on which kind 

of phonons the electrons interact with. The above 

analysis can also be applied to the holes in Si. However, 

in the active region of a semiconductor device, either 

the electrons or the holes are the majority carrier. The 

current contributed by the minority carriers is much 

smaller than that contributed by the majority carriers. 

Therefore, the minority carriers can be simply assumed 

to follow the drift diffusion model. For example, holes 

are minority carriers in a n-channel MOSFET. 

MOSFET stands for metal oxide semiconductor field 

effect transistor.  
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Therefore, to solve for the electric field, the Poisson 

equation is used and is given as 

)()( nNe D  E                                             (11) 

With 

VE                                                                   (12) 

Where V electrostatic potential,   is the permittivity 

which is different for silicon and silicon dioxide, ND is 

the n-type doping concentration. Finally, Eqs. (1)–(4) 

and (5)–(11) form a closed system. 

In our simulations for silicon, we will use the ‎Baccarani 

and Wordemann (1985) model, which defines the 

relaxation times by 

                                                            (13)
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sv  is the saturation velocity, i.e. the drift velocity of 

the electron gas at high electric fields. 

 

According to ‎(Sze 1981; Singh 1993; ‎Ng 1995 

and ‎Caughey 1967) the low field mobility is given by 

the empirical formula for silicon, which depends mainly 

on the lattice temperature and the total doping density   
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and the electron mobility is given by 
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This is the well-known ‎Caughey and Thomas (1967) 

mobility model. ‎Blotekjaer (1970) and ‎Baccarani and 

Wordemann (1985) (BBW) proposed a model for heat 

flow vector eQ  that its thermal conductivity descript 

with Eq. (17).  
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Several different choices for r can be found in the 

literature, and many authors such as (‎Feng and Hintz 

1988; ‎Alsunaidi et al. 1997). 

 

According to ‎Gnudi et al. (1990) with comparisons of 

hydrodynamic and MC simulations of the ballistic 

diode, the best value for r appears to be -2.1 for silicon 

at 300 K. 

 

According to ‎Ng (1995) lattice thermal conductivity 

descript with Eq. (18). 
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These relations are valid between 300 and 800 K for 

silicon. 

 

The above system of nonlinear equations can be 

simplified. According to ‎Cook and Fery (1982) first, the 

convective inertia term ).(vp  in the electron 

momentum conservation equation can be neglected 

because this term is small compared to the other driving 

forces or the collision term and nTe  is small 

compared to eTn  for this case. Finally, the 

momentum equation can be written as 
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Eq. (19) shown that if voltage term V  to be in order 

0.1V, gradient electron temperature will be have 

important effect on electron current density. 

 

3. NUMERICAL METHOD 

Let us write the 1-D version of the equations of the two 

models: 
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In this case, the thermal system is represented as a 

single lattice temperature and is considered to be in 

thermal equilibrium for optical and acoustic phonons. 

The heat flow vector phQ  can be written as 

phphph Tk Q  and aph kk   is the lattice thermal 

conductivity and phW  can be written as 

phphph TCW .The heat capacities of phonons 

According to ‎Ng (1995) phC can be estimated from 
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These relations are valid between 50 and 800 K for 

silicon. 

We make use of a splitting scheme, based on the 

following decomposition. Let us consider a system of 

the form 
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Then, for each time step, a numerical approximation 

u~ of the solution is obtained by solving the two 

consecutive steps: 
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According to ‎Romano and Russo (2000) the numerical 

scheme is a splitting scheme based on the ‎Nessyahu and 

Tadmor (1990) scheme for the hyperbolic step, and a 

semi-implicit Euler scheme for the relaxation step. Note 

that this method is second-order accurate in space, but 

only first order accurate in time. 

 

Our program (HDM) compared with ‎Romano and 

Russo (2000) results as per Fig. 1. 

