Journal of Applied Fluid Mechanics, Vol. 3, No. 2, pp. 65-75, 2010. A
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.

DOI: 10.36884/jafm.3.02.11889

Mixed Convection in a Composite System Bounded
by Vertical Walls

N. Srivastava' and A. K. Singh®

Department of Mathematics, Banaras Hindu University, Varanasi-221005, India

Email: ' neetusri_81@rediffmail.com, * ashok@bhu.ac.in
(Received March 30, 2009; accepted September 6, 2009)

ABSTRACT

A combined convection process between two parallel vertical infinite walls, containing an incompressible viscous
fluid layer and a fluid saturated porous layer has been presented analytically. There is a vertical axial variation of
temperature in the upward direction along the walls. The Brinkman extended Darcy model is applied to describe the
momentum transfer in the porous region. The viscosity of the fluid layer and the effective viscosity of the porous
layer are assumed to be different. Also the thermal conductivities of both fluid and porous layers are assumed to be
different. The graphs and tables have been used to distinguish the influence of distinct parameters on the velocity and
skin-friction. It is determined that the velocity is intensified on making greater the temperature difference between the
walls while increment in the viscosity ratio (porous/fluid) parameter diminishes the velocity of the fluid. It has been
observed that the numerical values of the skin-frictions have an increasing tendency with the increment in the values
of temperature difference between the walls while decreasing tendency with the increment in the viscosity ratio
parameter (porous/fluid).
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NOMENCLATURE
A temperature gradient u' velocity along the x'-direction
along the wall u velocity along x-direction in non-
Da Darcy number dimensional form
d distance of interface x' vertical coordinate
d distance of interface in x vertical coordinate in non- dimensional
non-dimensional form form
acceleration due to y' horizontal coordinate
gravity y horizontal coordinate in non- dimensional
H distance between the form
vertical walls
k' permeability of the porous Greek symbols
medium a thermal diffusivity
P’ pressure I coefficient of thermal expansion
Q constant including U dynamic viscosity of the fluid
pressure gradient term Heps  effective viscosity of the porous region
Ra Rayleigh number 6 temperature in non-dimensional form
Rc ratio of ic.aljmal p density
conductivities
Rv ratio of effective viscosity Subscripts
’ to the dynamic viscosity f fluid layer
Ty reference temperature p porous layer

Ty

temperature at the wall y =0
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1. INTRODUCTION

The phenomena of mixed or combined convection arise
when both free and forced convection simultaneously
occur. Free convection means the motion which arises
due to buoyancy effects while forced convection results
due to any external force. An analytical solution of
mixed convective flow between vertical parallel walls
for higher Rayleigh number has been presented by
Beckett and Friend (1984). A study of mixed
convection flows between parallel plate channels has
been presented by Aung and Worku (1986). An exact
analytical solution of mixed convective flow on a
permeable vertical cylinder in a saturated porous
medium has been given by Ramanaiah and Malarvizhi
(1990). Singh et al. (1993) have presented numerically
the three dimensional free convection in a cavity as a
result of side heating. An analytical study of natural
convective flow in a composite system containing fluid
and porous layers between two vertical walls has been
presented by Paul ez al. (1998). Paul et al. (1999) have
further extended in case of unsteady natural convective
flow.

The problem of mixed convection in a porous medium
bounded by two vertical walls has been done by Mishra
et al. (2002). Nobari and Beshkani (2007) have studied
numerically the mixed convective flow in a vertical
channel by applying finite difference method based on
projection algorithm. The mixed convective flow
between vertical parallel plates has been solved
numerically by Guillet et al. (2007). A numerical study
of mixed convective flow in rotating ducts has been
done by Chiu ez al. (2007). Ahmad et al. (2008) has
investigated numerically the mixed convection along
vertical thin needles. An analytical solution as well as a
numerical solution is obtained by Barletta (2008) for
the mixed convective flow in an inclined tube. The
problem of unsteady turbulent flow and mixed
convection has been presented numerically by Perng
and Wu (2008). A numerical solution of mixed
convective flow across a confined square cylinder has
been acquired by Dhiman ez al. (2008). A numerical
result of the problem of mixed convective flow along a
vertical slender cylinder has been given by
Singh and Roy (2008) and the corresponding result for
unsteady mixed convective flow has been shown by
Singh et al. (2008). The problem of mixed convection
of a nano fluid containing water and Al,0; in
horizontal and inclined tubes with constant heat flux
has been examined numerically by Akbari et al. (2008).

