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ABSTRACT

The objective of this study is to optimize experimental conditions of agitating a non-Newtonian liquid using
experimental design methodology. The measurements of the temperatures have been carried out in a jacketed vessel
equipped with Turbine impellers. The rheological properties of aqueous solutions of carboxymethylcellulose sodium
salt had been studied using shear stress/shear rate data. The results of the experimental studies, concerning the effect
of the diameter of the impeller, the impeller speed and baffled or unbaffled vessel on the overall heat transfer
coefficient have been approximated in the form of equations. Based on the optimization criterion, an agitated vessel
equipped with Flat Blade Disc Turbine (FBDT) of diameter ratio d/D = 0.6 and baffles is proposed as the most
advantageous for heat transfer processes.
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NOMENCLATURE

A Heat transfer surface area (m2)
Cp Specific heat (J kg-1K-1)
d Diameter of the agitator (m)
D Inner diameter of the agitated vessel (m)
dt Time step (s)
h Film heat transfer coefficient  (Wm-2K-1)
k Fluid consistency (Pa s-n)
n Fluid index (-)
Np Power number (Np=P. -1.N-3.d-5)
Nu Nusselt number (Nu =h0.D. -1)
Pr Prandtl number (Pr = .Cp. -1)
N Speed of agitation (rpm)
P Power consumption (W)
q Volumetric flow rate (m3s-1)
T Temperature (°C)
t Time (s)

U overall heat transfer coefficient (Wm-2K-1)
V Volume of fluid (m3)

Thermal conductivity of agitated liquid
(W m-1 K-1)
Dynamic viscosity (kg m-1 s-1)

a    Apparent viscosity (kg m-1 s-1)
Fluid density (kg m-3)

   Shear stress (Pa)
Shear rate (s-1)

subscripts
0          at the surface internal side
i           inlet
j           jacket
r vessel

1. INTRODUCTION

Mixing has found wide application in chemical and
biochemical processing. Many stirred tank bioreactors
and chemical reactors require precise control of both
mixing and heat transfer to achieve optimum
productivity (Oldshue 1983; Harnby et al. 1983; S.
Nagata 1975). Heat transfer in agitated vessels is one of
the most significant factors for controlling the outcome
of biochemical processes. The temperature of
fermentation generally must be maintained within very
narrow limits (Brian et al. 1989; Yüce et al. 1999).
Usually, agitated vessels have a heat transfer surface, in

the form of a jacket or internal coils, for addition or
removal of the heat.
The intensity of heat transfer during mixing of fluids
depends on the type of the agitator, the design of the
vessel and conditions of the process. When designing
an agitated vessel, the impeller, vessel geometry and
baffles should give the degree of mixing the process
demands, but it is impractical to specify the agitator to
give a specific heat transfer coefficient. The main factor
when selecting an agitator is the nature of the fluid.
Large diameter agitators operating at low speeds
normally give excellent blending and heat transfer
characteristics with high viscosity fluids. Small

Journal of Applied Fluid Mechanics, Vol. 4, No. 2, Issue 1, pp. 43-50, 2011.
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.
DOI: 10.36884/jafm.4.02.11915

http://www.jafmonline.net/
mailto:Abdelkaderdebab:@hotmail.com


A. Debab et al. / JAFM, Vol. 4, No. 2, Issue 1, pp. 43-50, 2011.

44

impellers operating at high speed are more suited for
low viscosity fluids. Turbine impellers are normally
used for high speed, low viscosity applications.
The normal design of turbine impeller has either four or
six flat blades on a central disc. The ratio of turbine
diameter to vessel diameter d/D is usually in the range
from 1/3 to 2/3. Baffles are essential in stirred batch
vessels to provide good mixing patterns throughout the
vessel. They act to reduce tangential flow and promote
axial motion. As baffling increases turbulence, it affects
the heat transfer rates.
Because heat transfer in agitated vessels is complex, an
empirical approach based on dimensionless analysis has
been used to predict the average heat transfer
coefficients at the jacketed wall. Hence, the results of
many heat transfer studies are frequently correlated
using a dimensionless equation.

       (1)

Where 10, 20, 30 and 40 are found by fitting Eq. (1) to
experimental data. A review of many such correlations
has been presented by Mohan et al. (1992).

Extensive characterization work has been carried out by
authors for different agitator types. The values of the
constant 10 reported are given in Table 1.

