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ABSTRACT

In this paper, lattice Boltzmann implementations of several types of boundary conditions are introduced and
numerically demonstrated. A thermal lattice BGK model is used to simulate thermal fields for flows. The unknown
thermal distribution functions at the boundary are subjected to the bounce back concept which is determined
consistently with Dirichlet and/or Neumann and/or convective boundary conditions. A consistency analysis using
heat transfer conduction is given and the algorithms are numerically tested in two space dimensions with respect to
accuracy, numbers of iterations and CPU time. The method is used to simulate conduction transfer problems;
numerical results and reference’s solutions are found in satisfactory agreement for thermal fields.

Keywords: Lattice Boltzmann method, Boundary conditions, Dirichlet boundary, Newmann boundary,
Convective boundary, 2D heat transfer.

NOMENCLATURE

ie propagation speed in the direction i in the lattice,
m/s

,x y rectangular coordinates, m

ie propagation velocity in the direction i in the
lattice, m/s

E, W, N, S east, west, north, south

if particle distribution function in the i direction, K
Rq heat flux, W/m2

T Dimensional temperature, K s position, m
(0)

if equilibrium particle distribution function in the i-
direction, K i weight factor corresponding to the

direction i  in a lattice
t time, s Stefan-Boltzman constant

pc Specific heat 2 1 1m S K t Time step, s
relaxation time in the LBM, s x Lattice constant, m

cs Lattice sound velocity, 1ms i collision operator
k Thermal conductivity, 1 1Wm K  density, 3Kgm

dimensionless time Thermal diffusivity, 2 1m S
Non dimensional temperature * Dimensional variable

1. INTRODUCTION

Over the last decade the lattice-Boltzmann (LB)
methods (Frisch et al. 1987; McNamara and Zanetti
1988; Higuera and Jiménez 1989; Succi et al. 1991;
Benzi et al. 1992; Wolf-Gladrow 2000) have achieved
great success as alternative and efficient numerical
schemes in the simulation of a variety of transport
phenomena in porous media (Chen  and  Doolen 1998;
Spaid and Phelan 1997; Maier et al. 1998; Manz et al.

2004; Maier et al. 1999; Bernsdorf et al. 2000; Clague
et al. 2000; Hill et al. 2001; Békri et al. 2001; Drazer
and Koplik 2001; Maier et al. 2002; Mishra et al. 2009;
Kandhai et al. 2002; Schure et al. 2002; Kang et al.
2002; Zeiser et al. 2002; Békri et al. 2003), heat
exchangers, cooling of electronic components, solar
collectors, thermal insulation, air heating systems for
solar dryers, passive solar heating and storage
technology to name just a few (Ho et al. 2002; He et al.
1998; Xi et al. 1999; Takada et al. 2000; Wolf-Gladrow
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2000; Succi 2001; Nourgaliev et al. 2003; Zhu et al.
2005; Ho et al. 2002; Jiaung et al. 2001; Chatterjee and
Chakraborty 2005). Besides their flexibility and
accuracy in dealing with the confining geometry and
actual boundary conditions, LB methods are inherently
parallel and, thus, they are ideally suited for high-
performance parallel computing. In contrast to the more
conventional numerical schemes based on a
discretization of macroscopic continuum equations, the
LB method utilizes micro and meso-scale theoretical
based on kinetic equations to recover the macroscopic
Navier–Stokes equation for fluid motion in the long-
time, large-scale limit Chen  and  Doolen (1998). The
used algorithms have been simplified by the single
relaxation time scheme of (Bhatnagar et al. 1954; Chen
et al. 1991). Only a few reports have been published so
far in which LB simulations also consider different
benchmarks of Boundary conditions as Dirichlet or/and
Newman Boundary conditions.

In  this  paper,  an  extension  of  the  LB  method  was
proposed based on convective Boundary conditions
imposed at the cavity’s walls. The resulting two-
dimensional problem was further restrained by
assuming Dirichlet or/and Newman Boundary
conditions.  While this work addresses cases with the
implementation of the lattice Boltzmann method (LBM)
for the solution of conduction problems with Dirichlet
or/and heat flux temperature or/and convective
temperature boundary conditions.

The numerical approach that we present in this work
can  cope  with  any  geometry  and,  thus,  it  will  be
particularly efficient in resolving details of the flow
field that govern transport in a transient conduction
or/and radiation equation.