 

 

Fig. 1.  Velocity profile (
710  cm/sec) of HDM with  

BBW‎model‎with‎c‎=‎−1.0‎(dashed‎line),‎c‎=‎−2.1‎

(dotted line) and with Monte-Carlo simulation 

(squares). The channel length is 0.4 µm, and the applied 

voltage is 1V. 

 

At this figure, our results compared with BBW and MC 

(Mount Carlo Simulation). At Eq. (17), r parameter is c 

parameter in this figure. 

 

4. NUMERICAL STUDY 

We simulated a   nnn   ballistic diode, as shown 

in Fig. 2. , which models the electron flow in the 

channel of an MOSFET, and exhibits hot electron 

effects at scales on the order of a micrometer. Our diode 

begins with a nm1.0   ‘source’‎ region‎with‎doping‎

density 31810  cmND , is followed by a nm1.0  

‘channel’‎ region 315102  cmND , and ends with a 

nm1.0   ‘drain’‎ region 31810  cmN D . The 

doping density was slightly smeared out at the 

junctions. 

We considered silicon at KTph 300  for initially 

conditions and solved electrons hydrodynamic 

equations for this constant lattice temperature until 

steady state results for electrons as shown in Figs. 4, 5. 

Then, these results are used in initial conditions as soon 

as the phonon temperature is set 400 K in junction 

boundary ( KT junctionph 400 ) as shown in Fig. 1. 

 

Fig. 2. The microscale simulation regions of a ballistic 

diode. 

 

This problem solved for 1 and 1.0 . 

 

We can develop this problem for other micro devices as 

micro thermoelectric cooler and generator and etc. 

which are content two type of semiconductor in series 

connections, too. 

 

Fig. 3.  View of some micro devices as micro 

thermoelectric cooler and generator. 

 

A fine uniform mesh of 3 nm is used in the microscale 

region which guarantees a spacing of less than the 

Debye length in the device active region and reduces 

the error due to discretization referred to ‎Sze (1981). 
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5. RESULTS AND DISCUSSIONS 

We have considered silicon at KTph 300  and solved 

electrons hydrodynamic equations until steady state 

time. In our simulations, the required time to reach 

steady state is about five picoseconds. Figure 4 shows 

the distributions of (a) electron density, (b) electron 

velocity, (c) lattice temperature and (d) electron 

temperature that the drain-to-source voltage bias V is 1 

V. For approving the simulation, outputs results were 

compared with previous published results ‎ such as 

Romano and Russo (2000)‎; Aste and Rudiger (2003). A 

comparison between numerical results and Monte-Carlo 

simulations shows that BBW model gives satisfactory 

results for electron velocity and energy, provided by 

choosing a suitable value for r in Eq. (17) for a fitting 

parameter contained in the expression for the heat 

conductivity. Therefore we considered 1.2r for this 

present work. 

 

Fig. 4. Shows the distributions of electron density, (b) 

electron velocity, (c) lattice temperature and (d) 

electron temperature for voltage bias 1 V and the lattice 

temperature 300 K. 

 

When the junction boundary temperature is fixed in 400 

K, the lattice temperature develops in microdevice up to 

1.8 nanosecond duration as shown in Fig. 5.  

 

 

Fig. 5.  Shows the distributions of lattice temperature in 

device along various times. 

 

The constant timestep t used in our simulations was 

typically in a few tenths of a femtosecond order, 

therefore one run of this study has twenty million of 

iterations approximately up to steady state condition. 

The temperature rose up 403 K near the second junction 

of device because electron temperature has maximum 

value in this region. The electron temperature is high in 

the second junction, and the thermal source will have 

the largest amount in this region for phonon energy 

equation.  

 

Simultaneously, thermal diffusion occurs and the 

temperature profiles spread over the entire device. A 

single MOSFET device is not expected to dissipate 

enough power to significantly increase lattice 

temperature.  Whereas energy density of electron is five 

orders lower than energy density of phonon, therefore 

effects of electron temperature is very weak than 

phonon conduction term. Hence, although electron 

temperature reaches to 2700 K in near the second 

junction of device but the increase of maximum lattice 

temperature is 3 K in this region. 

