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ABSTRACT

In this paper is reported an analytical and numerical study on double-diffusive natural convection in a non-Newtonian
power-law fluid confined in a shallow horizontal rectangular enclosure submitted to uniform heat and mass fluxes
along its short vertical sides, while the horizontal ones are insulated and impermeable. Here, the cases of aiding and
opposing thermal and solutal buoyancy forces of equal intensities are considered. In the first part of the work the full
governing equations are solved and the effects of the power-law behavior index, n, and the generalized thermal
Rayleigh number, TRa , are examined and analyzed. In the second part, an analytical solution, based on the parallel
flow approximation valid in the case of a shallow cavity, is proposed and an excellent agreement of results between
the two approaches is observed, which validates them mutually.

Keywords: Double-diffusive natural convection; Heat and mass transfers; Non-Newtonian fluids; Rectangular
shallow enclosures

NOMENCLATURE

A       aspect ratio of the enclosure
c         value relative to the centre of the enclosure

212 ,Ay,x

SC    dimensionless concentration gradient in the
 x-direction

TC    dimensionless temperature gradient in the x-
          direction
D       mass diffusivity
g        acceleration due to gravity
H height of the enclosure
j       consant mass flux per unit area

k  consistency index for a power-law fluid at
          the reference temperature
Le Lewis number
L length of the enclosure
N buoyancy ratio
n        flow behavior index for a power-law fluid at
          the reference temperature
Nu local Nusselt number

Nu   mean Nusselt number
Pr     generalized Prandtl number
q     constant heat flux per unit area

TRa generalized thermal Rayleigh   number
S       dimensionless concentration,

*
c SSS

cS    reference concentration at the geometric
         center of the enclosure
Sh     local Sherwood number
Sh     mean Sherwood number

*S characteristic concentration , DHj
T       dimensionless temperature,

*
c TTT

cT      reference temperature
*T  characteristic temperature, Hq
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(u, v)  dimensionless axial and vertical
           velocities, Hv,u
(x, y)   dimensionless axial and vertical
           coordinates, Hy,x

       thermal diffusivity at the reference temperature
        thermal expansion coefficient at the reference

          temperature
        thermal conductivity at the reference

          temperature

        dynamic viscosity for a Newtonian fluid at
          the reference temperature

a      dimensionless viscosity function for a non-
           Newtonian power-law fluid

        dimensionless vorticity, ))/(( 2H/
        dimensionless stream function
         density of fluid at the reference temperature

'        dimensional variables

1. INTRODUCTION

Double-diffusive, or thermosolutal, natural convection
is a fluid motion due to simultaneous variations of
temperature and concentration in the gravity field.
Because of coupling between the fluid velocity and the
diffusive (thermal and solutal) fields, double-diffusive
convection is more complex than the convective flow
which is associated with a single diffusive scalar, and
many different behaviors may be expected. Such
thermosolutal processes occur in several fields,
including chemical engineering (deposition of thin
films, roll-over in storage tanks containing liquefied
natural gas, solution mining of salt caverns for crude oil
storage), solid-state physics (solidification of binary
alloy and crystal growth), oceanography (melting and
cooling near ice surfaces, sea water intrusion into
freshwater lakes and the formation of layered or
columnar structures during crystallization of igneous
intrusions in the Earth's crust), geophysics (dispersion
of dissolvent materials or particulate matter in flows),
etc. In order to control these processes, a clear
understanding of the nature of interaction between
thermal and solutal buoyancy forces is necessary. For a
review of the fundamental works in this area see, for
instance, Pop and Ingham (2001).

On the other hand, most of the investigations, dealing
with double-diffusive convection, were focused on the
case of a rectangular enclosure confining a Newtonian
fluid. These can be classified under three types,
according to the imposed thermal and solutal boundary
conditions. In the first type, the cavity is subjected to a
vertical solutal gradient and a horizontal thermal one
(Kalla et al., 2001). In the second type, both the
temperature and concentration gradients are imposed
transversally (Benacer and Gobin 1996; Mamou et al.
2001). In the third type, as in the present case, both the
thermal and solutal gradients are imposed laterally
(Ouriemi et al., 2006).