Zanchini (2008) has given an analytical solution of
mixed convective flows in a vertical annulus having
constant wall temperatures. For the mixed convective
flow of a viscoelastic fluid over a horizontal circular
cylinder a numerical result has been presented by
Anwar et al. (2008). Using Keller-box method, a
numerical study of mixed convective flow in a porous
medium has been done by Ishak et al. (2008). The
problem of mixed convective flow from a wavy surface
has been investigated experimentally by Kuhn and Rohr
(2008). The study of turbulent mixed convection from
vertical, parallel plate channels is discussed by Balaji et
al. (2008) by applying asymptotic considerations. The
effect of surface mass transfer on mixed convective
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flows is exhibited by giving numerical solution by
Datta et al. (2008). Mohammed (2008) has given an
experimental result of mixed convective flow in a
vertical circular tube under constant heat flux boundary
conditions. The problem of mixed convection in a
rectangular enclosure is numerically solved by Saha et
al. (2008) using finite element method. Sharma and
Singh (2009) have shown the effects of variable thermal
conductivity and heat source/sink on flow of a viscous
incompressible electrically conducting fluid past a
semi-infinite flat plate by using shooting method. A
numerical solution is carried out by Mahanti and Gaur
(2009) in order to show the effect of varying viscosity
and thermal conductivity on steady natural convective
flow of a viscous incompressible fluid by applying the
Runge-Kutta fourth order method with shooting
technique.

The study of mixed convection in a composite system
has its importance in various fields such as aeronautical
engineering, petroleum reservoir engineering, the
technologies of paper, geothermal energy, storage
system etc. The motive of contemplating this study is to
present an analytical solution of mixed convection
between two vertical walls containing a fluid and a
porous material when the temperature of the walls
varies vertically upward. Brinkman extended Darcy
model is used to model the flow in porous region. For
fully developed laminar flow, the velocity has only one
component in vertical direction. The viscosity of the
fluid layer and the effective viscosity of the porous
layer are taken to be different. Three different analytical
solutions of the model have been obtained depending
on the values of Darcy number, viscosity ratio
parameter, thermal conductivity ratio parameter and
Rayleigh number. Finally effects of various physical
parameters have been shown by using graphs and
tables.

2. MATHEMATICAL FORMULATION

In the given problem a steady fully developed laminar
free convective flow between two infinite vertical walls
filled with a fluid layer and a fluid saturated porous
layer is considered as shown in Fig. 1. The interface of
fluid and porous layers is taken permeable so that fluid
can flow from one layer to other. The x'-axis is taken in
the vertical direction while y’-axis is taken in the
horizontal direction. The walls at y' =0 and y' = H
are maintained at the temperatures T, + Ax’ and
T, + Ax" respectively, where x' is the distance
measured vertically in the upward direction. Under
usual Boussinesq’s approximation, the governing
equations in the reference of the considered problem in
non-dimensional form are derived as follows:

For fluid region (Beckett and Friend (1984)):

d?uy
e + Rafy = —1, 1)
dze
o —u =0, 2)
For porous region (Mishra et al. (2002)):

d*u 1
Ru dyf +Raby, — —up, = -1, )
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d%e
L —u,=0.

Rc dy? 14

“)

The corresponding boundary and matching conditions
in non-dimensional form are acquired as follows (Singh
et al. (1993)):

aty =0, uf—O, 6f=0,
gt
aty=1_ up:O, p:T;HZO =Q)
duf du
aty =d, U=y, = d—y”,
do; _ de
aty = d, Bf = Bp, E d_yp'

(6))
The non-dimensional quantities used in the above
equations are obtained as follows:

’ U !
_Yy _ usH _ uph
y_g’ uf YY) D= 5,0
Qay Qay
i
9. =0t _ % = Mets
f = ang’ P T 4HQ® o
K' a ABH*
Da =, Rc=-%, Ra = L9ABH” ,
ar Eriy
o (-2 1 5) )
=—1d(-=-= x't. 6
Q=" pzt9)+3b (6)

Eliminating 6; from Egs. (1) and (2), we get a fourth
order differential equation in uy as

0

while eliminating 68, from Egs. (3) and (4) a fourth
order differential equation in u,, is obtained as

d*uy
o + Rauy =0

d*u 1 d%u Ra
—P2———P4—qy, =0, ®)
dy* Da dy? Rc P
whose auxiliary roots are obtained as given below:
1+S
my my, ==
1,72 2DaRv ’
1-S
ms my = +
3,774 2DaRv’ ©®

where

4RaRvDa?
S=[1——
Rc

It is obvious from the auxiliary roots described in
Eq. (9), that the solution for the velocity and
temperature fields depends on the values of Ra, Rv,
Da and Rc and there arises three different cases which
are as follows:

4RaRvDa?

Casel. When 1 — > 0;

In this case S will be a real number. Solving Egs. (7)
and (8) with their proper boundary conditions the
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solution for ug, 6f, u, and, 6, are
below:

obtained as given

u; = eM(Cy cos Ny + C, sinNy)

+e MY (C3 cosNy + C, sinNy), (10)
O = _i %[eNy(Cz cosNy — C;sinNy)

+e™NY(C3sin Ny — C, cos Ny)].. an
u, = (Cscoshh,y + Cgsinh hyy)

+(C; coshh,y + Cgsinh h,y), (12)

1

R .
Op = —7-— R—Z [Csh? coshh,y + Cgh? sinhhyy
+C,h3 coshh,y + Cgh2 sinh h,y] + ﬁ

[Cs cosh(h,y) + Cgsinh(hyy) + C, cosh(h,y)
+Cg sinh(h,y)]. (13)

The above solutions are valid only for 0 <S< 1.

