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ABSTRACT 

Numerical solutions of the steady viscous flow in the neighborhood of different double stenoses are obtained under 

laminar flow conditions with the motivation for modeling blood flow through stenosed artery formed due to arterial 

disease. The flowing blood is considered to be incompressible and Newtonian. A finite volume method has been 

employed to solve the governing equations. The dynamics of flow features have been studied by wall pressure, 

streamline contour, and wall shear stress distributions for all models. The results have demonstrated that when the 

shapes of stenosis change at primary stenosis keeping no change in the shape of secondary stenosis, the impact of 

changes in primary stenosis on secondary one is noted to be more, whereas, no impact of primary stenosis on 

secondary stenosis and vice versa is observed in case of changes in the shapes of secondary stenosis keeping no 

change in the shape of primary stenosis. When Reynolds number changes, the impact of changes in primary stenosis 

on secondary one is also noted to be higher.  
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NOMENCLATURE 

A Area at any section, [m2] ur   Velocity in r-direction, [ms-1]. 

D Dia of the artery, [m] uz Velocity in z-direction, [ms-1] 

hf Depth of  the restriction, [m]  U Average velocity in z-direction  

at inlet, [ms-1] 

Li         Inlet length (i.e., length between inlet  

section and restriction-1), [m ] 

r, z        Cylindrical co-ordinates 

Lex    Exit length (i.e., length between  

restriction-2  and exit section), [m] 
   Density, [kg m-3] 

Lr Reattachment length, [m] µ Dynamic viscosity, [kg m-1s-1] 

Ls Stricture length or length of 

 stenosis, [m] 

τw Wall shear stress, [Nm-2] 

P or p      Static pressure, [Nm-2] τwp           Peak Wall shear stress, [Nm-2] 

Pw          Wall pressure, [Nm-2] ∆pw           Wall pressure drop at stenosis zone, [Nm-2] 

PR 

 

Percentage of restriction  

or Percent stenosis = 
2 fh

D
 100% 

      

Subscripts 

*         Dimensionless terms 

1         Restriction-1/Primary stenosis 

2         Restriction-2/Secondary stenosis 

1-1      Inlet 

2-2       Exit 

R Restriction 

Re 

S          

Reynolds Number 

Restriction spacing, [m] 

1. INTRODUCTION  

The study of fluid flow through wavy boundaries is of 

great interest to engineers and researchers because of 

the  importance  it   plays  in  phenomena  such  as:  the  

 

 

generation of wind waves on water; the stability of a 

liquid film in contact with a gas stream; fluid flow in 

pipes with fittings, and blood flow through arteries 

http://www.jafmonline.net/
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under stenotic conditions. This type of study may also 

help to the bioengineers who are engaged in the design 

and construction of improved artificial organs.  

 

Atherosclerosis is a progressive disease characterized 

by localized plaques that form within the artery wall. It 

characterizes the hardening and thickening of the 

arterial wall. With the progress of disease, the passage 

area of the artery reduces significantly so that the 

normal flow of blood is severely impaired. The root 

causes to the formation of atherosclerotic lesions are 

still unknown but it is well established that the fluid 

dynamical parameters play an important role in the 

genesis of the disease. The formation of plaque in artery 

is closely related with the pressure distribution, the 

boundary layer separation, and high and low arterial 

wall stresses in the arterial constriction.  It is also 

recognized that instead of a single stenosis, multiple 

stenoses may also develop in series in an arterial 

segment (see Pincombe and Mazumdar 1990; Moore 

1997). These constrictions in diseased vascular tube 

occur because the formation of the primary constriction 

produces recirculating flow at the downstream of the 

constriction depending on percent stenosis, stenosis 

length, restriction spacing, flow Reynolds number etc. 

This recirculating flow in time helps or assists particle 

accumulation and formation of a secondary 

constriction.  

 

Quite a good number of theoretical as well as 

experimental studies related to blood flow through 

constricted arteries have been continually persued by 

the researchers for single as well as multiple 

restrictions. For multiple restrictions, Solzbach et al. 

(1987) have investigated experimentally the influence 

of stenosis geometry, such as percentage lumen area 

reduction, length, exit angle and eccentric shape on the 

fluid dynamics of the post stenosis flow considering 

rectangular shaped restriction. Dreumel and kuiken 

(1989) have studied numerically and experimentally the 

flow through trapezoidal shaped double constrictions. 