As far as we know, there are very few investigations
dealing with double-diffusion convection inside
rectangular   enclosures    confining    non-Newtonian
fluids. Among them are those performed while
considering a saturated porous medium (Getachew et
al. 1998; Benhadji and Vasseur 2001). In the case of a
clear fluid medium, the only one is that conducted
lately by Makayssi et al. (2008). All these studies have
examined analytically and numerically the effect of the
flow behavior index, the Lewis number and the
buoyancy ratio on convection heat and mass transfers in
the situation where both thermal and solutal buoyancy
driven forces act in the same direction (the aiding case).

Non-Newtonian flows are of importance and very
present in many industrial processes such as paper
making, oil drilling, slurry transporting, food
processing, polymer engineering and many others.
Some of these processes are discussed by Jaluria
(2003).

In order to contribute to fill the gap left by the lack of
studies on the area, at least partly, the present
investigation deals with natural convection heat and
mass transfers inside a two-dimensional horizontal
rectangular enclosure, filled with a non-Newtonian
power-law fluid. The cavity is submitted to uniform
heat and mass fluxes from the short vertical sides, while
the long horizontal boundaries are insulated and
impermeable. The study is particularly focused on the
cases where thermal and solutal buoyancy driven forces
can act in the same or opposite directions, but with the
same intensities ( N  = 1, where N is the buoyancy ratio
defined below). The general case (i.e. that where the
driven buoyancy forces have not necessarily the same
intensities) has been examined, while considering
Newtonian fluids, by Ouriemi et al. (2006), for a clear
fluid-filled cavity. These authors have emphasized the
case 1N  but without comparing with the case

1N .

In the following, the mathematical model and the
solution procedure are discussed. The results presented
here, for 1N  and 1N , are relevant to a better
understanding of double diffusive convection in clear
non-Newtonian fluids media.

2. MATHEMATICAL FORMULATION

2.1 Problem Statement
The studied configuration, which is sketched in Fig.  1,
is a rectangular enclosure of height H and length L
with the long horizontal rigid walls insulated and
impermeable and the short vertical ones submitted to
constant heat and mass densities of fluxes, q and j ,
respectively. For this problem, thermal and solutal
buoyancy driven forces can act in the same or opposite
directions with the same intensities. The non-
Newtonian fluids considered here are those for which
the rheological behavior can be described by the power-
law model, proposed by Ostwald-De Waele, whose
expression, in terms of laminar viscosity function, is
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where n is the power-law index and k is an empirical
coefficient known as the consistency factor, which is an
indicator of the degree of fluids viscosity. Note that for

1n  the power-law model reduces to the Newton’s
law by setting k . Thus, the deviation of n from
unity characterizes the degree of non-Newtonian
behavior of the fluid. Specifically, when n is in the
range 10 n  the fluid is said to be pseudo-plastic (or
shear-thinning) and the viscosity function is found to
decrease by increasing the shear rate. On the other hand
when 1n  the fluid is said to be dilatant (or shear-
thickening) and the viscosity function increases by
increasing the shear rate. Dilatant fluids are generally
much less frequent than pseudo-plastic ones. Though
the Ostwald-de Wale model does not converge to a
Newtonian behavior in the limit of zero and maximum
shear rates, it presents however the advantage to be
simple and mathematically tractable. In addition, the
rheological behavior of many substances can be
adequately represented by this model for relatively
large range of shear rates (or shear stresses) making it
useful, at least for engineering purposes, and justifying
its use in most theoretical investigations of fluids
having pseudo-plastic or dilatant behaviors. On the
other hand, the main assumptions made here are those
commonly used, i.e., the flow is laminar and two-
dimensional (Siginer and Valenzuela-Rendon, 2000),
the viscous dissipation is negligible, the interactions
between heat and mass exchanges, known under the
name of Soret and Duffour effects, are negligible, the
fluid is incompressible and its physical properties are
considered temperature independent except the density
in the buoyancy term which obeys the Boussinesq
approximation.

