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ABSTRACT 

In this paper the effects of couple stress fluid on the control of Rayleigh-Taylor instability at the interface between a 

dense fluid accelerated by a lighter fluid is studied. A simple theory, based on fully developed approximations, is 

used to derive the growth rate of Rayleigh-Taylor instability. The cutoff and maximum wave numbers and the 

corresponding maximum frequency are obtained. It is shown that the effect of couple stress parameter reduces the 

growth rate considerably compare to the classical growth rate in the absence of couple-stress and hence favorable to 

control the growth rate of surface instabilities in many practical problems. 

 

Keywords: Micropolar Fluid Theory- Complex Fluid- Coronary Artery Diseases- Synovial Joints-Inertial Fusion 

Energy. 

NOMENCLATURE 

B  Bond number 

ije       strain tensor  

g      acceleration due to gravity 

    Gs            angular velocity 

mG     ratio of growth rates 

h         length scale  

l          wave number   

iL       angular momentum 

ijM    body moment 

n         dispersion relation (growth rate) 

ip       linear momentum 

p        pressure 

iq        the velocity 

ir        position vector 

S  Strouhal number 

     

 

  

T        time scale  

U       Characteristic velocity 

'
ij      angular stress tensor 

ij       shear stress tensor 

I         kinematic viscosity  

    jk      stress tensor 

γ  i      vorticity tensor 

         couple stress coefficient 

            density of the fluid 

  surface tension 

  coefficient of viscosity 

  couple stress parameter 

 , dimensions of viscosity 

ijk     the Levi – Civita symbol 

  elevation of the interface 
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1. INTRODUCTION 

The interfacial instabilities continue to be the frontier 

area of research in understanding, control and 

exploitation of micro fluidic devices. The complex fluid 

flows through micro channels have been  developing  

rapidly because of their applications in biosciences, 

physical sciences, in the effective design of artificial 

organs in biomedical engineering, inertial fusion energy 

(IFE), solidification process in material science, heat 

transfer across barriers , friction between surfaces and 

their mitigation, in adhesion and failure of polymers 

and so on. For efficient design of artificial organs in 

human body like synovial joints, endothelium in 

coronary artery diseases (see Ng et al. 2005), efficient 

extraction of IFE (see Rudraiah, 2003; Rudraiah and 

Milan, 2007) and so on, it is essential to control the 

growth rate of surface instabilities. The following three 

types of surface instabilities are given considerable 

interest in the literature (see Chandrasekhar, 1961; 

Rudraiah, 2003), 

 

1. Rayleigh-Taylor Instability [RTI] 

2. Kelvin-Helmholtz Instability [KHI] 

3. Richtmayer-Meshkov Instability [RMI]. 

 

RTI occurs at an interface between highly dense and 

less dense fluids when the latter are at high pressure. 

KHI occurs at an interface subject to shear. RMI is 

regarded as a special case of RTI and it corresponds to 

the case of shock-accelerated interface. These 

instabilities are extensively investigated (see Rudraiah 

and Ng, 2004; Bhatia, 1974) in ordinary Newtonian and 

electrically conducting fluids. However, the Bio-

mechanical and industrial problems mentioned above 

involve non-Newtonian fluids (see Sharma and Sharma, 

1978 and Rudraiah et al. 2000). Sharma and Sharma 

(1978) have studied RTI using Oldroyed’s viscoelastic 

model, where as Rudraiah et al. (2000) have studied 

RTI using power law model. In biomedical problems 

for example in synovial joints the synovial fluid is 

bounded by porous nature of cartilages and in coronary 

arterial diseases (CAD) the blood in arteries is bounded 

by porous nature of endothelium the boundaries of the 

arteries. When joints degenerate the irregular shape of 

the interface between cartilages and synovial fluid 

deforms and produce surface instabilities. In CAD the 

cholesterol and other fat substances will accumulate on 

the endothelium and form the plaques (i.e. the growth) 

on the endothelium. If the plaques reach a critical stage 

it will block the flow of blood in arteries and a 

cardiologist resort to by-pass or other devices like 

angiograms and soon. In these days, a high intensity 

laser is used to melt the plaque. Although the laser 

melts the plaques, it erodes the endothelium causing 

surface instability of the RTI type. To prevent such side 

effects there is a need to understand the growth rate of 

surface instability of the RTI type.  

 

During the degenerative changes either in synovial 

joints or in CAD the fluid deforms and produces a spin 

field due to their micro rotation. The experiments of 

Christopherson and Dowson (1959), using the solid 

spheroid model support this. This spin field sets up an 

anti-symmetric stress known as “Couple stress”. 