The objective of the present work is to compare the
performance of the present LBM code in solving
transient conduction heat transfer in two-dimensional
geometry with LBM code available in Mishra et al.
(2009). For this, we consider two-dimensional
rectangular geometry where one or two boundaries can
be at prescribed heat flux conditions. The energy
equation is solved using the LBM and obtained results
are compared with reference’s ones Mishra et al.
(2009).

Then, we aims to extend the application of the LBM to
solve heat conduction problems dealing with
temperature as well as heat flux or/and convective
boundary conditions.

To that end, we consider two-dimensional rectangular
geometry where one boundary is at prescribed heat flux
conditions and the remaining ones are subjected to a
convective boundary condition.

A second benchmark problem dealing with transient
conduction heat transfer in a two dimensional
rectangular geometry where the four boundaries are
subjected to a convective boundary condition is
simulated.

Then, mixed boundary conditions is used showing the
flexibility of the method and its efficiency to deal with

any combination of these boundary conditions in order
to model almost any 2D heat transfer situation subjected
to varying boundary conditions.

2. THERMAL LATTICE BOLTZMANN MODEL

The heat transfer in a 2-D rectangular enclosure is
considered. Thermo-physical properties of the medium
are assumed constant.

 A variety of boundary conditions are imposed on the
rectangular geometry.

 For the problem under consideration, and in the
absence of convection and radiation, the energy
equation is given by

2T T Q
t

                                                         (1)

Conventional numerical approaches such as the finite
difference and finite element methods are based on the
discretization of partial differential equations. In
contrast, the LBM is based on the discrete Boltzmann
kinetic equation. For heat transport problems, the
internal energy evolution equation of the two-
dimensional nine-speed (D2Q9) lattice Boltzmann
model is given by Qian et al.  (1992)

( , )
( , ) , 1, 2,3,......,i

i i i
f r t

e f r t i b
t

         (2)

The collision operator i represents the rate of change

of if due to collisions. It incorporates all the physics
and modelling of any particular problem at hand. The
simplest model for i is the Bhatnagar–Gross–Krook
(BGK) model (Drazer and Koplik 2001)

(0)1[ ( , ) ( , )]i i if r t f r t                                     (3)

if  is the particle distribution function denoting the

number of particles at the lattice node r  at time t
moving in direction i with velocity ie  along the lattice

link ir e t connecting the nearest neighbours. b is
the number of directions in a lattice through which the
information propagates.
The basis of the discrete velocity model is a finite set of
virtual velocities ie or equivalently, of virtual fluxes of
the considered scalar field ( , )T r t  which given by

b

i i trftrT
0

),(),(                                                     (4)

The observed flux is expressed by

i
b

i i etrf
0

),(                                                                 (5)

The well-known D2Q9 lattice model (Fig.1)  will  be
considered here. In that model, the set of ie ’s  is such
that they connect the point, on which the lattice stencil
is centred, to its nearest neighbours on a spatial grid
with uniform spacing in both coordinate directions. Any

LBM advances the probability densities ),( trfi in time
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and thereby computes the evolution of the considered
scalar.  In  the  absence  of  external  sources  or  fluxes  for
the scalar, the corresponding discrete evolution
equation can be written in the following general form:

(0)( , ) 1( , ) [ ( , ) ( , )]i
i i i i

f r t
e f r t f r t f r t

t
        (6)

Fig.1.  The D2Q9 lattice Boltzmann model.

It is a single-relaxation-time model with relaxation
constant that can be related, via Chapmann–Enskog

analysis, to the diffusivity of the medium. )0(
if is the

equilibrium distribution function.

The relaxation time can be related with the thermal
diffusivity, the lattice velocity C  and the time step
(Maier et al. 2002) by the following relation

2
3

2
t

C
                                                               (7)

For the D2Q9 model in particular, the 9 velocities ie
and their corresponding weights iw  are the following

0 (0,0)e                                                                   (8)

(cos( ),sin( )).i i ie C    for ( 1) / 2i i
1,2,3,4i               (9)

2(cos( ),sin( )).i i ie C     for ( 5) / 2i i
5,6,7,8i             (10)

4
9iw                                                                       (11)

1
9iw    for 1,2,3,4i                                        (12)

1
36iw    for 5,6,7,8i                                      (13)

Where
tytxC // , x  and t  are the lattice space and

the lattice time step size, respectively, which are set to
unity. the weights satisfy the relation b

i iw
0

1 .