2.2 Governing Equations and Boundary
Conditions
On the basis of what precedes, the dimensionless
governing equations, written in terms of vorticity, ,
temperature, T, concentration, S, and stream function,

, are:
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The dimensionless boundary conditions, for the
physical system considered here, are

Ax
x
S

x
Tvu and0for011     (9)

y
y
S

y
Tvu 1and0for0             (10)

As regards the vorticity, which is unknown at the
boundaries, the woods relation (Roache, 1982) is used,
for its accuracy and stability.

In addition to the power-law index, n, the present
problem is governed by five other dimensionless
parameters, namely, the aspect ratio of the enclosure, A,
the Lewis number, Le, the buoyancy ratio, N,  the
generalized Prandtl, Pr, and thermal Rayleigh, TRa ,
numbers, the expressions of which are

H
LA ,

D
Le ,

TT

SSN ,
n

nHk
Pr

2

22

and
k

qHgRa n

n

T

22
                                         (11)

Notice that it is possible to recover the Newtonian
expressions of Pr and TRa  by, simply, setting 1n
and replacing k by the Newtonian viscosity,  .

3. NUMERICAL APPROACH

The two-dimensional governing equations are solved by
using the well known second order central finite
difference method with a regular mesh size. The
integration of Eqs. (2)-(4) is performed with the
alternating-direction implicit method (ADI) (Peaceman
and Rachford Jr., 1955). To satisfy the mass
conservation, Eq. (5) is solved by a point successive
over-relaxation method (PSOR) with an optimum
relaxation factor calculated by the Franckel formula
(Roache, 1982). The mesh size is chosen on the basis of
a compromise between running time and accuracy of
the results. The procedure is based on grid refinement
until the numerical results agree with the parallel flow
ones within reasonable accuracy. Hence, a uniform grid
of 81321  is selected for 24A  (value used for  the
numerical computations), and it is estimated sufficient
to model accurately the flow, temperature and
concentration fields within the cavity. To satisfy the
continuity equation, the convergence criterion

411 10
j,ij,i

k
j,i

k
j,i

k
j,i  is adopted, where

k
ji,  is the value of the stream function at the kth

iteration level. The time step size, t ,  is  varied  in  the

range 47 1010 t , depending on the values of the
governing parameters. More precisely, the small values
of t  are used for high values of n and TRa .
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With the Ostwald power-law model, the dimensionless
viscosity function, given by Eq. (7), tends towards
infinity, for 10 n , at the level of the cavity corners,
where the velocity gradients tend towards zero, which
renders impossible direct numerical computations. This
difficulty is, however, overcome by using average
values for the corner viscosity function making, thus,
the computations possible and stable.

The local heat and mass transfers through the fluid layer
filling the cavity can be expressed in terms of the local
Nusselt and Sherwood numbers, respectively, defined
as

ATT
A

LT
qyNu 1 (12)

ASS
A

LSD
jySh 1 (13)

where yATyTT ,0, and

yASySS ,0,  are the side to side
dimensionless local temperature and concentration
differences, respectively. This definition is, however,
notoriously inaccurate owing to the uncertainty of the
temperature and concentration values evaluated at the
two vertical walls (edge effects). Instead, the Nusselt
and Sherwood numbers are calculated on the basis of a
temperature and concentration differences between two
vertical sections, far from the end sides. Thus, by
analogy with Eqs. (12) and (13), and considering two
infinitesimally close sections, the local Nusselt and
Sherwood numbers can be defined, respectively, by:

200

11

Axxx xTxT
limTxlimyNu            (14)

200

11

Axxx xSxS
limSxlimySh              (15)

where x  is the distance between two symmetrical
sections with respect to the central one. The
corresponding average Nusselt and Sherwood numbers
are, respectively, calculated at different locations, as
follows:

1

0

dyyNuNu                                                         (16)

1

0

dyyShSh                                                           (17)

As an additional check of the results accuracy, energy
and matter balances are systematically verified for the
system at each numerical code running. Thus, the
overall heat and mass transfers, through each vertical
plane, are evaluated and compared with the quantities
of heat and mass furnished to the system at 0x . For
the results reported here, the energy and matter balances
are satisfied within 2% as a maximum difference.

Typical numerical results, in terms of streamlines,
isotherms and isoconcentrations, are presented in Fig. 2,
obtained, for 24A , 100Le , 510TRa  and
various values of n. As appears, from these figures, the
flow is parallel to the horizontal boundaries of the
enclosure and the temperature and the concentration are
linearly stratified in the x-direction of the core region.