Table 1 Exponent for different impellers and Re
regimes

Type of agitator Re range 10
Flat blade disc turbine
Unbaffled  vessel
Baffled vessel

Re<400
Re>400

0.54
0.74

Propeller with three
blades and baffled vessel

5500 to 37000 0.64

The typical values for 20,  30 and 40 are respectively
2/3, 1/3 and 0.14 (Chapman et al. 1965; Strek et al.
1967; Fletcher P. 1987). The constant 10 which is used
to multiply the whole equation have been reported to
range from 0.33 to 1.0, mainly varying due to system
geometry and type of impeller.

Attempts were made to study batch heat transfer in an
agitated jacketed vessel, with a view to developing a
design equation to determine film heat transfer
coefficient, h0, in such vessels. But as the variables
influencing the heat transfer coefficient are quite large
in number, complete study covering all the variables
could not be made. It is essential to have complete
information on the effects of possible variables on the
rate of heat transfer and also a general correlation valid
over wide ranges of operating conditions for heat
transfer coefficients for design and efficient working of
the process. The aim of the present work was to study
the effect of the impeller speed N, impeller diameter d
and vessel with or without baffles on heat transfer
coefficient using an experimental method in which the
measurements are mathematically planned.

1.1 Vessel modeling
Figure 1 shows the configuration for the agitated vessel
used in the experiments.

Fig. 1. A typical arrangement of a jacketed vessel with
labels.

An energy balance in the vessel, considering the vessel
volume and the heat capacity of the vessel contents to
be constant, reads:

( ) =  ( ) ( )    (2)

Where  and  are the power terms associated with
the energy transfer from the stirrer and the heat of
reaction, respectively.

On the other hand the energy balance in the jacket can
be expressed as:

( =  ( ( ) ( )

( ) ( )      (3)

It is assumed that the heat loss of the usually insulated
jacket is negligible.

When the test begins, the temperatures in the vessel and
in the jacket are respectively Tr(0) and Tj(0). Then, the
vessel temperature is forced to go up or down when the
jacket temperature is changed, suddenly or slowly, to a
new set point. The jacket inlet temperature Tji(t) is
recorded, and so is the time to go from Tr(0) to Tr(t).

With known jacketed surfaces area, flow rates, heat
capacities and densities, the time-temperature response
is applied to the pertinent mathematical model.

The initial conditions are Tj(t) = Tj(0) and Tr(t) = Tr(0).
In Eq. (2), since there is no reaction the heat of reaction
and kinetic energy transferred from the impeller to the
vessel fluid are neglected. Equations (2) and (3) can be
rewritten in terms of dimensional groups, as described
below. Tr(t) is isolated in Eq. (3) as a function of dTj/dt,
Tj0(t) and Tji(t). The outcome is introduced into Eq. (2)
to obtain dTr/dt as a function of the same variables.
Then, the obtained equations are differentiated with
respect to time and solved by Laplace transform to yield
the expression for Tr(t):

1 2
j 1 1 2 2

j
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experimentally determine this parameter in given
equipment, varied is the mass flow rate in one side, and
the mass flow rate in the other side is kept constant.
Temperature and mass flow rate are the input
parameters varying during the experiment.

The original Wilson plot method was modified in a
variety of ways. The modification mainly consisted in
changing the number of determined parameters. The
original version required knowledge of the exponent at
the Reynolds number. Briggs et al. (1969) proposed an
iterative method to determine both heat transfer
coefficients without knowing of the exponent at the
Reynolds number. Further modifications allowed for
determining of up to five parameters can be found in
Fernandez-Seara et al. (2007).

The overall heat transfer resistance through the wall of
the agitated vessel is described by the following
approximation formula:

= +                                                      (7)

Where: Rw is the wall resistance. It should be noticed
that every liquid can produce a layer or deposit of
extraneous materials on the heat transfer surface, which
will provoke a time-modification of both film heat
transfer coefficients. In these cases, the heat transfer
resistance increases considerably due to the fact that
this type of materials normally has a lower thermal
conductivity. This effect is referred to as the fouling or
dirt factor, and should be avoided or, if this is not
possible, taken into account as a further resistance to
heat transfer.

Substituting to Eq. (1) definitions of the similarity
numbers, the heat transfer coefficient hi can be
expressed in the form:

. 20
0 Nhi                                                (8)

Where, 0 is a constant.

According to Eq. (8), only the stirrer speed can modify
the value of the internal film heat transfer coefficient
for a given vessel, with the same liquid and temperature
conditions inside it. The value of 0 is described by Eq.
(9).

.dViPr
20

4030

2

100 D
                  (9)

Where 10, 20, 30, 40 are constant for every system.