4RaRvDa?
Rc

Case2. When 1 — =0;

In this case, the velocity and temperature fields in the
fluid and porous region with the suitable boundary
conditions are derived as

u; = eM(Cy cos Ny + C, sinNy)

+e MY (C3 cosNy + C, sinNy), (14)
0 = -~ 2 e (G, cos Ny — G, sinNy)
Ra Ra
+e MY (C;ysinNy — C, cos Ny)], 15)
u, = (Cs + Cgy) coshmy
+(C; + Cgy) sinhmy, (16)

1 Rv

P~ Ra Ra

coshmy + {m?(C; + C,y) + 2mC,} sinhmy]

[{m2(Cy + Coy) + 2mC,}

1
+5——[(C1 + Cyy) coshmy + (C3 + Cyy)

sinhmy]. 17

4RaRvDa?

Case3. When 1 — <0

S will be imaginary in this case. The expressions for the
velocity and temperature fields in the fluid and porous
region with the corresponding boundary conditions are

uy = eMV(Cy cos Ny + C, sinNy)

+e™NY(C; cos Ny + C, sin Ny), (18)
__ L 2N i

= "ZRa” Ra [eMY(Cycos Ny — Cy sinNy)
+e~NY(C; sinNy — C, cos Ny)], (19)
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u, = e (Cs cos By + Cg sin By)
+e~%(C; cos By + Cgsin By),

6, = ——+
P~ Ra

(20)

——[e™ B(C5 cos By + Cq sin By
+e~*{C, cos By + CgsinBy}] — % [Cse™

{(a? — B%) cos By — 2af sin By} + Cse™

{(a? — B?)sin By + 2ap cos By} + C,e~
{(a? — B%) cos By + 2af sin By} + Cge™ %
{(a® — p*)sin fy — 2ap cos By}]. @1

By using the Egs. (10), (12), (14), (16), (18) and (20),
expressions for the skin frictions in all three cases are
derived as follows:

4RaRvDa?

Case 1: When 1 — > 0;

= (s - —
7 = (G )y=o N(Cy+Cy +Cy— Cs), 22)
du
P
(2]
dy ye1
= —(Csh, sinh hy + C¢4 hycoshh,)
+(C; h, sinh h, + Cgh,cosh h,). (23)
Case 2: When 1 — 2ReR"22 _ 0;
dug
T, =—(=—=
1 (dy )y:O
=—-N(C,+Cy;+C,—C5), (24)
du
P
(%)
dy ye1
= {(Cs + Cs)m + Cg}sinhm
+{(C; + Cg)m + C¢} coshm. (25)
Case 3: When 1 — 4RaRvDa® <0;
d
n=(50)  =NCGHC+C-Cy), (26)

y=0

du,,)
Ty, = — <—
dy ye1

= e*{Cs(acosB — BsinB) + Cs(asinB +
fcosf—eaC8fcosf—asing—C7Fsing+acosf
@7

The parameters used in the above equations are
mentioned in the appendix.

3. RESULTS AND DISCUSSION

The influence of different physical parameters on the
velocity field is depicted in the Figs. 2-3 for the case
S > 0 while in the Figs. 4-6 for S = 0 and finally for
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the case S < 0 in the Figs. 7-11. In Fig. 2 the effect of
thermal conductivity ratio parameter Rc and viscosity
ratio parameter Rv on the velocity field is shown. From
the figure it can be clearly observed that the velocity is
showing decreasing behavior with the increment in the
values of Rv for all the values of Darcy number and this
is expected due to impact of more viscous force.
For Da = 1072, we can see that the effect of viscosity
ratio parameter is negligible in the porous region. There
is a decrement in the velocity on increasing the values
of Rc in the fluid region while there is an increment in
the velocity on increasing the values of Rc in the porous
region. This phenomenon may occur due to more
diffusion of heat in porous layer than fluid layer. In
Fig. 3, the impact of pressure gradient constant @, on
the velocity field is hold to view. By examining the
figure it has been noticed that the velocity becomes
greater when the values of Q grow i.e., when the
temperature difference between two walls is increasing.
This is attributed to fact that velocity increases due to
increment in the buoyancy force. In Fig. 4, the effect on
the velocity field for the different values of Rc, Rv and
Ra has been displayed whenS = 0. The figure
manifestly notifies that on increasing the value of Rv,
the velocity decreases for all the values of Darcy
number.

In Fig. 5, the relation between the fluid layer width d
and the velocity has been presented to view. The figure
completely notifies that with the increment in the fluid
layer width d the velocity has growing nature for all the
values of Darcy number. But for Da = .05, in the
porous region there is a negligible influence of
increment in fluid layer width. In Fig. 6, the variation in
the velocity due to variation in the values of Q has been
shown. It is clear from the figure that when Q = 0, that
is when the temperature difference between two walls is
zero then the flow is in the upward direction while
for Q > 0, the flow is in the reverse direction.