The approximate analytical solution, developed in the
next section, relies on these observations.

4. PARALLEL FLOW APPROACH

The results presented in Fig. 2, allow the following
appropriate simplifications

,yy,x,yx,v,yuy,x u 0
y2AxCy,xT TT and
y2AxCy,xS SS (18)

where TC  and SC  are unknown constant temperature
and concentration gradients in the x-direction. In such a
situation the full non-dimensional governing equations
reduce to:

TTST

n

ERaRaNCC
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duLeC S
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with

0
dy

d
dy

d
u ST for 0y  and 1                      (22)

0)(
1

0
dyyu (23)

as boundary and return flow conditions, respectively.

The integration of Eqs. (19)-(21), coupled with the
conditions (22) and (23), leads to analytical expressions
of velocity, temperature and concentration. However,
such an operation is difficult to carry out owing to the
particular nature of the governing equations and
requires, therefore, a special numerical treatment. In
fact, the non-linearity of the fluid behavior and the
change of dydu  sign, due to the return flow, impose
that the velocity expressions are different depending on
whether 00 yy , 10 yyy  or 11 yy , where

0y  and 01 1 yy  (because of the centro-symmetry of
the core flow) are the vertical coordinate values for
which 0dydu .  They  are  derived  from Eq. (23),
which is numerically solved by using a combination of
the Regula-Falsi iteration method (Gourdin and
Boumahrat, 1989) and the Gauss-Legendre integration
method (Sibony and Mardon, 1982). To reduce the
velocity, temperature and concentration expressions, the
function 210

2 yyyyyf  is introduced. Thus,
for:
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The expression of )( yS , given by

)()( y
C
C

Ley T
T

S
S                                              (30)

is obtained by eliminating u from Eqs. (20) and (21),
and integrating twice the resulting equation taking into
account of Eq. (22) and the centro-symmetry of thermal
and solutal fields in the core region. The exploitation of
such a property and the use of Eq. (30) give,
respectively:
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and

00 T
T

S
S C

CLe (32)

The expression of )( y  can be deduced from that of
)( yu  by integration of Eq. (6) taking into account of

Eq. (10). Therefore, the stream function at the center of
the enclosure, which is a measure of the flow intensity,
can be expressed by

)21()21,2( 0
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n dydyyf            (33)

On the other hand, TC  and SC  are  evaluated  from
thermal and solutal boundary conditions imposed on the
end walls. Because of the turning flow at the end
regions of the fluid layer, the boundary conditions in
the x-direction, Eq. (9), could not be satisfied by the
parallel flow approximation. Instead, the expressions of

TC  and SC  are determined by matching the core
solution, Eq. (15), to the integral solution for the end
regions, which consists on the integration of Eqs. (3)
and (4), together with the boundary conditions (9) and
(10), by considering the arbitrary control volume of
Fig. 1. This yields:
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1

0
1  dyyyuC TT (34)

1

0
1  dyyyuLeC SS (35)

Moreover, the substitution of )( yu , )( yT and )( yS
expressions to Eqs. (34) and (35) gives:

1
1

22 n
T

n
n

T
RaEA

C (36)

and

1
1

222 n
T

n
n RaELeASC (37)

where the coefficient nA , which depends only on n, is
calculated with the Gauss-Legendre integration method.
In addition, knowing that ST NCCE , the
transcendental equation

nn
Tn

nn
Tn ERaLeAERaALe 21241422 21

012 22 NEERaANLe nn
Tn             (38)

is obtained and solved by the Regula-Falsi iteration
method, for each given value of Le, n, N and TRa ,
which leads to the value of E and those of TC  and SC ,
from Eqs. (36) and (37), respectively.