Substituting Eq. (8) to Eq. (7) we arrive at the following
equation, used in the calculations:
1

=
1

+                                         (10)

When the power generated in the vessel is small, the
viscosity number (Vi) can be neglected, if temperature
difference between the wall of the vessel and the fluid
temperature is not so large.

Assuming that 0 has a constant value under the
conditions previously mentioned, it is possible to
determine experimentally the value of hi, using the
Wilson plot.

Substituting the new variables:

=                                                                  (11)

                                                               (12)

=                                                                      (13)

+                                                          (14)

Equation (10) can be linearized:

                                                           (15)

A straight line can be plotted in Fig. 5 using Eq. (15).

Fig. 5. Original Wilson plot for hi experimental
determination

The slope of the straight line is the reciprocal of 0.
When the stirrer speed has no effects on the value of hi
(N ), 1/U gives the parameter b.

2.3 Planned experimental method
The influence of different geometrical parameters of the
agitated vessel on the heat transfer coefficient can be
determined using experimental method in which the
measurements are mathematically planned (Goupy
1996). As detected in previous study (Chergui 2005)
the most influential factors on the heat transfer
coefficient are the impeller diameter (X1), the baffles
(X2) and the impeller speed (X3). In order to evaluate
the effects and interactions of these three factors, a 23

factorial design is used. The experimental conditions
required by this design are defined in Table 2.

Table 2 Levels of the factors

d (m)
X1

Baffles
X2

N (rpm)
X3

Level + 0.081 With

baffles

850

Level – 0.045 Without
baffles

260

The levels chosen for each of the three parameters are
also presented in this table, e.g., a low level is
transformed to the number -1 and a high level to the
number +1.

y = a.x+b

b
x

y
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The mathematical model associated with this type of
planned experiments is a linear regression which takes
into account the effects of the factors as well as the
effects of their interactions.
It is written as:

0 1 1 2 2 3 3 12 1 2

13 1 3 23 2 3 123 1 2 3

Y b b X b X b X b X X
b X X b X X b X X X

                             (16)

Where Y represents the estimated response, it represents
the overall heat transfer coefficient hi and  Xi are
independent variables in code. The constant b0, is the
average experimental response, the coefficients b1,  b2
and b3 are the estimated effects of the factors
considered and the extent to which these terms affect
the performance of the method is called main effect.
The coefficients b12,  b13,  b23 and b123 are called the
interaction terms. The coefficients bij of the model are
estimated from experimental responses. Following the
model fitted for each response, we represent graphically
isoresponses surfaces which are three-dimensional
models of the relationship between the responses and
two factors. This response surfaces methodology allows
experimental responses behavior to be described as
precisely as possible as a function of factor variation
and optimal conditions of the factors to be determined
for each experimental response. We can see from Eq.
(16) that the factorial design provides information about
the importance of interactions between the factors. This
means that sometimes the level in which some factors
must be set is influenced by their interaction with
others, so that we can ensure a better expected
experimental response.

The statistical significance of each term, in Eq. (16),
was verified using the t-Student.

3. RESULTS AND DISCUSSION

3.1 Rheological Behavior of Aqueous Solution
of Carboxymethyl Cellulose Sodium Salt

A 2% dilute concentration of aqueous polymer solution
of sodium carboxymethyl cellulose sodium salt (CMC)
was chosen as a test fluid. To study the effect of
temperature on rheology, the measurements were
carried out at temperatures between 30°C to 60°C and
shear rates ranging between 6.45 S-1 to 645 S-1. The
experimental set up to perform these experiments were
a variable speed, coaxial cylinder thermostated
rheometer (VT550). A plot of the flow curves, shear
stress versus shear rate at four different temperatures
are shown in Fig. 6.
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Fig. 6. The dependence of shear stress on the shear
rate.

We observed that the experimented fluid exhibits a
rheofluidifiant behavior governed by the Ostwald de
Waele power-law model:

nk. (17)

Where k is the consistence index and n, is the flow
behavior index.

Table 3 provides some sample numerical values of k
and n.

Table 3 Values of the index of flow and consistency for
various values of temperatures

T,°C
 2% C.M.C

N k , Pa.sn

30 0.7272 0.7142
40 0.761 0.4661
50 0.8153 0.2544
60 0.8483 0.1646

The consistency index, k, decreases with increasing
temperature T. It is correlated with temperature as
follows:

bTeak .                                                                (18)

Where a and b are constants.

