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ABSTRACT

A numerical solution of the unsteady radiative free convection flow of an incompressible viscous fluid past an
impulsively started vertical plate with variable heat and mass flux is presented here. This type of problem finds
application in many technological and engineering fields such as rocket propulsion systems, spacecraft re-entry
aerothermodynamics, cosmical flight aerodynamics, plasma physics, glass production and furnace engineering. The
fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the
radiative heat flux in the energy equation. The governing non-linear, coupled equations are solved using an implicit
finite difference scheme. Numerical results for the velocity, temperature, concentration, the local and average skin-
friction, the Nusselt and Sherwood number are shown graphically, for different values of Prandtl number, Schmidt
number, thermal Grashof number, mass Grashof number, radiation parameter, heat flux exponent and the mass flux
exponent. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the
boundary layer. The local and average skin-friction increases with the increase in radiation parameter. For increasing
values of radiation parameter the local as well as average Nusselt number increases.

Keywords: Finite difference scheme, variable heat and mass flux, radiation.

NOMENCLATURE
a, b constants Sc Schmidt number
cp specific heat Shy dimensionless local Sherwood number
g 3?;2?122:)&::225 concentration sryu dimensionless average Sherwood number
D mass diffusion coefficient T temperature
g acceleration due to gravity T dimensionless temperature
Gm mass Grashof number t’ time
Gr thermal Grashof number t dimensionless time
k thermal conductivity U velocity of the plate
L reference length u,v velocity components in X, y - directions
m exponent in the power law variation of respectively
heat flux U,V dimensionless velocity components in
n exponent in the power law variation mass X, Y directions respectively
flux X dimensionless spatial coordinate along
N conduction-radiation parameter the plate
NuX dimensionless local Nusselt number y spatial coordinate normal to the plate
S Y dimensionless spatial coordinate normal to
Nu dimensionless average Nusselt number the plate
Pr Prandtl number
Y heat flux per unit area at the plate Greeksymbols
N a thermal diffusivity

O mass flux per unit area at the plate Jij volumetric coefficient of thermal expansion
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p volumetric coefficient of expansion with
concentration

v kinematic viscosity

p density

Ty dimensionless local skin-friction

1. INTRODUCTION

Numerical modeling of combined heat and mass
transfer flows is important in many industrial
applications including geothermal energy, solar energy
systems, biomechanics [Wang and Chen (2005)] and
rocket propulsion [Vrentas and Vrentas (1996)].
Extensive studies have been reported in all these areas
employing a wide variety of numerical simulation
methods including finite elements, finite differences,
network simulation and CFD (Computational Fluid
Dynamics). Many high temperature processes in
industrial design and combustion and fire science
involve thermal radiation heat transfer in combination
with conduction, convection and also mass transfer. For
example radiative-convective heat transfer flows arise
in industrial furnace systems, radiative waste storage,
forest fire dynamics, fire spread in buildings etc.
Considerable research has therefore appeared studying
radiative-convective flows in a variety of geometrical
configurations with numerical and mathematical
models. Bratis and Novotny (1974) reported on the
effects of thermal radiation in the convection boundary
layer regime of an enclosure. Chang et al. (1983) used a
radiative flux diffusion approximation to model the
interaction of convective and radiative heat transfer in
two-dimensional complex enclosure. Hossain and Vafai
(2001) reported on the natural convection boundary
layer heat transfer with variable viscosity, suction and
radiation effects. The interaction of radiation with
laminar free convection heat transfer from a vertical
plate was investigated by Cess (1966) for an absorbing,
emitting fluid in the optically thick region, using the
singular perturbation technique. Chamkha et al. (2001)
studied computationally the influence of mass transfer
and radiation flux on natural convection flows. Cheng
and Ozisik (1972) studied a related problem for an
absorbing, emitting and isotropically scattering fluid
and treated the radiation part of the problem exactly
with the normal mode expansion technique. The
unsteady flow past a moving plate in the presence of
free convection and radiation was studied by Mansour
(1990). The unsteady flow past a moving plate in the
presence of free convection and radiation was studied
by Raptis and Perdikis (1999). Das et al. (1996)
analyzed the radiation effects on flow past an
impulsively started infinite isothermal vertical plate.
Abd-EI-Naby et al. (2003) studied the effects of
radiation on unsteady free convective flow past a semi-
infinite  vertical plate with a variable surface
temperature. Mukhopadhyay (2009) studied the effects
of radiation and variable fluid viscosity on flow and
heat transfer along a symmetric wedge. Chamkha et al.
(2004) used the Rosseland diffusion flux model to
analyze the buoyancy-driven dissipative natural
convection-radiation boundary layer flow from a wedge
in a porous medium. They showed that an increase in
Boltzmann-Rosseland radiation-conduction number and
negative Eckert number enhances heat transfer
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T dimensionless average skin-friction
Subscripts
w conditions on the wall