Finally, taking into account of Eqs. (14)-(17), (36) and
(37) the Nusselt and Sherwood numbers are constant
and can be, respectively, expressed as

NuRaEA1C1Nu n2
T

n2
nT (39)

ShRaELeA1C1Sh n2
T

n22
nS           (40)

5. RESULTS AND DISCUSSION

With boundary conditions of Newman type, i.e.
imposed uniform heat and mass fluxes like in our case,
the flow, heat and mass transfer properties become
independent of the large values of the cavity aspect
ratio, A. The parallel flow solution, developed in the
previous section, is thus valid asymptotically in the limit
of a shallow cavity 1A . Therefore, numerical tests
are performed to determine the smallest value of A
leading to results reasonably close to those of large
aspect ratio approximation. On the other hand, for the
non-Newtonian fluids considered here, the Prandtl
number, Pr, is large enough such that the convection
becomes insensitive to any change of the large values of
this  parameter  (Lamsaadi et al., 2006). On the basis of
this, the simulations are conducted with Pr , i.e. by
neglecting the convective terms on the left hand side of
Eq. (2).

In addition to that, the Lewis number, Le, which does
not contain mechanical properties related to a flow since
it compares the relative importance of thermal and
molecular diffusions, should not be very different from
that of Newtonian liquids, although molecular diffusion,
even apparent, is more or less inhibited in liquids
extremely viscous (Guyon et al., 2001). Therefore, a
magnitude order of 100 seems appropriate (York et al.,

2007) compared to 1 which is unrealistic even though it
is often used in numerical simulations.

Hence, the natural double-diffusive convection flow
developed inside the enclosure is governed by the
buoyancy ratio, N (which can takes 1 or -1 as values, in
order to simulate thermal and solutal buoyancy forces
acting in the same or opposite directions with the same
intensities), the power-law index, n (which is varied, in
this study, from 0.6 to 1.4 to include shear-thinning

10 n , Newtonian 1n  and shear-thickening
1n  fluids), and the thermal Rayleigh   number, TRa

. It is necessary to point out that, unlike the case where
the cavity is heated and salted from below, for which
the convection appears when a certain threshold of

TRa  is crossed (Mamou et al., 2001),  such  a
phenomenon starts from any small value of TRa  in the
present case.

5.1 Validation of the Approximate Parallel
Flow Analytical Solution
The inspection of the streamlines (Fig. 2), isotherms
(Fig. 3) and isoconcentrations (Fig. 4), allows affirming
the existence of an analytical solution, for the present
problem, owing to the parallelism and the stratification
aspects that flow, temperature and concentration fields
exhibit, respectively, in the major part of the enclosure,
except near the side edges. Moreover, Fig. 5, comparing
the corresponding horizontal velocity (a), temperature
(b) and concentration (c) profiles, obtained analytically
(continuous and dashed lines) and numerically (empty
and full circles) at mid-length of the cavity, along the
vertical direction, testifies of the excellent agreement
between the two types of solutions, which validates the
parallel flow hypothesis.

5.2 Effect of the Flow Behavior Index
Useful information, concerning the influence of the
non-Newtonian rheological behavior (i.e. the effect of
n) on the flow, thermal and solutal fields, can be
obtained from the examination of Figs. 2-4. Thus, the
unicellular nature of the flow is always preserved for n
varying in its range. In addition, outside the end regions
(flow zones adjacent to the vertical sides), whose length
reduces with an increasing n, the flow, and the
temperature and concentration fields are respectively
parallel to the long walls and linearly stratified in the
horizontal direction, whatever the value of n. These
observations allow important simplifications which are
used in the section 4 to transform the governing partial
differential equations to ordinary ones.

On the other hand, qualitatively, the isotherms and
isoconcentrations seem to be more sensitive to the
variations of n, than the streamlines, since they tend to
be flat (i.e. horizontal) with a decreasing n. These
qualitative observations are consistent with the
horizontal velocity (top), temperature (middle) and
concentration (bottom) profiles, which are presented in
Fig. 5. Indeed, according to Eq. (7), small values of n
imply lower viscosity levels, and thus stronger flow and
hence more mixing effect, which leads to flatter
temperature and concentration profiles.
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It follows from the preceding discussion that, compared
to Newtonian case 1n , the shear-thinning behavior

10 n  enhances the convection whereas the shear-
thickening one 1n  reduces it. Besides, Fig. 6 gives
a good confirmation of such a tendency for a wide
range of the thermal Rayleigh number.