The fluid behavior index, n, showed no noticeable
variation with temperature change.

In Fig. 7 we could observe the influence of the
temperature on the apparent viscosity. A decrease in
viscosity was produced when the temperature increases.
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1

1 10 100 1000

µ a
(P

a.
s)

(1/s)

T=30°C

T=40°C

T=50°C

T=60°C

Fig. 7. The dependence of apparent viscosity
on the shear rate.

The apparent viscosity is computed from the following
equation:

1n
a k                                                            (19)

3.2 Influence of Non-Newtonian Flow
Behavior on Mixing Process Characteristics

In an agitated vessel, the rheological properties of the
material to be processed are of main importance
regarding the parameters which have to be considered
for the configuration. The viscosity influences the
formation of the flow field inside the tank and,
therefore, the mixing and power behavior.
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Thus, the viscosity is the most important characteristic
value. While Newtonian fluids are characterized by a
constant viscosity, the processing of non-Newtonian
materials demands the consideration of a changing
viscosity through a viscosity function.

For the configuration of agitators for the processing of
non-Newtonian materials, the changing viscosity needs
to be considered, where the Reynolds number is the
decisive characteristic value. The main problem is the
determination of the correct viscosity at a set rotation
rate; as a consequence the Reynolds number cannot be
calculated. This means that also the mixing time and
power characteristics only can be included as
approximations in the configuration stage. For this
reason, several methods, which enabled the
construction of a stirring apparatus for the processing of
non-Newtonian fluids by relating speed and viscosity to
each other, were developed in the past. For power law
fluids, a linear correlation between rotation rate of the
stirrer and mean shear rate in the agitated vessel can
be described by a linear correlation according to the
method of Metzner and Otto (1957).

NK s                                                                  (20)

Where the constant Ks in pseudo-plastic fluids has the
value 11.5, when a flat blade disc turbine is used; for
the pitched blade turbine ( =45°) the value is 13 and for
the propeller it is 10 (Reinhold et al. 1980).

3.3 Heat Transfer Calculation

3.3.1 Experimental Determination of Heat Transfer
Coefficients by Wilson Plot

A computer programme was used to analyze the data
taken from the experiments in this heat transfer study.
The first step of the calculation deals with the
estimation of an averaged Overall heat transfer
coefficient Ui from Eq. (6) and the experimental time-
temperature results presented in Fig.8

The values calculated from Eq. (6) are presented in
Table 4.

Table 4 Values of N, Re and Ui

FBDT(d=81mm) FBDT(d=45mm)

N(rpm) Re Ui Re Ui

260 142.80 129.30 140.78 83.95

450 241.95 188.68 265.07 116.22

650 353.75 240.82 373.49 146.68

850 430.91 276.19 573.08 189.72

From Table 4, it can be seen that the heat transfer
coefficient is calculated in the transition regime.

In the second part of the steady, the time response of
the theoretical vessel temperature Tv(t) using Eq. (4) is
presented in Fig. 8. From these plots it could be clearly

seen that the agreement between the experimental data
and the theoretical values calculated using Eq. (4) is
satisfactory. Similar plots prepared for the agitator of
45mm diameter also indicated satisfactory agreement.

Fig. 8. Time-Temperature Plots for FBDT
       d= 81mm and N=850 rpm.

The third step deals with the determination of the partial
heat transfer coefficient hi using Wilson plot method.

The calculated values of the local heat transfer
coefficient hi from the Wilson graphs have been plotted
against the speed of the impeller for each of the
impellers. From this plots it has been deducted the
correlations given in Table 5.

Table 5 Values of hi

FBDT(d=81mm) FBDT(d=45mm)

hi= 3.697 N2/3 hi = 2.158 N2/3

3.3.2 Prediction of the Film Heat Transfer
Coefficient by the Planned Experimental Method

The mathematical model derived from the experimental
results is presented by the following equation:

1 2 3

1 2 1 3 2 3

1 2 3

428,37 113,53 21,29 90,45
17,05 23,84 15,1
9,23

Y X X X
X X X X X X

X X X

(21)

 Where
018,0

063,0dX1
     and

5,266
5,526NX3

A second test was done in order to check the test of
Fischer (Goupy 1996), this test shows that the
mathematical model is representative. To be able to
represent graphically this equation; it is necessary to
stay constant one of the parameters, for example the
baffles referred by the parameter (X2,), then we obtain
the following equations:

For X2 = +1 (vessel with baffles)

= 449.66 + 130.58 + 105.55 +
33.07                                                                  (22)
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