e free stream conditions

gradients at the wedge face considerably. Recently
Prasad et al. (2007) studied radiation and mass transfer
effects on two-dimensional flow past an impulsively
started infinite vertical plate

In certain industrial systems, the flow past an
impulsively started plate is also important. Such flows
are transient and therefore temporal velocity and
temperature gradients have to be included in the
analysis. Excellent work in this regard has been
presented by Stewartson (1951) although his study
ignored heat transfer. Later Soundalgekar (1977)
extended this study obtaining Laplace transform
solutions for the natural convection and mass transfer
effects on flow past impulsively started vertical surface.
More recently Muthucumaraswamy and Ganesan
(1998) considered transient heat and mass transfer past
an impulsively started vertical plate.

The aim of the present paper is to study an unsteady
two-dimensional laminar free convective flow of a
viscous, incompressible fluid past an impulsively
started moving plate with variable heat and mass flux,
in the presence of thermal radiation effects. The
equations of continuity, linear momentum, energy and
species concentration, which govern the flow field are
solved by using an implicit finite difference scheme of
Crank-Nicolson type.

2. MATHEMATICAL ANALYSIS

The basic equations, used to interpret and analyze
natural convection, are the partial differential equations,
which result from the consideration of the conservation
of mass, Navier-Stokes equation along x-direction and
y-direction, energy and mass diffusion equation. In free
convection, the fluid motion arises solely from the
buoyancy forces. The buoyancy effect arises due to the
interaction between density differences in a body of
fluid and a body force, usually gravitational force. The
density differences are due to the temperature
differences or concentration differences of the diffusing
species or the combination of both. So, both thermal
and mass diffusing processes must be considered
simultaneously for all aspects of the flow.

Consider the laminar time dependent viscous buoyancy
driven heat and mass transfer in an incompressible,
absorbing emitting and non-scattering gray Newtonian
fluid past an impulsively started vertical surface. The
X" direction is located parallel to the plate surface and
the Y’ direction normal to it. At timet’ =0, the plate
commences impulsive motion in the X' direction with
constant velocity u . Initially, it is assumed that the
plate and the fluid are at the same temperature T, and
CV

')

concentration level everywhere in the fluid. At

time t' >0, the plate starts moving impulsively in the
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vertical direction with constant velocity u, against the
gravitational field. Also, it is assumed that the heat and
mass is supplied from the plate to the fluid at a rate of

q,(x)= ax™ and a, (x) =bx" respectively, and they
are maintained at the same level. It is also assumed that
the heat due to viscous dissipation in the energy
equation is very small and is neglected. It is also
assumed that the concentration of the diffusing species
in the binary mixture is very less in comparison to the
other chemical species, which are present and hence the
Soret and Dufour effects are negligible. The boundary
layer equations for mass, momentum, heat and species
conservation in an (X, y) coordinate system can be
shown to take the form:

a—u+ﬂ:0 (1)
ox 0y

du du adu op o’