5.3 Effect of the Thermal Rayleigh Number

The effect of the thermal Rayleigh number, TRa , on

the flow intensity ( c ,  top)  and  heat  ( Nu , middle)

and  mass  ( Sh , bottom) transfers rates is illustrated on
Fig. 6. When TRa  is  small  enough  ( RaT 20 ),
convection heat and mass transfers is essentially
ensured by pseudo-diffusion since 070020 .. c ,

1Nu and 202 Sh . Outside this zone, an increase

of TRa  leads  to  an  increase  of c and Sh  without

affecting first Nu , which exhibits real increase only
when 100TRa , dependently on n. Otherwise, for the
high values of TRa , all these quantities increase in a
monotonous way, due to the obvious contribution of
buoyancy effects in promoting the convection heat and
mass transfers. We also note that, owing to the fact that

100Le , the mass transfer is more pronounced than
the heat transfer.

5.4 Comparison between Results Related to
Aiding and Opposing Cases
In order to show how the direction of thermal and
solutal buoyancy forces can affect convection heat and
mass transfers, especially when these forces act with the
same intensities, some results related to flow, thermal
and solutal fields and their intensities are presented for
two values of the buoyancy ratio: 1N  and 1N .
Hence, as can be seen from Figs. 2-6, which compare
the two situations, there is almost no difference between
the results corresponding to the opposing ( 1N ) and
cooperating ( 1N ) cases. This can be attributed to the
fact that with a large value of Lewis number, like that
used in the present study ( 100Le ), the axial
concentration gradient is negligible when compared to
the axial temperature one ( TS CC ), as shown in

Table  1, leading to TCE , which explains why the
results are almost the same for the two cases.

6. CONCLUSION

This study deals, numerically and analytically, with
natural double-diffusive convection in a two-
dimensional horizontal shallow enclosure, filled with
non-Newtonian power-law fluids, in the case where
both short vertical sides are submitted to uniform heat
and mass fluxes while the horizontal boundaries are
insulated and impermeable. Here the thermal and
solutal buoyancy driving forces are, particularly,
considered as acting in the same or opposite directions
with the same intensities. The following points

summarize the main conclusions of the present
investigation:

 The approximate analytical solution, developed on the
basis of the parallel flow hypothesis in the core region
of the cavity, is found to agree perfectly with the
numerical solution, obtained by solving numerically the
full governing equations in the chosen ranges of the
governing parameters.

 The fluid flow and heat and mass transfers’ properties
seem to be rather sensitive to the flow behavior index,
n. Thus, compared to Newtonian case 1n , the shear-
thinning behavior 160 n.  enhances the
convection heat and mass transfers while the shear-
thickening one 411 .n  leads to the opposite effect.

 The influence of the thermal Rayleigh number, TRa ,
is such that in general, for 100TRa , any increase of
this parameter enhances convection heat and mass
transfers.

Because of the large value of Lewis number ( 100Le
), convection heat and mass transfers remain almost
unaffected by the direction of thermal and solutal
buoyancy driving forces when they are of identical
intensities ( N  = 1).

REFERENCES

Benacer, R. and D. Gobin (1996). Cooperating
thermosolutal convection in enclosures I. Scale
analysis and mass transfer, International Journal of
Heat and Mass Transfer 39, 2671-2681.

Benhadji, K. and P. Vasseur (2001). Double diffusive
convection in a shallow porous cavity filled with a
non-Newtonian fluid. International
Communications in  Heat and Mass Transfer 28,
763-772.

Getachew, D., D. Poulikakos and W.J. Minkowycz
(1998). Double-diffusive in a porous cavity
saturated with non-Newtonian Fluid. Journal of
Thermophysics and Heat Transfer 12, 437-446.

Gourdin, A. and M. Boumahrat (1989). Méthodes
numériques appliquées. Paris: Lavoisier.

Guyon, E, J.-P. Hulin, and L. Petit (2001).
Hydrodynamique Physique, Paris, France: EDP
Sciences.

Jaluria, Y. (2003). Thermal processing of materials:
From basic research to engineering. Journal of
Heat Transfer 125, 957-979.