In Fig. 7, the velocity profiles are shown for different
values of Rc and Rv. It is remarkable from the figure
that the effect of Rv on the velocity is to decrease it for
all considered values of Darcy number. In this case also
the velocity has a decreasing tendency in the fluid
region while it is showing an increasing nature in the
porous region on increasing the values of Rc. Also
velocity is more apparent for Da = 107! than that
of Da = 1072, In Fig. 8, the effect of Rayleigh number
Ra on the velocity field has been exhibited. It is quite
remarkable from the figure that there is a decrement in
the velocity due to increment in the values of Ra. In
Fig. 8, the relation of velocity with the fluid layer width
has been hold to view. From the figure it can be easily
seen that the velocity varies in an increasing manner on
increasing the fluid layer width. Figures 10 and 11 are
given to describe the effect of Q on the velocity when Q
hold the values close to zero and when Q hold the
values greater than zero respectively. From both the
Figs. 9 and 10, it is obvious that the velocity has
increasing tendency with the increment in the values
of Q for the all values of Darcy number.

At last, the numerical values of the skin-friction are
computed on both the walls. Here, 7; and 7, represent
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the numerical values of skin-friction on the walls y = 0
and y = 1 respectively and they are given in Tables 1, 2
and 3 for the different three casesS > 0,5 = 0, and
S < 0 respectively. From the Table 1, it is observed that
on increasing the values of Rv and Ra both 7; andt,
are decreasing while increasing due to increment in the
values of Darcy number, fluid layer width d and
pressure gradient constant Q. The increment in the
values of Rc makes decrement in7; while it makes
increment int, for all the values of Darcy number.
From Table 2, it can be clearly viewed that the values
of both 7, and 7, increase with the fluid layer width d
and pressure gradient constant Q. From Table 3, it can
be notified that both 7; andt, have increasing
tendency when the Darcy number Da, fluid layer
width d and pressure gradient constantQ, tend to
increment. With the increment in the values of Rc, 7,
decreases while 7, increases. In this case, botht,
and 7, are showing decreasing behavior on increasing
the values of Rv and Ra.

4. CONCLUSION

An analytical solution of mixed convection in a
composite system containing a fluid layer and a porous
layer bounded by vertical walls has been attained. It is
resolved from the discussion that the velocity in both
fluid and porous regions has decreasing tendency with
the viscosity ratio parameter for all the cases which is
due to fact that velocity decreases due to more viscous
forces. The effect of the thermal conductivity ratio
parameter is to enhance the velocity in the porous
region while to diminish the velocity in the fluid region
for all the values of Darcy number. Lastly, it has been
concluded that numerical values of the skin friction
exhibit an increasing behavior with the increment in the
values of temperature difference between the walls,
Darcy number and fluid layer width while the
numerical values of skin friction are decreasing due to
the viscosity ratio parameter and Rayleigh number.
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Fig. 1. Physical configuration of the model

pa=10"
000 4
0.8
007 Curves Rw Ra Re
1.3 10 1.5
o6 4 5 2,7 22 10 15

3.8 1.6 10 10
o054 4 15 10 15
5 1.5 10 20
L oosd 8 17 10 15
003

002 o

oot 4

T T
03 1.0

Fig. 2. Velocity profiles for different values of Rc
and Rv (Case 1)

ba=10"
Da= 107
RuU=1.5
Ra=10
Re=15
4=05
Curves 0Q
1,4 0.0
2,5 05
3,6 1.0

w
Fig. 3. Velocity profiles for different values Q
(Case 1)



N. Srivastava and A. K. Singh / JAFM, Vol. 3, No. 2, pp. 65-75, 2010.

pa= 10"

07 - Pl T L1
Q=00

d=05

e Cures Re RV Ra
1 10 156 166

0.6 16 1.5 250

20 1.5 333
16 10 3745
16 20 187
10 15 666
16 1.6 1000
20 1.6 13332
156 1.0 1500
16 20 7650

L N I S AR

=

() 0z 04 [ oe 10

Fig. 4. Velocity profiles for different values of Rc,
Rv and Ra (Case 2)

ba=10", Ra=25

~-Da= .08 Ra= 107

0.6 o

Rec=145
Ru=15
Q=00
Curves d
1.4 032
2,4 05
2.6 o7

I T T T T T T T T T T "
oo 0.z 0.4 0.6 08 1.0

¥

Fig. 5. Velocity profiles for different values of d
(Case 2)

ba=10", Ra=25
coee-Da = 08, Ra= 107

044 Re= 1.5
Rv=1.5
d=0.5

0

]

vz Curves @

1,4 00
2,6 0.6

04 3,68 10

06

os T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
¥

Fig. 6. Velocity profiles for different values of Q
(Case 2)

Curves RV Re
1 1.0 1.5

o
o
in

T
o
in

= T
oo 0.z 0.4 L) og 1.0
w

Fig. 7. Velocity profiles for different values of Rc
and Rv (Case 3)

pa=10"
0.0 4 e Da = 407
o=00
Ru=12
o8 4 Re=15
=05
Curves Fa
. 1 100
7 2 &00
3 10000
4 12000
Y04l 5 14000

0.0z 4

oo

¥
Fig. 8. Velocity profiles for different values of Ra
(Case 3)

q —©Ca .
030 4 ke
] Q=00
Rv= 1.6
025 4 Re=15
1 Curves d
020 -| 1,4 03
2,6 05
1 2 07
R
J 2 1
010 - 5
] 3
k
10