 

Eq. (19) shows that if drain-to-source voltage bias V to 

be 1V, gradient temperature won't have important effect 

on electron current density. The increase of lattice 

temperature reduces electron velocity due to the 

reduction of electron mobility as shown in Fig. 6.  
 

The rate of electron velocity reduction is very high up 

to 0.3 nanosecond, because the rate of phonons heat 

transfer is very high up to the stated time. 

 

Fig. 6.  Shows the contour of velocity in device along 

various times. 

At an external voltage of 1 V, calculations show that an 

increase in the junction boundary temperature by 100 

°C decreases the electron velocity and drain current by 

14% up to steady state time as shown in Fig.7. 

The increase of lattice temperature in junction boundary 

increases electron temperature but decrease of electron 

velocity will reduces maximum electron temperature. 

Interactions of these two effects can make increase or 

decrease of maximum electron temperature according 

to order of any case magnitude. Therefore this boundary 

condition increases the maximum electron temperature 

by 2% in 10 picoseconds then it reduces by 4% up 

steady state time as shown in Fig. 8. However gradient 

electron temperature had increased but it was very 

lower than electrical field term in Eq. (19) and it is not 

practically considered.  
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Fig. 7.  Shows the variation of Percentage of Drain 

Current Changes at various times. 

 

 
Fig. 8. Shows the variation of maximum electron 

temperature at various times. 

 

Eq. (19) shows that if drain-to-source voltage bias V to 

be 0.1V, gradient temperature will be have important 

effect on electron current density. At an external 

voltage of 0.1 V, calculations show that an increase in 

the junction boundary temperature by 100 °C, increases 

the electron current by 17% in 3 picoseconds then it 

reduces by 16% up to steady state time as shown in  

Fig. 9.  

 
Fig. 9.  Shows the variation of Percentage of Drain 

Current Changes at various times. 

 

The order of gradient electron temperature is greater 

than electric field in initially times whereas the electron 

mobility is not seriously decreased yet at this time, 

therefore the electron current increases up to 3 

picoseconds. Then heat transfer reduces gradient 

temperature and also increase of lattice temperature 

decreases electron mobility, so the electron current 

reduces after this time. 

 

The increase of lattice temperature in junction boundary 

increases electron temperature but decrease of electron 

velocity will reduce maximum electron temperature. 

Interactions of these two effects can cause increase or 

decrease of maximum electron temperature in 

according to order of any case magnitude. Therefore 

this boundary condition increases the maximum 

electron temperature by 80 °C (21%) up to steady state 

time as shown in Fig. 10. 

 
Fig. 10.  Shows the variation of maximum electron 

temperature at various times. 

 

As a fundamental result of this work, transient electrical 

characteristics of power devices are closely coupled 

with nonequilibrium thermal effects. The findings lead 

us to believe that devices with similar or smaller 

dimensions with short time scale features are 

susceptible to thermal nonequilibrium effects. This 

investigation using a fully coupled computational 

method in transient state has been implemented and 

determines the transient effect of each model on 

electrical performance. 

 

6. CONCLUSION 

Finally, a one-dimensional numerical simulation 

program in transient state is developed in the 

microscale region to obtain electrical characteristics and 

lattice heat transport. The distributions of electron 

velocity, maximum electron temperature, and lattice 

temperature are predicted. The transient phonon 

temperature affects the device performance due to the 

change of mobility and gradient temperature of 

electron. 

 

At an external voltage of 1 V, calculations show that an 

increase in the junction boundary temperature by 100 

°C decreases the electron velocity and drain current by 

16% up to steady state time as again it increases the 

maximum electron temperature by 2% in 10 

picoseconds then it reduces by 3.5% up steady state 

time. Also at an external voltage of 0.1 V, calculations 

show that an increase in the junction boundary 

temperature by 100 °C , increases the electron current 
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by 17% in 3 picoseconds then it reduces by 16% up to 

steady state time as again it increases the maximum 

electron temperature by 21%. 
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