Rudraiah et al. (1991) have shown, using the 

generalized dispersion model of Gill and 

Sankarasubramanian (1970), the effect of couple stress 

is to facilitate the loss of hemoglobin, a disease known 

as haemolysis in the blood. To understand the control of 

such situation there is a need to study the surface 

instability of the type RTI. To our knowledge RTI in 

the design of the above artificial organs in biomedical 

engineering using a couple stress fluid, a particular case 

of micro polar fluid, has not been given much attention 

and the study of it is the main objective of this paper. 
 

 

To achieve this objective, the plan of this paper is as 

follows. In section 2, on formulation of the problem, the 

physical configuration, the basic equations and the 

required boundary conditions are given. In section 2.1 

the solution of the differential equation is obtained by 

using the lubrication and Stokes approximations. The 

dispersion relation is derived in section 3 with and 

without the couple stress effect. To know the nature of 

the growth rate, the ratio of maximum growth rate to 

classical growth rate is computed for different values of 

couple stress parameters and the results are tabulated in 

Table 1. The growth rate n  is computed for different 

values of , B and l and the results are represented 

graphically in Figs. 2 and 3. Important conclusions are 

drawn in the final section. 

2. FORMULATION OF THE PROBLEM 

The physical configuration, shown in Fig. 1, consists of 

a thin film of an unperturbed thickness 2h filled with an 

incompressible viscous couple stress lighter fluid of 

constant density 1  called Region 1 bounded below by 

a rigid surface and above by a dense incompressible 

heavy couple stress fluid of density 
2  called the 

Region 2, with the interface at y h . 

 

The rheological properties of physiological fluids like 

synovial fluid in synovial joints, blood flow in arteries 

reveal that viscosity varies nonlinearly with 

concentration exhibiting either shear thinning or shear 

thickening behaviour. This is one of the non-Newtonian 

fluid flow properties.  Most of the existing literature 

(see Fung, 1981; Rudraiah, 1998) on this is silent about 

micro motions, micro rotation and deformations. These 

are taken into account in this paper using a couple stress 

fluid as a particular case of micropolar fluid theory 

developed by Eringen (1966) as described by     

Rudraiah et al. (1998).  The basic equations for this 

fluid are 
 

The conservation of mass for an incompressible fluid   

0i

i

q

x





                        (1) 

The conservation of linear momentum: 

iji
i i

j

Dq
f

Dt x


  


  


                      (2) 

Conservation of angular momentum: 
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Angular momentum is usually defined as the moment 

of the linear moment.  If ir  is the position vector of the 

particles and  

i ip q                                         (3) 

is the linear momentum, then the angular momentum, 

iL  , is  

i ijk i kL r p                           (4) 

where ijk is the Levi – Civita symbol defined as  

1 , ,

1 , ,

0 , ,

ijk

if i j k take values in cyclic order

if i j k take values in acyclic order

if two or all of i j k take the same value






 



 

 

The conservation of angular momentum, neglecting the 

body couple and contact couples (see Rudraiah, 1998) 

can be obtained, by taking the cross product of ir with 

Eq. (2), and using Eq. (3), in the form 

j jkk
ijk i ijk i k ijk i ijk i k

k k

qp
r r p r r f

t x x


    

 
  

  
        (5)            

In Eqs. (1) to (5), iq (i=1, 2, 3) are the velocity 

components, jk  is the stress tensor and kf is the 

body force. 

 

We note that the limitations encountered in the 

continuum theory are the lack of taking into account the 

micro rotation of hyaluronic acid (HA) molecules 

present in synovial fluid. In that case, the intrinsic 

motions of the micro elements must be taken into 

account because the microelement motions and 

deformations play a significant role in deriving the 

required constitutive equations. In such situations, the 

Eringen’s (1966) “micro polar fluid” theory is useful 

and he showed that the couple stress theory results as a 

special case of micro polar fluid theory when the micro 

rotation vector is constrained equal to the fluid bulk 

vorticity through out the flow field, and the deformation 

of the fluid microelements is considered to be very 

small. Then, the constitutive equations for couple stress 

fluid, following Stokes (1968) as in Rudraiah (1998), 

are 

( ) 2ij kk ij ijp e e       ,                           (6)  

(the shear stress tensor)                              

,2
2

ij ij kk ijs sG


       ,                                 (7) 

(the angular stress tensor)                          

, ,4 4ij j i i jM                                           (8) 

1

2

ji
ij

j i

qq
e

x x

 
     

 is the strain tensor              (9) 

,

1

2

ji
i ijk k j

j i

qq
q

x x


 
       

     (10) 

(is the vorticity tensor)                

Gs is the angular velocity vector and the ijM is the 

body moment. 