— +U—+V— |=——— +uU— 2
'D[at’ ox 6yj ox PP @)

' ’ ’ 2T
oT oT +V6T :aa 'I'2 1 0q, 3
ot’ ox oy ay* pc, oy

' ' ' 2~
oC +uac +Vac :Da C; 4
ot' ox oy oy

The fluid properties are assumed to be constant except
for the density in the body force term. The unheated
fluid far removed from the plate is in hydrostatic

equilibrium, or (op,/ox) =—p,g , where the subscript e

denotes equilibrium conditions. At any elevation, the
pressure is uniform and therefore dp/ox = dp,/ox .

Substituting p,g for —(6p/ox) in Eq. (2) gives

Ny
Plor
The further simplification can be made by assuming
that the density p depends only on the temperature and
not on the pressure. For an incompressible fluid this is

self evident, but for a gas it implies that the vertical
dimension of the body is small enough that the

ou  du o
+V——|==(p,=p)g tH——

— 5
ox oy oy ©)

hydrostatic density pg is constant. This simplification

is referred to as Boussinesq approximation. Since the
flow is driven by the buoyancy forces arising from the
density differences due to both temperature and
concentration difference, with these assumptions
buoyant term can be written as

9(p.-p)=9(p.—p)=—9pB(T,-T')

. (6)

—-gpp (C,-C)
Where fis the volumetric coefficient of thermal
expansion, ﬁ* is the coefficient of volumetric

expansion with concentration and is defined as

ﬁ:(_l 8pj 2 PP
paT' ) ~ p(T'-T))

ﬁ*:[_lé‘pj o PP
pac) ~p(C-C,)

U]
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For an ideal gas (i.e.p = p/RT) the coefficient of
thermal expansion is
1 . 1

P=gr P o
where the temperature T_and C_ are absolute
temperature and concentration far from the plate .
The equation of motion for natural convection is
obtained by substituting the buoyant term, Eq. (6), into
Eqg. (5), yielding

au ou . olu
U—+v—-= T-T))+ C'-C.)+v—
x Vo gB(T'-T.)+g9p (C'-C.) PY:
The initial and boundary conditions are

®)

P
o

t'<0:u=0, v=0, T'=T/, C'=C,
t'>0:=u,, v=0, ot :_qw(X)y
oy k
o) at y=0
oy D

u=0, T'=T/, C'=CLatx=0
C)]

u—>0T >T/, C>Clas y >

where x and y are coordinates,u,v are the velocity
components in the x , y directions , t' is dimensionless
time, g is the gravitational acceleration, g is the

*

coefficient of thermal expansion, S is the mass
transfer coefficient of expansion, v is the kinematic
viscosity of the gray fluid, T' is temperature, C' is
species concentration, « is the thermal diffusivity, D is
the species diffusivity, ( Dw denotes conditions at the

wall, () designates the condition
stream(outside the boundary layers).

in the free

Employing the Rosseland diffusion approximation,
Modest (1993) leads to the following expression for

radiative heat flux (), in the energy conservation Eg.

@)
4o (3T'4
0 = (10)
r 3ke oy
where og is the Stefan-Boltzmann constant and kg is

the mean absorption coefficient, respectively. It should
be noted that by using the Rosseland approximation we
limit our analysis to optically thick fluids. Refractive
index of the gas medium is constant. Unidirectional
radiation flux, gy is considered and it is assumed that

A, >> % This model is valid for optically-thick
oy OX

media in which thermal radiation propagates only a
limited distance prior to experiencing scattering or
absorption. The local thermal radiation intensity is due
to radiation emanating from proximate locations in the
vicinity of which emission and scattering are
comparable to the location of interest. The energy
transfer depends on conditions only in the area adjacent
to the plate regime i.e. the boundary layer regime.
Rosseland’s model yields accurate results for intensive
absorption i.e. optically-thick flows which are optically
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far from the bounding surface. Implicit in this
approximation is also the existence of wavelength
regions where the optical thickness may exceed a value
of five. As such the Rosseland model, while limited
compared with other flux models, can simulate to a
reasonable degree of accuracy thermal radiation in
problems ranging from thermal radiation transport via
gases at low density to thermal radiation simulations
associated with nuclear blast waves. If temperature
differences within the flow are sufficiently small, then