Kalla, L., P. Vasseur, R. Benacer, H. Beji and R. Duval
(2001). Double-diffusive convection within a
horizontal porous layer salted from the bottom and
heated horizontally. International Communications
in Heat and Mass Transfer 28, 1-10.

Lamsaadi, M., M. Naïmi and M. Hasnaoui (2006).
Natural convection heat transfer in shallow



 T. Makayssi et al. / JAFM, Vol. 4, No. 1, pp. 97-106, 2011.

104

horizontal rectangular enclosures uniformly heated
from the side and filled with non-Newtonian
power-law fluids, Energy conversion and
Management 47, 2535-2551.

Makayssi, T., M. Lamsaadi,, M. Naïmi, M. Hasnaoui,
A. Raji and A. Bahlaoui (2008). Natural double-
diffusive convection in a shallow horizontal
rectangular cavity uniformly heated and salted
from the side and filled with non-Newtonian
power-law fluids: the cooperating case, Energy
conversion and Management 49, 2016-2025.

Mamou, M., P. Vasseur and M. Hasnaoui (2001). On
numerical stability analysis of double-diffusive
convection in confined enclosures, Journal of Fluid
Mechanics 433, 209-250.

Ouriemi, M., P. Vasseur, A. Bahloul and L. Robillard
(2006). Natural convection in a horizontal layer of
a binary mixture, International Journal of Thermal
Sciences 45, 752-759.

Peaceman, D.W. and H.H. Rachford Jr.  (1955). The
numerical solution of parabolic and elliptic

differential equations, Journal of the Society for
Industrial and Applied Mathematics 3, 28-41.

Pop, I.  and D.B. Ingham (2001). Convective Heat
Transfer: Mathematical and Computational
Modeling of Viscous Fluids and Porous Media,
Oxford, UK: Elsevier Science & Technology
Books (Pergamon).

Roache, P.J. (1982). Computational fluid dynamics.
Hermosa Publishers, Albuquerque, New Mexico.

Sibony, M. and J.-CI. Mardon (1982). Approximation et
équations différentielles. Paris: Hermann.

Siginer, D.A. and A. Valenzuela-Rendon (2000). On
the laminar free convection and stability of grade
fluids in enclosures. International Journal of Heat
and Mass Transfer 43, 3391-405.

York, P., U.P. Kompella, and B.Y. Shekunov (2007).
Supercritical Fluid Technology for Drug Product
Development, Drugs and the Pharmaceutical
Sciences, Vol. 138, Oxfordshire, UK: Taylor &
Francis (Informa Healthcare).

Table 1 Comparison between TC , SC  and E values obtained in the opposing and cooperating cases, for
510TRa

Nn TC SC E

-1 1 -1 1 -1 1

0.6 -0.006935 -0.006934 -6.98×10-7 -6.98×10-7 -0.006935 -0.006935
1.0 -0.032721 -0.032722 -3.38×10-6 -3.38×10-6 -0.032722 -0.032722
1.4 -0.103301 -0.103299 -1.15×10-5 -1.15×10-5 -0.103300 -0.103300

Fig. 1. Sketch of the geometry and coordinates system.
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(a)

(b)

(c)
Fig. 2. Streamlines for 1N  (top), 1N  (bottom), 24A , 100Le , 510TRa  and various values of

n: (a) 0.6n ,  (b) 1.0n  and (c) 1.4n .

(a)

(b)

(c)

Fig. 3. Isotherms for 1N  (top), 1N  (bottom), 24A , 100Le , 510TRa  and various values of n:
(a) 0.6n ,  (b) 1.0n  and (c) 1.4n .

(a)

(b)

(c)
Fig. 4. Isoconcentrations for 1N  (top), 1N  (bottom), 24A , 100Le , 510TRa  and various

values of n: (a) 0.6n ,  (b) 1.0n  and (c) 1.4n .
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Fig. 5. Horizontal velocity (top), temperature
(middle) and concentration (bottom) profiles

along the vertical coordinate for 24A ,
100Le , 510TRa  and different values of n.

Fig. 6. Evolutions of the stream function in the
centre of the cavity (top), the average Nusselt
number (middle) and the average Sherwood

number (bottom) with the Rayleigh number for
24A , 100Le  and various values of n.
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