 

Here the dimensions of   and   are those of 

viscosity and   and   are those of momentum. The 

ratio 


 has the dimensions of length squared. 

 

For an incompressible fluid, when the body moments 

are absent, the basic equations of motion for couple 

stress fluid, using Eqs. (5) to (7), following       

Rudraiah (1998), are 

2 4

2 4

i i i i
i

j i i i

q q q qp
q

t x x x x
  
    

     
      

            (11) 

These equations have to be solved satisfying the no-slip 

and couple stress boundary conditions given in the 

subsequent section. 

2.1 Solution of the Problem 

To study the problem of Rayleigh Taylor instability 

posed in this paper, we consider the fully developed, 

steady and unidirectional flow of lighter couple stress 

fluid in Region 1 accelerating the heavy dense couple 

stress fluid in Region 2. To obtain the required 

equations, we use the following combined lubrication 

and stokes approximations: 
 

1. The thickness 2h  of the lighter fluid is much 

smaller than the thickness H of the dense fluid above 

the interface, that is 

2h H                                      (12)                                      

2. The Strouhal number, S , which is the measure of the 

local acceleration to the inertial acceleration, is 

L
S= <<1

UT
                                       (13) 

 Here U
L


  is the characteristic velocity, 




   

the kinematic viscosity, 
L






 the      

characteristic length,  the surface 

tension,  1 2g    and 
3 2

T
h




    is the          

characteristic time scale. The assumption (13) enabled 

us to neglect the local acceleration term 
iq

t




 in        

Eq. (11). 
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3. We consider high viscous couple stress fluid so that 

inertial acceleration term in Eq. (11), can be neglected 

comparing with viscous term. 
 

4. The interface elevation,  , is assumed to be small 

compared with film thickness 2h  that is  

1
h




 

These assumptions enabled us to use the creeping flow 

approximation which allows us to neglect certain terms 

in the perturbation equation to obtain linear equations 

for the interface elevation.  

 

Under these assumptions, for a two dimensional flow 

the basic Eqs. (11) and (1), respectively reduce to the 

form 

2 4

2 4
0 f

p u u

x y y
 

  
   

  
                        (14) 

0
p

y


 


                                      (15) 

0
u v

x y

 
 
 

                                        (16) 

These equations are solved using the following 

boundary and surface conditions: 

 

The no-slip boundary condition at the rigid surface  

u, v=0     at   y=-h                      (17) 

The interfacial boundary condition  

0
u

at y h
y


 


                                       (18) 

The couple stress boundary condition  

2

2
0

u
at y h

y


  


                                           (19) 

The dynamic surface condition at the interface  

2

2
p at y h

x


 


   


                          (20)    

 The kinematic surface condition at the interface  

at   y=hv u
t x

  
 
 

                           (21) 

For the linear case the above Eq. (21) reduces to the 

form 

v at y h
t


 


      (22)   

                                                      

Making Eqs. (14) to (22), dimensionless, using the 

scales, h for length, h  for pressure,  
2

f

h



 
  
 

 for 

velocity and f

h





 
 
 

 for time, we get  

4 2
2 2

4 2

u u p

y y x
 

  
  

  
                                (23) 

where 

2

2 f h



 is the couple stress parameter.  

 

Solution of Eq. (23), using the dimensionless form of 

boundary conditions (17) to (22), is 

2

2

1 cosh 1 tanh
1 (1 ) 1

cosh 2

y y p
u y

x

 

 

      
          

     
  

                                                                                   (24) 

2.2 Dispersion Relation 

Integrating Eq. (16), over the limits -1 to 1 and using 

the condition (17), we get  

1

1

(1)
u

v dy
x




 


                                          (25)      

Then using Eq. (24), and integrating, we get 

 

 
2 2

0 2 2

2 2( 1) tanh
1 1

3

ilx nt p
v e

x

 


 

    
    

  
   (26) 

 

Making Eq. (22), dimensionless using the scales 

defined above and assuming the normal mode solution 

of the form 0

ilx nte   , we get  

  01 ilx ntv n e                                                    (27)                          

From Eq. (26), with normal mode solution and using 

Eq. (27), we get the dispersion relation in the form  

2 2

2
2

2

tanh
6(1 ) 1

1
n = 1

3 3

l
l

B


 





  
            

  
  

 

   (28) 

where 
2h

B



 is the Bond number and n  is the 

growth rate in the presence of couple stress effect. 