Liepsch et al. (1992) have studied experimentally the 

influence of stenotic geometry under steady flow 

condition in four cylindrical stenotic models with 

rectangular cross section. Tandom et al. (1993) have 

made an attempt to analyze the characteristics of the 

blood flow through an artery suffering with 

axisymmetric double stenoses in series. The stenoses 

are cosine shaped and identical with having each 

percentage of restriction of 20%. The stricture length 

(Ls*) of each restriction is 1.0 and the restriction 

spacing (S*) between two restrictions is 1.25. The 

effects of overlapping stenosis on arterial flow problem 

have been carried out analytically by Chakravarty and 

Mandal (1994) and Layek et al. (2009).  The steady 

laminar flow fields in the neighborhoods of two 

consecutive Gaussian shaped restrictions have been 

studied by Lee (1994) for Reynolds number in the range 

of 5 to 200, considering the fixed PR of 50% at the 

upstream restriction and different PR  varying from 

20% to 60% in  the downstream restriction. Damodoran 

et al. (1996) have studied numerically the steady 

laminar flow through tubes with four constrictions. A 

numerical study of an unsteady laminar flow in a 

double contour shaped constricted 3D vessel has been 

carried out by Ratish Kumar et al. (2002). In their 

study, they have considered Reynolds number in the 

range of 100-1200 and the spacing between the 

constrictions as 1, 2, 3, 4 and   by keeping a fixed PR 

of 50% for each constriction, and Strouhal’s number of 

0.0124. Further, Lee (2002) has studied numerically the 

effects of steady flow through double similar 

symmetrical bell-shaped identical constrictions. They 

have performed the study for percentage of restrictions 

of 33.3%, 50% and 66.67%, and the Reynolds numbers 

in the range of 5 to 400, with a fixed dimensionless 

restriction spacing of 1.0. Lee (2005) has studied the 

flow fields in the neighborhood of double constrictions 

in a circular cylindrical tube for dimensionless spacing 

of 1, 2, 3 with same PR of 50% for each restriction. The 

effects of multiple constrictions on central line velocity, 

pressure distribution, wall shear stress, and stream lines 

at different Reynolds numbers are investigated by 

Layek et al. (2005). 

 

From the brief review of literature, it is evident that 

most of the researchers have considered the influence of 

multiple restrictions on the flow keeping fixed stricture 

length of each restriction. They have also considered 

that the PR of stenosis increases at same stricture 

length.  During progression of the disease, it seems 

quite unnatural that the shape of stenosis increases in 

the r direction by increasing percentage of restriction 

only. Instead, the shape of stenosis should increase in r 

and z directions both. Since the downstream of stenosis 

is the prone zone for aggravation, the length of stenosis 

may change more in the downstream than the upstream 

of stenosis. This phenomenon has been considered in 

our work. In this work, the shape is considered to 

become asymmetric one during the progression of the 

disease. Accordingly, the shape is allowed to change in 

r and z directions both. Moreover, no one has 

considered multiple stenoses, where first restriction’s 

PR changes and PR of second restriction is fixed. 

 

Therefore, in our present study, we have considered two 

separate cases. Firstly, the shape of first stenosis 

changes asymmetrically, the shape of second restriction 

remains constant. Secondly, the first restriction is fixed, 

the shape of second restriction changes asymmetrically. 

Finally, an attempt has been made to study the 

influence of asymmetric configurations of stenosis on 

the flow characteristics in each case with comparisons 

between two cases. The considered flow characteristics 

are wall pressure, streamline contour and wall shear 

stress. The effect of Reynolds number on the above 

flow parameters also has been addressed in this study. 

2. MATHEMATICAL FORMULATION  

2.1 Governing Equations  

A schematic diagram of the computational domain is 

illustrated in Fig.1. It shows the computational domain 

with Gaussian shaped restrictions. This bell-shaped 

stenosis geometry is modeled mathematically as
2 2

2

4
0.5 expf

s

m z
r h

L

 
    

 
, (see Misra and Shit 2006). 