Fig. 9. Velocity profiles for different values of d
(Case 3)

Da=10" Ra= 107

. e Da= 107 Ra= 10t
Ru=15
Re=14
04 d=058
Q
0.0
a1
nz

Fig. 10. Velocity profiles for different values of
Q (Case 3)

pa=10", Ra= 10%

- ba= 107 Ra= 10t
Rv=1.5

22 Re=15

Fig. 11. Velocity profiles for different values of
Q (Case 3)

71



N. Srivastava and A. K. Singh / JAFM, Vol. 3, No. 2, pp. 65-75, 2010.

Numerical values of skin frictions

Tablel Case 1

Da | Q |Ra | Rv |Rc| d T, T,

1071 | 00| 10 | 1.3 | 1.5 | 0.5 | 0.386669 | 0.254900
00| 10 | 1.8 | 1.5 | 0.5 | 0.386578 | 0.220868
00| 10 | 1.5 | 1.0 | 0.5 | 0.401966 | 0.260029
00| 10 | 1.5 | 2.0 | 0.5 | 0.380595 | 0.260339
00| 15 | 1.5 | 1.5 | 0.5 | 0.366278 | 0.236119
00| 22 | 1.5 | 1.5 | 0.5 | 0.362220 | 0.225121
00| 10 | 1.5 | 1.5 | 0.3 | 0.348182 | 0.215806
00| 10 | 1.5 | 1.5 | 0.7 | 0.422484 | 0.280347
05| 10 | 1.5 | 1.5 | 0.5 | 0.998385 | 1.153310
10| 10 | 1.5 | 1.5 | 0.5 | 1.540800 | 2.201330
1072 | 0.0 | 10 | 1.3 | 1.5 | 0.5 | 0.298580 | 0.091616
00| 10 | 1.8 | 1.5 | 0.5 | 0.293953 | 0.079290
00| 10 | 1.5 | 1.0 | 0.5 | 0.296468 | 0.085167
00| 10 | 1.5 | 2.0 | 0.5 | 0.296415 | 0.086007
00| 15 1.5 | 1.5 | 0.5 | 0.294816 | 0.085056
00| 22 | 1.5 | 1.5 | 0.5 | 0.290567 | 0.084347
00| 10 | 1.5 | 1.5 | 0.3 | 0.206724 | 0.081821
00| 10 | 1.5 | 1.5 | 0.7 | 0.393193 | 0.116738
05| 10 | 1.5 | 1.5 | 0.5 | 0.665799 | 0.464376
1.0 10 | 1.5 | 1.5 ] 0.5 | 1.034200 | 0.838864

Da | Q| Ra |Rv | Rc| d T, T,

1071 | 0.0 25 1.5 | 1.5 | 0.3 | 0.206240 | 0.870637
0.0 25 1.5 | 1.5 | 0.5 | 0392751 | 1.056768
0.0 25 1.5 | 1.5 | 0.7 | 0.964422 | 1.627459
0.5 25 1.5 | 1.5 | 0.5 | 0.512209 | 1.323730
1.0 25 1.5 | 1.5 | 05 | 0.631668 | 1.590671
00| 166 | 1.5 | 1.0 | 0.5 | 0.166228 | 0.950956
0.0 | 333 1.5 ] 2.0 | 0.5 | 2.100763 | 2.803604
00 | 187 | 2.0 | 1.5 | 0.5 | 2.292225 | 1.237157
00| 208 | 1.5 | 1.8 | 0.5 | 0.886599 | 1.533033
.05 0.0 100 1.5 | 1.5 | 0.3 | 0.560225 | 0.532392
0.0 100 1.5 | 1.5 | 0.5 | 0.727771 | 0.551913
0.0 100 1.5 | 1.5 | 0.7 | 0.974949 | 0.578088
0.5 100 1.5 | 1.5 | 0.5 | 0.929358 | 0.687462
1.0 100 1.5 | 1.5 | 0.5 | 1.130945 | 0.823012
0.0 | 1333 | 1.5 | 2.0 | 0.5 | 0.537431 | 0.488496
0.0 | 20.8 1.5 | 1.8 | 0.5 | 0.563640 | 0.497770

Da | Q Ra |Rv |Rc| d T, T,

1071 | 0.0 100 10 | 1.5 | 0.5 | 0.383112 | 0.386109
0.0 100 20 | 1.5 | 0.5 ] 0379016 | 0.283202
0.0 100 1.5 | 1.0 | 0.5 | 0471167 | 0.236866
0.0 100 1.5 120 | 05| 0372853 | 0.335647
0.0 500 1.5 | 1.5 | 05| 0.309017 | 0.226889
0.0 900 1.5 | 1.5 | 05| 0.291173 | 0.198156
0.0 100 1.5 | 1.5 | 0.3 | 0.326804 | 0.249637
0.0 100 1.5 | 1.5 | 0.7 | 0.587187 | 0.941567
0.5 100 1.5 | 1.5 | 0.5 | 4314726 | 8.213052
1.0 100 1.5 | 1.5 | 0.5 | 8.246530 | 16.104570
1072 | 0.0 | 10000 | 1.0 | 1.5 | 0.5 | 0.061075 | 0.078267
0.0 | 10000 | 2.0 | 1.5 | 0.5 | 0.063788 | 0.061201
0.0 | 10000 | 1.5 | 1.0 | 0.5 | 0.062881 | 0.054239
0.0 | 10000 | 1.5 | 2.0 | 0.5 | 0.061432 | 0.076134
0.0 | 12000 | 1.5 | 1.5 | 0.5 | 0.059315 | 0.056257
0.0 | 14000 | 1.5 | 1.5 | 0.5 | 0.060947 | 0.047887
0.0 | 1000 | 1.5 | 1.5 | 0.3 | 0.139523 | 0.047492
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Appendix