 

In the absence of couple stress, that is 0 (that 

is
2  ), the dispersion relation Eq. (28), reduces 

to 
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2 2

1
3

b

l l
n

B

 
  

 
                                                  (29) 

 

which is the expression given by Babchin et al. (1983). 

Then Eq. (28), can be written as       

b an n lv                             (30) 

where n  is the growth rate of the interface, l  is the 

wave number,
2

1



  

2
2 tanh 1

2(1 ) 1 1
3

a

l
v l

B






   
       

    
  

the velocity across the ablation front,   the couple 

stress parameter and bn  is given in Eq. (29). 
 

3. DISCUSSION AND CONCLUSIONS 

 

The linear RTI of an incompressible viscous couple 

stress fluid in a thin film shell bounded below by a rigid 

surface and above by a dense incompressible heavy 

couple stress fluid of high density is studied using 

normal mode technique. The dispersion relation given 

by Eq. (30) is derived.  
 

By setting 0n  in the dispersion relation (28), we get 

the critical cut-off wave number as             

ctl B
                                      (31) 

The maximum wave number ml , obtained from         

Eq. (28), by setting 0
n

l





, is  

2

ct
m

l
l                                          (32) 

We note that relations (31) and (32) are true even in the 

absence of couple stress effect and for convenience we 

call them as classical results.  
 

The maximum growth rate, obtained from Eq. (28), 

using Eq. (32), is  

2

2

1 tanh
1

2
m

B
n

 

 

   
   

  
                 (33) 

Similarly, from Eq. (29), using Eq. (32), we get the 

maximum classical growth rate as 

2bm

B
n                                                            (34) 

The ratio of the growth rates, mG , obtained from     

Eqs. (33) and (34), is 
 

2

1 tanh
1 1

b

m
m

m

n
G

n



 

  
     

  
            (35) 

This 
mG  is computed for different values of couple 

stress parameter   and the results are tabulated in 

Table 1. The percentage of reduction and values of mG  

are compared with those give by Takabe et al. (1985), 

Rudraiah (2003) and Rudraiah and Milan (2007) and 

we conclude that the reduction of the growth rate by 

couple stress fluid is more significant that those 

obtained by these authors. In particular, we note that the 

maximum reduction of growth rate is 99% for 

 =1.01, compared to 45% reduction predicted by 

Takabe et al. (1985). Thus, the presence of couple 

stress is very effective in reducing the asymmetry in 

IFE target caused by fusing Deuterium and Tritium   

(D-T) and hence facilitates to increase the efficiency of 

extraction of IFE by fusing D-T. These results are also 

useful in the effective design of artificial organs. For 

example, in removing plaques (that is growth) formed 

on the endothelium, the walls of the coronary artery and 

thus helps in controlling the coronary artery diseases.  

 

The frequency  n  given by Eq. (28) is computed for 

different values of   and B and the results are 

graphically represented in Figs. 2 and 3. Figure 2 is the 

graph of  n  versus l for different values of . From 

this Fig. 2, it is clear that a decrease in   (that is 

increase in ) decreases the growth rate and hence 

makes the RTI more stable. Figure 3 is the graph of n  

versus l for different values of Bond number B, which 

is the reciprocal of surface tension. The increase in B 

implies decrease in surface tension. In this Fig. 3 the 

frequency, n  increases with an increase in B implying 

decrease in surface tension. That is decrease in surface 

tension make the system more stable as expected on 

physical grounds.    
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Table 1 Details of growth rate and reduction 

  mG
 

REDUCTION  

        (%) 
  mG

 

REDUCTION      

       (%) 

1.05 0.023 97.6253 1.45 0.200 79.9541 

1.10 0.047 95.2746 1.50 0.220 77.9685 

1.15 0.070 92.9548 1.55 0.239 76.0386 

1.20 0.093 90.6718 1.60 0.258 74.1651 

1.25 0.115 88.4306 1.65 0.276 72.3479 

1.30 0.137 86.2353 1.70 0.294 70.5867 

1.35 0.159 84.0892 1.75 0.311 68.8809 

1.40 0.180 81.9948 1.80 0.327 67.2299 

 

 
Fig. 1. Physical configuration 
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Fig. 2. Graph of dispersion relation versus    

   wave number (varying ) 
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Fig. 3. Graph of dispersion relation versus wave 

number (varying B) 