Where, m is a parametric constant. The flow under 

consideration has been assumed to be steady, two-

dimensional, laminar and axisymmetric. Since the 

development of arteriosclerosis in arteries reduce the  
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Fig. 1. Computational domain 

 

elastic property of the arterial wall, therefore, in our 

study, the vessel wall has been considered as rigid tube, 

(see Liu et al. 2004).  It is established that for the 

diameter of artery  0.2 mm, shear rate becomes very 

high which leads for the consideration of blood as a 

Newtonian fluid for coronary artery, whose diameter is 

approximately 0.3 cm, (Research Training Network on 

Mathematical Modeling for Haemodynamics, 

HaeModel, http://iacs.epfl.ch/cmcs/Haemodel.php3).   

 

Therefore, in our study, the fluid, i.e. blood, is 

considered to be Newtonian and incompressible. The 

flow of blood in the blood vessels, like the flow of 

liquids in narrow rigid tubes, is normally considered 

laminar, (see Ganong 2001). From the literatures of 

Andersson et al.  (2000) and Back et al. (2000), it is 

established that physiological flow range of Reynolds 

number is 100 to 400 for main coronary artery of 

human being in the laminar zone. Bertolotti et al. 

(2001) have also mentioned that the critical Reynolds 

number of the flow of blood through coronary artery is 

in between 300 to 400, above which the flow becomes 

transitional and turbulent at 75% stenosed condition. 

Therefore, the consideration of flow as laminar at our 

considered Reynolds number upto 400 seems to be 

reasonable. 

 

The following dimensionless variables are defined to 

obtain the governing conservation equations in the non-

dimensional form; 

Lengths: 
* /r r D , *z z D , *

i iL L D , 

*

ex exL L D , *

1 1 /S sL L D , *

2 2 /S sL L D , 

* /f fh h D ,  
* /S S D . 

Velocities: *

r ru u U , *

z zu u U . 

Pressure: * 2p p U . 

With the help of these variables, the mass and 

momentum conservation equations are written as 

follows, 

* * *( ) ( ) 0
* * *

r u uzr
r r z

 
 

 

                                        (1) 

* * * * * * * 2 **( ) ( ) ( )1

* * * * * * * *2Re

r u u u u r u upzr r r r r

r r z r r r r z

            
          

         (2) 

* * * * * *( ) ( )

* * * *

* 2 *1 *
* * * *2Re

r u u u u pzr z z

r r z z

u uz zr
r r r z

  
  

  

      
      

                   (3) 

Where, the flow Reynolds number, Re UD  . 

 

2.2 Boundary Conditions  

Four different types of boundary conditions have been 

applied to the present problem. They are as follows, 

1. At the walls: No slip condition, i.e. * 0ru  , * 0zu  . 

2. At the inlet: Axial velocity has been specified and the 

transverse velocity has been set to zero, i.e. 
*

zu specified , * 0ru  . Fully developed flow 

condition has been specified at the inlet, i.e., 

 
2

* *2.0 1 2zu r  
  

. 

3. At the exit: Fully developed condition has been 

assumed and hence gradients have been set to zero, i.e., 
* * 0zu x   , * 0.ru   

4. At the line of symmetry: The normal gradient of the 

axial velocity and the transverse velocity have been set 

to zero, i.e., * * 0zu r   , * 0ru  . 

 

2.3 Numerical Procedure 

The governing Eqs. (1), (2) and (3)  have been solved 

numerically by an in-house CFD code developed using 

integral approach of the finite volume method on a non-

uniform staggered grid following SIMPLER algorithm 

(see Pathankar 1980). The third-order upwind scheme 

has been used for advective part. The discretized 

equations have been solved using Tri-diagonal Matrix 

Algorithm (TDMA) with Alternate Direction Implicit 

(ADI) scheme. The convergence of the iterative scheme 

has been achieved when the normalized residuals for 
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mass and momentum equations summed over the entire 

calculation domain will fall below 10-7. 

 

Fig.  2. Comparisons with available results of others for 

single restriction with PR of 33.33% 

 

 

Fig.  3. Comparisons with the result of wall pressure 

drops across restrictions for Re=5 and 200 for 

PR=33.33%, 50% and 66.67% 

In the computation, flow has been considered fully 

developed at inlet and exit, and therefore, the non-

dimensional total length of computational domain has 

been chosen to be 200 and the inlet length has been 

chosen to be 50. After grid independence test, finally 

the numerical mesh comprised of 449 65 grid nodes 

in z and r direction has been considered in the present 

work.  