Eq. (10) can be Iinearized by expanding T4 into the
Taylor series aboutT, , which after neglecting higher

order terms takes the form:

T = 41T 37" (11)
In view of Egs. (10) and (11), Eq.(3) reduces to

or’ ot or’ o1’ 16 T aZT'
—tU—+V—=a—;

o ox @y oy 3kepc Ed

Local and average skin-friction are given respectively

(12)

by
ou
=— 13
“[ayj (13)
P u(a”] dx (14)
L 0 ay y=0
Local and average Nusselt number are given
respectively by
%)
Nu, = = (15)

T

NuL_—LK‘aT'] /(TVL—TX’))}dx (16)
o[\ OY y=0

Local and average Sherwood number are given
respectively by

%)
—X
Sh, = Y o

sh. _—f{[‘zcy'] /(C@ —C;)}dx (18)
0 y=0

1

On introducing the following non-dimensional
quantities
XU, y\/I t'u, u
X=—> Y= , t= , U=—,
L JLv L Uy
[ 6, (LWLv ]
V = ﬂ Gm = —\/7
UV ul
Lag| GOV
9B
Cku, k .k
Gr ! 13
uo 4crsToo

!

[qW(L)JE ] {qW(L)JE ]

ku0

(19)

=V
D

Equations (1), (2), (12) and (4) are reduced to the
following non-dimensional form

ou LoV g 0
oX oY
2

ST VALY ST i 1)
ot oX oY oY?

2
ot oX oY Pr N joY
C C C 10C
0 6 8 o gc 23)
at 6X 8Y " scoyY

Where X and Y are dimensionless coordinates, U and V
are dimensionless velocities, t is the dimensionless
time, T is the dimensionless temperature function, C is
dimensionless concentration function, N is the
conduction-radiation heat transfer parameter, Pr is
Prandtl number, Sc is Schmidt number, Gr is thermal
Grashof number, Gm is species Grashof number.

The corresponding initial and boundary conditions are
t<0:U=0, V=0, T=0,C=0

t>0:U=1,v=0, D —_xm L __xn a voo
oY oY
U=0, T=0,C=0atX =0 (24)

U—>0T—>0,C—>0 as Y —>w

Local and average skin-friction in non-dimensional
form are

7’ ou
== 25
T [("W] @
_ 1
r:—j[au] dx (26)
Loy ),

Local and average Nusselt number in non-dimensional
form are

A
S AL

Local and average Sherwood number
dimensional form are

oC
S :_X{(av )/ C”} 9

Sh- —m?;lo /cm} dXx (30)

3. NUMERICAL TECHNIQUE

in non-

In order to solve these unsteady, non-linear coupled
equations (20) to (23) under the conditions (24), an
implicit finite difference scheme of Crank-Nicolson
type has been employed. This method has been
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extensively developed in recent years and remains one
of the most reliable procedures for solving partial
differential equation systems. It is unconditionally
stable. It utilizes a central differencing procedure for
space and is an implicit method. The partial differential
terms are converted to difference equations and the
resulting algebraic problem is solved using a
triadiagonal matrix algorithm. For transient problems a
trapezoidal rule is utilized and provides second-order
convergence. The Crank-Nicolson Method (CNM)
scheme has been used in numerous heat transfer,
radiation and convection flow problems.
Ransom and Fulton (1985) discussed a modified,
optimized version of the Crank-Nicolson method for
general thermal engineering problems. Lin and Huang
(1991) studied thermal radiation effects on laminar
forced convection in thermally developing circular pipe
flow using an integral formulation for the divergence of
radiative heat flux, a finite element node approximation
technique and the Crank-Nicolson finite difference
method with an iterative procedure. Hadley (1992) used
the Crank-Nicolson method with a new boundary
condition to study beam propagation emitting radiation
with a minimum reflection coefficient, considering both
two and three-dimensional cases. Krishnaprakas et al.
(2001) used the Chandrasekhar discrete ordinates
method and the Crank-Nicolson method to study
combined conduction and radiation heat transfer in a
gray planar nonlinearly anisotropic scattering medium
bounded between two plane parallel surfaces reflecting
both diffusely and specularly. Prasad et al. (2007) used
Crank-Nicolson scheme to analyze the transient
convective heat and mass transfer with thermal
radiation effects along a vertical impulsively started
plate. The CNM method has been found to work very
efficiently for parabolic type partial differential
equations as exemplified by boundary-layer flows The
finite difference equations corresponding to equations
(20) to (23) are discretized using CNM as follows:

Mass Conservation:

[Uir,]j+1 _Uir:.lj +Uir,] j _Uin—L j +Uir,1ﬁl _Uin—ilj—l +Uil? i1 _Uin—L j—l]
n+l n+l n n 4AX (31)
L':Vi,j _Vi,j—l +Vi,j _Vi,j—lj| -0
2AY
Momentum Conservation:
n+1 n n+1 n+1 n n
|:Ui,j _Ui,jJ +un [Ui,j _Ui—l,j +Ui,j _Ui—l,j]
ij
At 2AX
n+l n+l n n
v [Ui,j+1 _Ui,j—l +Ui,j+1 _Ui,j—1:|
" 4AY
n+1 n n+1 n
o [T +T”]+Gm [crt+cl]
? (32)

N i j+1 i j+1
2(AY)?
Energy (Heat) Conservation:

n+l n+l n+l n+l n n
+[ULH—2U” +UNL UM - 200 U

n+ n n+1 n+1 n n
i,jl_Ti,j]+Uvnv|:Ti,j _Tifl,j+Ti,j_Ti—1,jj|
At i 2AX
n+l n n
+Vi,nj |:Ti,j _Ti,j—l +lija _Ti,j—1:|

4AY
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n+l n+l n+l n n n
1(1_‘_4\[1—1]1 _2Ti,j T+ _2Ti,j +Ti,j+1:|
Pl 3N 2AY)
(33)
Species (Concentration) Conservation:
n+: n n+l n+1 n n
[Ci,jl_ci,j] |:Ci,j _Ci—l,j+ci,j_Ci—1,j:|
At 2AX
Cir,]ﬁl - Cir,]ﬁl +Cla - Cir,]j—l:|

4AY
1[G -2C + G +C L, 20 +C
S

n
+Ui,j

+V) [

i,j-1 i, j+1 ij-17 SV

2(AY)?

(34)
Here the region of integration is considered as a
rectangle with X =1and Y, =14 where Y,

corresponds to Y =oowhich lies well outside both the
momentum and thermal boundary layers. The
maximum of Y was chosen as 14, after some
preliminary numerical experiments such that the last
two boundary conditions of (24) were satisfied within
the tolerance limit 10 . The mesh sizes have been
fixed as AX =0.05, AY =0.05 with time step
At =0.01. The computations are executed initially by
reducing the spatial mesh sizes by 50% in one direction,
and later in both directions by 50%. The results are
compared. It is observed that, in all the cases, the results
differ only in the fifth decimal place. Hence, the choice
of the mesh sizes is verified as extremely efficient. The
coefficients of U, and V", appearing in the finite
difference equations are treated as constant at any one-
time step. Here i designates the grid point along the X-
direction, j along the Y-direction and n in the time

variable, t. The values of U, V, T and C are known at all
grid points when t = 0 from the initial conditions.