Case 1:
s= |1— 4RaRvDa? ’ _ 1+ ’
Rc 2DaRv
N = E’ = 1-5 ]
\I 2 2DaRv
hy = \/Z, h, = VB >
h; = hyd, hy = h,d,
he = Nd, h; = 2N?,

r, = cosh(hy),
r3 = cosh(h,)
s = e cos(hg),

T, =

Tsg = T12 + Tys79,

r, = sinh(hy),
1, = sinh(h,),
re = e"6 sin(hg),
e~ cos(h),
= sinh(hy),
Ne"s{cos(hg) — sin(he)},
Ne"s{cos(hg) + sin(hg)},
—NeMs{cos(hg) + sin(hg)},
Ne~"s{cos(hg) — sin(he)},
= Rvh, sinh(h;),

= Rvh, cosh(h3),

= Rvh, sinh(hy),

Rvh, cosh(h,),

1
hy’

h? sinh(h,),

rg = e M6 sin(hy),

h? cosh(hy),

724 = h2 cosh(hy),

1 2
= (E — RVh1) cosh(hs),

= (D—la - thf) sinh(hs),
(5
(D—la - th%) sinh(hy),

= h,e"ssin(hy),

= h,e " sin(hy),

= Nhge™s(cos(hg) — sin(hg)),
= Nhge™s{cos(hg) + sin(hg)},
= Nhge "s{cos(hg) — sin(hg)},
= Nhge™"s(cos(hg) + sin(hg)),

- th%) cosh(hy),

h,e™s cos(hy),

731

134 = e 6 cos(hg),

= (—thf + %) Rc sinh(hy),

—(—pypd+ ™

= ( Rvhi + Da) Rc cosh(hs),

—(— 3, he ;

= ( Rvh; + Da) Rc sinh(hy),

—(—pvpd + 2

= ( Rvh; + Da) Rc cosh(hy),

__n T,
- e
=717 T, Ty =Tg t e,

= Tio F TasTo, Ty9 = T11 F T4aTo,

51 = 12176

73

Ts2 =Ti5 — 113,
T5q = Ty3T17 + T1g,
Tse = Tys5T17 T+ T20,
Tsg = Ty3722 + 723,
Teo = T4s5T22 T+ 7325,
Tez = T44T27 T T29,
Teq = T3z T 133,
Tee = 121731,

Teg = 136 T 137,

Ts3 = T14 + T6,
Ts5 = TaaT17 T+ To,
Ts7 = 121714,

Tsg = Ty4T22 + T24,

Te1 = T43T27 + 728,
Te3 = Tu5T27 T T30,
Tes = T31 — T34,
Te7 = T35 T I38,

Te9 = 143739 T T10, T70 = 144739 T+ 111,
T71 = Ty4s5739 + 112, Ary = Tp1735,

T26 59 760
Ty = =2 Ty3 = =, Toy = —

725 73Ty 74T
T75 = 173748 — T49, T76 = 174748 — Ts50,
T77 = 151 — 172748, T7g = 154773 — Ts55,
T79 = 174754 — T56, Tgo = 157 — 172754,
g1 = Te2 — 173761 Tg2 = T63 — 174761,
Tg3 = Tee T 172761, T84 = 173769 — T70,

T47 75

Tgy = —~ Tgg =
87 =, 88 =

76 77

Tgo = == Tog = -

89 = o 90 =75
T91 = 153 — 87752, Toz = T7g — T'ggls2,
To3 = T79 — T'goT52, T4 = Tgo — TooT52,
Tos = Tg1 — TggTe4- Toe = Tg2 — T'g9T64>
T97 = Te5 — 1877645 Tog = g3 — T90T64>
Tgg = Te7 — 1877685 T100 = T84 — T8sTes>
T101 = T85 — T'g976s> T102 = T86 — T90768>

T92 T93
Tyo3 = —= Tioa = 2
103 = 75 104 = 75
— T - _
Ti0s = > T106 = T95 — 103797,
91
T107 = T96 — T104797> T108 = Tog — T105797,
T109 = T100 — 103799, 10 = :101 — T104799,
— _ To7
111 = T102 — T105799, 12 =
r 106
108

r = —

13 =7 o
114 = T110 — "1127109>
115 = T111 — "1137109>

_ T115 _
e = — 5 > Cg = 1116,
114
C7 = —(1112Cs + 1113), Co =173 — 17307 —174Cyg,
Cs = 14306 + 144C7 + 745,
Cy = — (1105 + T103C7 + 1104 Cg),
C3 = — (190 + 157C4 + 135C7 + 159C3),
Cy =191 + Cy, C; =—Cs.
Case 2:
vRa 4RaRvDa? 1