After discretization, and considering heat generation,
Eq. (6) can be written as

*

)0( )],(),([),(),(

tQw

trftrfttrfttterf

i

iiiii     (14)

Where *Q is the non dimensional heat generation and

iw is the weight in corresponding direction.

To process Eq. (8), an equilibrium distribution function
is required. For heat conduction problems, this is given
by

),(),()0( trTwtrf ii                                                       (15)

For the different sets of boundary condition, the
boundaries are based on the properties of the known
and unknown populations on each side as shown on
Fig. 2.

Fig. 2. Domain boundary conditions with known and
unknown populations.

3. RESULTS AND DISCUSSION

We consider transient heat conduction problems in 2-D
Cartesian geometry with a variety of initial and
boundary conditions.

Case1: the four boundaries are at known temperatures
The initial and the boundary conditions for case 1 are
the following

Initial condition ( , , 0) refT x y T                (16)
Boundary conditions

e( ,0, ) 0.25 r fT x t T                                                    (17)
( , , ) (0, , ) ( , , ) refT x Y t T y t T X y t T                       (18)

Steady state conditions were assumed to have been
achieved when the temperature difference between two
consecutive time levels at each lattice centre did not
exceed 610 . Non dimensional time was defined as

2/t L where L is the characteristic length.  was
taken as 410 .

To check the accuracy of the present LBM algorithm,
the same problem was solved using the finite volume
method and the results given by the two algorithms are
compared with those available in the literature.

In Fig.3, the non dimensional centreline ( x/X=0.5 )
temperature has been compared at different instants
for the case 1.
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Fig. 3. Centerline(x/X=0.5) temperature evolution for
different instants (case 1).

Case2: Effects of heat generation and the four
boundaries are at specified temperatures.

In Fig.  4, the effects of volumetric heat generation are
shown. The non dimensional volumetric heat generation
is taken as unity.

Effect of heat generation is very less in the beginning
compared to steady state because it takes some time to
influence the temperature profile.

For the 2-D geometry, the number of iterations for a
50x50 grid is 3719 (135.95 seconds) compared to that
cited at the literature 3257 (Mishra et al. 2009).

Fig. 4. Comparison of centreline (x/X=0.5) temperature
in the presence and the absence of heat generation.

The time-space evolution of the isotherms is plotted in
Fig.  5 when the four boundaries are at specified
temperatures (Dirichlet boundary condition) in the
presence of non dimensional heat generation ( *Q =2).
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0.05

at steady state
Fig. 5. Isotherms when the four boundaries are at

specified temperatures in the presence of non
dimensional heat generation ( *Q =2) for different .
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Case3: The bottom and top boundaries are at
prescribed fluxes and remaining two boundaries at
known temperatures.

The system is initially at temperature ET . For time t>0,
the south and the north boundaries are subjected to heat
fluxes ,T Sq  and ,T Nq , respectively. The east and the

west boundaries are kept at temperatures ET and WT ,
respectively.
Initial condition

0( , ,0)T x y T                                                             (19)

Boundary conditions

( ,0, ) sq x t q
( , , ) Nq x Y t q

0(0, , ) ( , , )T y t T X y t T                                          (20)

It is seen from the Fig.  6 that the steady state results
match exactly which each other.

Fig. 6. Centreline(x/X=0.5) temperature evolution for
different instants (case3).

In Fig. 7, we present the time-space evolution of the
isotherms when the bottom and the top boundaries are
at prescribed fluxes and remaining two boundaries at
known temperatures

Table 1CPU times (second) and number of iterations of
the LBM code (case3)

Size
Lattices

iterations CPU time
(seconds)

Temperature at
steady

state(x/X=0.5)
8x8 6251 12.42 0.44170

12x12 6076 24.33 0.37722
20x20 6051 53.026 0.34413
50x50 6199 286.011 0.34493

To have an idea of the number of iterations for the
converged solutions and the CPU time, tests were
performed with different lattices.
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Fig. 7. Isotherms when the bottom and the top

boundaries are at prescribed fluxes and remaining two
boundaries at known temperatures for different .
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The LBM code was found to take slightly less number
of iterations for the little lattices (Table 1). The effect of
heat generation on CPU times (second) and number of
iterations when all boundaries at known temperatures,
was highlighted in Table 2.