The computations for U, V, T and C at a time level (n +
1), using the values at previous time level k are
executed as follows. The finite-difference equation (34)
at every internal nodal point on a particular i— level
constitutes a tri-diagonal system of equations and is
solved by the robust Thomas algorithm as discussed in
Carnahan et al. (1969). Thus, the values of C are known
at every nodal point at a particular i at (n + 1) time
level. Similarly, the values of U and T are calculated
from equations (32), (33) respectively, and finally the
values of V are calculated explicitly by using equation
(31) at every nodal point on a particular i— level at
(n + 1)" time level. In a similar manner, computations
are carried out by moving along i-direction. After
computing values corresponding to each i at a time
level, the values at the next time level are determined in
a similar manner. Computations are repeated until the
steady state is attained. The steady state solution is
assumed to have been reached when the absolute
difference between the values of the velocity U,
temperature T, as well as concentration C at two
consecutive time steps are less than 10~ at all grid
points. The scheme is unconditionally stable. The local

truncation error is O(At2+AX2+AY2) and it tends to
zero as At,AX and AY tend to zero. It follows that
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the CNM scheme is compatible.
compatibility ensure the convergence.

Stability and

Since the present implicit Crank-Nicolson numerical
difference code has been extensively validated against
other numerical schemes by the authors Prasad et al.
(2008), it is extremely reliable and we omit comparison
solutions with previous studies here for brevity.

The derivatives involved in Egs. (25) - (30) are
evaluated using five-point approximation formula and
then the integrals are evaluated using Newton-Cotes
closed integration formula.

4, RESULTS AND DISCUSSION

Extensive computations have been performed for the
effects of the controlling thermofluid and
hydrodynamic parameters on dimensionless velocity
(U), temperature (T) and concentration (C) and also on

the local skin-friction(z, ), average skin-friction (;)
local Nusselt number(NuX), average Nusselt number

(M) local Sherwood number (Sh,) and average

Sherwood number(%) . The present analysis concerns

the case of optically thick boundary layers, where the
thermal boundary layer is expected to become very
thick as the medium is highly absorbing. The radiative
diffusion (Rosseland model) adds a radiative
conductivity to the conventional thermal conductivity.
The effect of radiation is to thicken the thermal
boundary layer similar to the effect of decreasing
Prandtl number (the latter representing the ratio of
viscous to thermal diffusion). Radiation supplements
the thermal diffusion effectively enhancing the thermal
diffusivity, as described by Siegel and Howell (1972).

In Fig. 3, the influence of radiation parameter, N on

steady state velocity are shown. N :& and this

13

S w
defines the ratio of thermal contribution relative to
radiation. For radiative heat transfer dominance in the
boundary layer regime, N — 0. For finite values of F
there will be a simultaneous presence of thermal
conduction and radiative transfer contributions. For
N =1 both modes will contribute equally. For N—oo in

Eq. (22), the term %F—>O and the energy equation

reduces to the conventional unsteady conduction-
convection equation i.e.

oT oT oT  10°T
—tU——+V—="—

ot oX oY Pr oY

An increase in N from 3, 5 to 10, causes a significant
decrease in velocity with distance into the boundary
layer i.e. decelerates the flow. Velocities in all cases
from the plate surface, peak close to the wall and then
decay smoothly to zero in the free stream. We also note
that with increasing values on N the time taken to attain
the steady state is increased. Thermal radiation flux
therefore has a de-stabilizing effect on the transient
flow regime. This is important in polymeric and other
industrial flow processes since it shows that the

64

presence of thermal radiation while decreasing the
temperatures, will affect flow control from plate surface
into the boundary layer regime. For lower values of
Gr = Gm (=3), the time required to reach the steady
state with N = 3,5 and 10 are 8.60, 9.44,9.65
respectively, where as for higher values of Gr = Gm
(=5) the steady state is reached at 7.65,8.48 and 8.69
respectively which leads to conclude that increase in
buoyancy force parameter Gr or Gm reduces the time to
reach the steady state.