N=_[— S=[1——, m=——,

2 Rc 2DaRv
r =1/2N?, r, = coshm, r3 = sinhm,
7, = m%coshm, 15 = m?coshm + 2m sinhm,
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Te

g =

T10

T12
T14
T16
17
T1g

T19

T39

m?sinhm , r, = 2mcoshm + m?sinhm,
—(i-l— % , 1o = eN4cosNd,

= eNdsinNd, 1, = e NcosNd,

= e NisinNd, 113 = coshmd,

= dcoshmd, 15 = sinhmd,

= dsinhmd,

= NeM¥(cosNd — sinNd),

= NeM%(cosNd + sinNd),

= —NeN4(cosNd + sinNd),

= Ne N4(cosNd + sinNd),

= mRvsinhmd,

= Rv(mdsinhmd + coshmd),

= mRvcoshmd,

= Rv(mdcoshmd + sinhmd),

= 2N2eN%sinNd, Ty = —2N2eN%cosNd,

= —2NZ?e~NdsinNd,

= —Rvm?coshmd + icoshmd,

1
= —Rvm?dcoshmd + Da dcoshmd

—2mRvsinhmd,

= —Rvm?sinhmd + isinhmd,

1
= —Rvm?dsinhmd + Da dsinhmd

—2mRvsinhmd,

= 2N3eN?(sinNd — cosNd),

= 2N3eM4(sinNd + cosNd),
2N3eNd(sinNd — cosNd),
= —2N3e~Ne(sinNd — cosNd),

= Rc(—Rvm3 + %)sinhmd,

= Rc[—Rv(m3dsinhmd + 3m?coshmd)

+ % (mdsinhmd + coshmd)],

= Rc(—Rvm3 + %)coshmd,

Ts0 = Rc[-Rv(m3dcoshmd + 3mZsinhmd)

Ts6

+ % (sinhmd + mdcoshmd)],

3

= Typ =715 =14, 743
2
8
=T7 =TT, Tas = T2’ T46
_ Taa —
= Tyg =T11 —To, Tyo

42’
=TT t T4sT13 — Ta5714,
=T41T13 — Ta46T13 t Ta6T14 — 115,
= T41T13 — T3 + 147714 — T16>

Tso

22 Te, = =2
> 54 Tag

28 = 2N2e N4cosNd,

=Te — 14T41,
_ Ta3
42’

=T12 —To>

_Ts51

Ts5 =

Tag

>

> T57 = T30 + T1g — 53719 + 53717,

Tsg = Ts5T17— 123 — T55719 T T46T22 — Ta6T21 + 141721,

Ts9 = V56717124 — T56T19 T 122747 — Ta7T21 + 141721,

T60

Te1

To4

Te6

T70

= T54717 — Ts54T19 — T22T4s + TysT21 + Tigly,

Ts9
Tep = —
62 r57’

= T41T29 — 731 — V55727 + V55725 — 129746

+730746 — T61728 — T61726 T T61753727

—T61753725,

= T56T25 — TsT27 + 141729 — T32 = Ty7T29

FT47730 — Te2T28 — Te2T26 T T62753727

—T62753725,

= —Ts54Tp7 + 1126 T+ T54725 + T45T29

—T45730 — V63728 — 763726 T 763753727

—Te3753725,

Tes

p
Te4

Te6
Teg = —
68 Tes >

= T41737 — T56T35 — Tao + 56733 — Ta7737

+T47738 — T62734 — T62736 T T62753735

—Te62153733 — V67737741 + Te7739 + T67755735

—Te7733755 T 167746737 — T677387a6 TT67761737

tT67761736 — 161753735767 T 7677617537335

= T68739 — 741768737 T T6gT55735 — 768733755

+T68746737 — T6a738746 T T68761734 T T68761736

—Te8761753735 1 68761753733 — 154735 T 733754

+T1734 + 145737 — T38745 163734 — 763736

+763753735 — 153763733,

70

7 = Teo’ Cg = —1y1,
C7 = —(r6g + 767Cs), Co = Tus — T4C7 — 147 Cy,
Cs = —(Co +141(C7 + Cg)),
Ch = —(161C7 + 162Cg + T63),
C3 = —(153C4 + 15507 + 156 Cg + 754),
Cy=0Cy+ry, C; =—C5.
Case 3:

4RaRvDa? V1+R2+1
R= ,7RC -1, d, = -
d, = V1i+R2-1 _d
2= 2 = V2Darv’
ﬁ — 4 t = E

= V2Darv’ TN 2

r1=$, 1, = e% cos f,
r3 = e%sinf, r, = e % cosp,
rs = e *sinf,
re =~ cos B — 2 ea[(a? — B?) cos f — 2ap sin B]
6 ™ DaRa Ra ’
= sin B — Ze@[(a? — f2) sin B + 2ap cos f]
7 DaRa Ra ’
re = * cos B — X e-e[(a? = B2 cos f + 2ap sin B]
8 DaRa Ra ’
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Ty