Table 2 Effect of heat generation on CPU times
(second) and number of iterations of the LBM code

(case3)

Lattice size iterations CPU time

In the absence of heat generation

50x50 6199 549.69

In the presence of heat generation
50x50 6317 555.13

Case4:
For the physical problem addressed in this section, the
thermal boundary condition at the three side faces, are
subjected to convective heat transfer boundary
condition:

( )Tk q h T T
n

                   (21)

where h is the convective heat transfer coefficient. n is
the direction of outward normal to the surface
concerned.

The bottom face is subjected to a heat flux, the
temperature boundary condition is:

T q
y

   (22)

The corresponding non-dimensional forms of the
boundary conditions obtained from Eqs. (21-22) are
formulated as (shown in Fig. 8):

* Bi
n

   (23)

* 0
y

   (24)

where * /Bi h l k is the Biot number.

Fig. 8. Physical problem with mixed Newmann and
convective boundary conditions.

In Fig. 9, we present the time-space evolution of the
isotherms for case 4.
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Fig. 9. isotherms when the bottom boundary is at
prescribed flux and remaining three boundaries are

convective (Qs=1), Bi=30.
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Case5:
A four convective boundary conditions benchmark is
studied in this section as presented in Fig. 10. In
addition the medium is subjected to a heat generation
conditions ( *Q =1).

In order to analyze the effect of the non-dimensional
Biot number, steady state non dimensional temperature
is plotted for the case of four connectives boundaries as
shown in Figs. 11, 12, and 13.

Fig. 10. Physical problem with convective boundary
conditions.

Fig. 11. Effect  of  Biot  number  on  steady  state  non
dimensional temperature, when the four boundaries are
subjected to a convective boundary condition along y/Y
axis.

Fig. 12. Effect of Biot number on steady state
nondimensional temperature, when the four boundaries
are subjected to a convective boundary condition along

x/X axis.
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Fig. 13.  Isotherms when the four boundaries are
convective and the medium is subjected to a unity heat

generation.
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Case 6:
The mixed convection/conduction/insulated boundary
conditions example is constrained as shown in Fig.14.
The distributions of isotherms are plotted in the Fig. 15
for different . A unity dimensional Biot number is
considered. 0 1WT T and 05NT T

Fig. 14. Physical problem with mixed
dirichlet/Newmann and convective boundary

conditions.

The CPU times and the number of iterations of the
LBM code ( 30Bi ) for a 50x50 grid is presented in
the Table 3 for different convective boundary cases.

Table  3 CPU times (second) and number of iterations
of the LBM code ( 30Bi ) for a 50x50 grid

iteration
CPU
time
(s)

Temperature at
steady state

(x/X=y/Y 0.5)
4 convective
boundaries

5126 119.5 0.0845364

3 convective
boundaries

Qs=0

7087 148.2 0.11306

3 convective
boundaries

Qs=1

4381 104.9 0.216927

2 convective
boundaries

Qs=1, Qn=0

5260 118.8 0.258066

5. CONCLUSIONS

The lattice Boltzmann method is used to solve transient
heat conduction problems in two dimensional
geometries with uniform lattices.

Different sets of mixed boundary conditions were
considered namely constant temperature and/or flux
boundary conditions and/or convective boundary
conditions.

The case of volumetric heat source in the medium was
also taken up. In this paper, the problem was analyzed
using two numerical approaches, lattice Boltzmann
method and the finite volume method.
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Fig. 15.  Isotherms when the left the top boundaries are
at specified temperatures, the bottom boundary is

convective and the south one is insulated.
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Results given by the two numerical approaches are
compared with those available in the literature and good
agreement is obtained. On the other hand, the effect of
lattice size is highlighted via the number of iterations
and the CPU time. The considered 2D geometry is a
simple one, to allow simple validation. Advection and
radiation are omitted. Thus, it remains to demonstrate
the viability of the LBM as heat diffusion-advection
solver knowing that using LBM will allow us to output
the temperature distribution in an extremely simple and
accurate way.
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