For various values of Schmidt number and Prandtl
number, the transient velocity profiles are plotted in
Fig. 4. Pr defines the ratio of momentum diffusivity
(v) to thermal diffusivity. It also expresses the ratio of

the product of dynamic viscosity and specific heat
capacity to thermal conductivity of the principal fluid.
Pr<1 physically implies that heat will diffuse faster than
momentum in the fluid. For Pr=1 the diffusion rates
will be same for heat and momentum i.e. thermal and
velocity boundary layer thickness will be equal. For
Pr >1 momentum will diffuse faster that heat. An
increase in Pr from 0.7 to 1.25, clearly decrease
significantly streamwise velocity, U for considerable
distance into the boundary layer. Flow is therefore
decelerated with the increase in Prandtl number. A
close proximity to the plate surface, velocities are all
maximized for any value of Prandtl number, and then
descend gradually to zero far from the plate surface.

In Fig. 5, we have plotted the influence of surface
concentration power law exponent (m) and the surface
temperature power law exponent (n) on velocity
distribution with Y coordinate. For n=0, the power law

variation of concentration reduces from q/,(x) =ax" to
g, (x) =ai.e. we obtain iso-species scenario (constant
wall heat flux). Similarly for m=0 the power law
variation of temperature g/ (x)=bx" to q,(x)=Dbi.e
we obtain constant wall heat flux scenario. For the
doubly special case of m = n = 0, we observe that the
velocity is maximized throughout the boundary layer.
With an increase in m to 0.5, the velocity is reduced in
the boundary layer. Further decrease is observed when
m =n = 0.5. As such increasing power law exponents in
the plate surface concentration and temperature
variations serve to decelerate the flow in the boundary
layer. For m = n = 0 the lowest time is achieved to
arrive at the steady state. This value is increased for
m = 0 and n = 0.5, but then reduced for m = n= 0.5,
although in the latter case it is still greater than for the
classic case of m = n = 0. To illustrate the effect of
temperature exponent m and the radiation parameter N
on the temperature, the transient temperature
distribution near the plate at X=1.0 is presented in
Fig. 6. As expected, the temperature values are also
significantly reduced with an increase in N as there is a
progressive decrease in thermal radiation contribution
accompanying this. All profiles are monotonic decays
from the wall to the free stream. This trend concurs
with the results of Beg et al. (1998, 2003),
Chamkha et al. (2004) and Lin and Huang (1991), all
these studies also employing the Rosseland-diffusion
approximation.  The  maximum  reduction in
temperatures is witnessed relatively close to the plate
surface since thermal radiation effects will be
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prominent closer the plate surface, rather into the free
stream. With an increase in the power law temperature
exponent m the temperature is reduced. It is also seen
that, the time required to reach the steady state
temperature is more at higher values of N (=10) as
compared to lower values of N (=5). Typical variations
in the temperature profiles for different values of Pr and
N are shown in Fig. 7. As expected, the numerical
results show that an increase in the Prandtl number
results in a decrease of the thermal boundary layer
thickness and in general lower average temperature
within the boundary layer. The reason is that smaller
values of Pr is equivalent to increasing the thermal
conductivity of the fluid, and therefore heat is able to
diffuse away from the heated surface more rapidly than
for higher values of Pr. Hence in the case of smaller
Prandtl numbers the thermal boundary layer is thicker
and the rate of heat transfer is reduced. From Figs. 1
and 4 it is obvious that an increase in the radiation
parameter N results in decreasing velocity and
temperature within the boundary layer, as well as
decreased thickness of the velocity and temperature
boundary layers. The transient concentration profiles
are shown in Fig. 8 for different values of concentration
exponent n and Sc. A rise in Sc strongly suppresses
concentration levels in the boundary layer regime. All
profiles decay monotonically from the plate surface
(wall) to the free stream. Sc embodies the ratio of

momentum diffusivity (v) to molecular diffusivity

(D). The concentration reduces with the increasing
values of n. As expected concentration is lower for
systems with higher Sc. Time taken to reach the steady
state increases as Sc increases from 0.6 to 0.94.