T39

1 .
T40 = Rce®® {5z (Bcos fd + asinpd) —

Ta1 ={—Rce‘“d{K1Ra (a cos Bd + B sin fd)) —

43 =

-a

— ; RV —arc,2 2 i
= DaRasm[? —a® [(a® =) sin B —2ap cos B],

T-T, 1
=10 - 11, = e cos Nd,

AHQ  Ra
= eMsin Nd, 113 = e N cos Nd,
= e Ndsin Nd, 115 = e cos Bd,
= e*sinfd, 1, = e * cos Bd,

- . 2N? ;
= e *sin fd, Tio =Ee"’d sin Nd,

2N%  na
= —=—¢e"* cosNd,
Ra
2N%  _na .
=—=—c¢ sin Nd,
Ra

2N? _Nd
=—ce cos Nd,

Ra

e®d RV adr(,2 _ p2
= cosp — —e*®[(a? —

para 0SB — g 5

cos fd — 2af sin Bd],

a

sin Bd — R—ve“d[(az - B3
DaRa Ra

sin d + 2af3 cos fd],

_ e _ RV __adr 2 _ p2
= Dara °°8 Bd Ra© [(a” =%
cos fd + 2af sin fd],

—ad

sin Bd — R—ve‘“d[(az )
DaRa Ra

sin fd — 2af cos fd],

NeN%(cos Nd — sin Nd),
NeV4(cos Nd + sin Nd),

—Ne N%(cos Nd + sin Nd),

Ne N%(cos Nd — sin Nd),
Rve®®(a cos fd — B sin fd),
Rve®® (B cos fd + a sin fd),
—Rve~%4(a cos fd + f sin fd),
—Rve~%4(B cos fd — a sin Bd),
ZR—TeNd (cos Nd + sin Nd),

3
%e”d (sin Nd — cos Nd),

3
%e‘”d (sin Nd — cos Nd),

3
—%e”d (cos Nd + sinNd),

adg 1 — Bsi _ R
Rce {DaRa (a cos Bd — B sin Bd) ra

[(B® — 3a?B) sin Bd + (a® — 3aB?) cos Bd]},

Rv

Ra

[(3a?B — B3) cos Bd + (a® — 3afB?) sin pd]},

Rv
Ra

[(B% —3a?B) sinBd + (3aB? — a®) + cos Bd]},

_ 1 . R
742 = Rce “d[—ﬁ (B cos Bd — a sin Bd) — i

{(3a%B — B3) cos Bd + (3ap? — a3)+sin Bd }],

3 T4
Tya = —
T 44 =

s

Ty =
45 2

75

>

Ty =17 — T6Ta3, Ty7 = Tg — TeTa4,
Tyg = T9 — Telys, Ty9 = :1_0,
46
T47 T48
Tso = e’ Ts1 = e’
Ts; = T3 — Ty, Ts3 = T4 + 112,
Tsq = 11712 + T49T43715 — T49T16,
Ts5 = T44T15 — T17 — Ts07a371s + T50716>
Tse = TasT1s — T1g — Ts51Ta3Tis + 751716,
753 754 Ts5
Ts7 = g, Tsg = o Ts9 = e
Teo =7 > Te1 = Tap +T20 — 121757 + T19757,
Te2 = T44723 = T25 — 121759 + T19759 — T50743723 + 124750,
T63 = —TeoT21 + Te0T19 T 745723726 — 751743723 + 124751,
Teq = —Tsgla1 T T5gT19 t 11720 + Ta9T43723 — T49724,
763 T64
Te6 = e’ Te7 = et
Teg = 144731 — 733 — T29759 + 59727 — Te5728
—T30T65 T T65757729 — T57727T65 — T50743731
+750732,
Te9 = T45731 — 1324 — Te6T20 T+ Te0T27 — Te6T28
—Te6T30 T 757729766 — V57727766 — 743731751
+732751,
T70 = T1T28 — T5gT29 + 5727 — Te7728 — 167730
167757729 — Te7757727 + T49743731 — 132719,
769 70
7 = Tea’ T72 = Tes’

T73 = T44739 — T41 — V59737 + T'59735 + T65757737

—Te5T57735 — Te5736 — 138765 — T50743739 7150740,

T74 = T4s5T39 — T4z — TeoT37 T Te0T35 t Te6T57737

~Te6T57735 — 166736 — 138766 — 151743739

+751730,

T75 = 11736 — T5gT37 + T5gT35 + 67757737 — T67757735

—Te7756 — 738767 T 749743739 — Ta0719,

T76 = T74 — 171773,

T78 =

C7 = —(1r71Cg + 172),

77

776

Cs = —(143C¢ + 124C7 + 135Cy),

Cp = —(165C7 + 166Cg + T67),

C3 = —(157C4 + 159C7 + 160C + 753),

Cy=0Cy+ry,

G

s Cg = —17g,

—Cs.

Co = Tug — 15007 — 751 Cg

T77 = T75 — 172173,
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