The effect of buoyancy force parameter Gr or Gm on
time to reach the steady state conditions are shown in
Fig. 9. Concentration is boosted with an increase in N
i.e. decrease in thermal radiation contribution. The
parameter N does not arise in the species conservation
equation (23) and therefore concentration filed is
indirectly influenced by N via the coupling of the
energy equation (22) with the momentum equation (21),
the latter also being coupled with the convective
acceleration terms in the species equation (23).
However as with the response of the velocity and
temperature fields, an increase in N decreases the time
elapse to achieve the steady state. Therefore while
greater thermal radiation augments diffusion of species
in the regime it requires greater time to achieve the
steady state i.e. when Gr = Gm (=3) the time required to
reach the steady state when N = 3, 5 and 10 are 9.22,
9.36 and 9.52 where as for large Gr = Gm (=5). The
time required to reach the steady state are 9.03,9.24 and
9.26 respectively which leads to conclude that when the
buoyancy force parameter Gr or Gm increases the time
required to reach the steady state is reduced.

The effects of Sc, N, n and m on local skin friction is
shown in Fig. 10. Increasing Sc clearly boosts the wall

skin friction, 7y which grows strongly from the

leading edge to the downstream along the plate surface.
Also with an increase in N, acts to effectively accelerate
the flow, concurring with trend in the computations for
flat plate [Chamkha et al. (2001)] for radiation-
convection boundary layers. The average values of
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skin-friction is shown in Fig. 11 as a function of time at
X=1.0 for various physical parameters. The average
values of skin-friction decreases with an increase in Sc
or n or m throughout the transient period. It is also
observed that, average skin- friction increases as the
radiation interaction parameter N increases.

The local Nusselt number Nu, for different n, m and

N are shown in Fig. 12.The local heat transfer rate
Nu, increases with the increasing values of N, heat

transfer from the plate surface is therefore suppressed
with increasing thermal radiation and enhanced with
greater thermal conduction. Also Nu, increases with

the increase in m and decreases with the increasing n.

The average values of Nusselt number Nu is shown in
Fig. 13 as a function of time at X = 1.0.The average

Nusselt number Nu for different n, m and N are shown
in Fig. 11.The average Nusselt number increases with
increasing m or N. The effects of m, n and Sc on the
local and average Sherwood numbers are shown in
Figs. 14 and 15 respectively. As expected surface
species gradient i.e. mass transfer rate at the plate
surface is strongly with a rise in Sc. Both the local and
average Sherwood numbers increase with the
increasing.

5. CONCLUSIONS

A detailed numerical study has been carried out for the
effects of radiation past an impulsively started vertical
plate with variable surface heat and mass flux. The
dimensional less governing equations are solved by an
implicit finite difference method of Crank-Nicolson
type. The results are presented for major parameters
including the radiation parameter N, Prandtl number Pr,
thermal Grashof number Gr, mass Grashof number Gm,
Schmidt number Sc, heat and mass flux exponent. A
systematic study on the effects of various parameters on
flow, heat and mass transfer characteristics is carried
out. The particular conclusions drawn from the study
can be listed as follows:

1. The time required to reach the steady state
increases as radiation parameter increases.

2. The momentum boundary layer thickness
decreases with the increase in Sc. The
velocity decreases with the increase in m and
n. It is also observed that increase in Pr leads
to a decrease in velocity. The time taken to
reach the steady state increases as Pr and Sc
increases.

3. Temperature decreases with the increase in Pr
or the radiation parameter N. Also increase in
m leads to a decrease in temperature.

4. The local and average skin-friction decreases
as n or m increases.

5. It also observed that local and average skin-
friction increases as the radiation interaction
parameter increases.

6. The local and average Nusselt number
increases with the increase in the value
of radiation parameter.

7. Both the local average Sherwood numbers
increases with the increasing n or Sc.
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