 

2.4 Validation of Computational Results 

For the purpose of validations of our results, initially 

the computation has been carried out for a single 

restriction considering cosine shaped geometry of 56% 

area reduction for different values of Reynolds number, 

as was done by Young and Tsai (1973) during their 

experimental work. This study has been carried out for 

the stricture length of 4.0, percentage of restriction of 

33.33% and the non-dimensional length of the 

computational domain of 16. The results of 

dimensionless pressure drop, obtained from our 

computation, have been compared with the 

experimental work of Young and Tsai (1973), and the 

numerical results of Zendehbudi and Moayeri (1999), 

and Lee (2002) in Fig. 2. Comparisons have showed a 

very good agreement. For the purpose of validations of 

our results in the case of  flow through double bell 

shaped restrictions, we have carried out the 

computations of wall pressure drops across the 

restrictions at Re of 5.0 and 200 to compare our results 

with the results of Lee (2002). During the computation, 

the magnitude of Ls* and S* (Ls*
1=1.0, S*=0.0, 

Ls*
2=1.0) have been chosen same as was considered by 

Lee (2002). The variations of pressure drop across 

restriction-1 and both restrictions have been shown in 

Figs. 3a and 3b respectively. In general, pressure drop 

across restrictions shows a good agreement except the 

small deviation at higher percentage of restriction.  

 

Fig. 4. Separation-reattachment curves for single 

restriction 

 

Further, the separation-reattachment curves for the 

same single restriction (Young & Tsai 1973) from 

different studies are shown in Fig. 4, where z-axis is 

represented as was considered by Young & Tsai (1973). 

There is a good agreement between present result and 

numerical results of Zendehbudi & Moayeri (1999). 

Apparently, the large discrepancy with experimental 

results of Young & Tsai (1973) has been observed, as 

the reattachment lengths are difficult to measure 

experimentally. To check the validity of our numerical 

results in case of double restrictions, the separation-

reattachment curves for the first restriction as well as 

second restriction are compared with Lee (1994) for 

Ls*
1=1.0, PR1=50%, S*=0.0, PR2 =60%, and  Ls*2=1.0,  
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Fig. 5. Separation-reattachment curves for double 

restrictions 

 

shown in Fig. 5. This shows a good agreement except 

the small deviation at higher Reynolds number in case 

of second restriction.  

 

Table 1 Details of different shapes. 

 

Model Ls*
1 PR1 Ls*

2 PR2 Case 

M1 0.2 30%  

0.2 

 

    30% 

 

Case 1 AS1 0.3 50% 

AS2 0.4 70% 

AS3 0.5 90% 

M1  

0.2 

 

30% 

 

0.2 30%  

Case 2 AS4 0.3 50% 

AS5 0.4 70% 

AS6 0.5 90% 

 

2.5 Problem Formulation 

The formulations of different shapes are shown in    

Fig. 6 and the details of different shapes are presented 

in Table 1. Initially we have considered a double 

stenoses like the model: M1. Both restrictions of this 

model are similar symmetrical (about the centre of 

restriction) having same stricture length of 0.2 and 30% 

restriction each. In case-1, the aggravation takes place 

in the first stenosis mainly. Then the shape of first 

restriction of multi-stenoses changes from M1 to AS1, 

AS1 to AS2, and AS2 to AS3. Here the shape of second 

restriction remains same like the model: M1. In case-2, 

the shape of first restriction remains same like the 

model: M1. The aggravation takes place in the second 

stenosis, the shape changes from M1 to AS4, AS4 to 

AS5 and AS5 to AS6 accordingly. 

3. RESULTS AND DISCUSSION  

Numerical simulations have been carried out to model 

the steady flow of blood through a coronary artery with 

double bell shaped stenoses. During numerical 

investigation; firstly, the effect of different shaped 

double stenoses (for case-1 and case-2) on flow 

characteristics, e.g. wall pressure drop, streamline 

contour and peak wall shear stress; secondly, the effect 

of Reynolds number on the above flow parameters have 

been carried out for two typical shaped stenoses 

(Model: AS1 and AS4). 

 

3.1 Effect of Shape of Stenoses  

In this subsection, the effect of different shaped double 

stenoses like case-1 and case-2 on wall pressure, 

streamline contour and wall shear stress has been 

investigated and comparisons between the two cases 

have been outlined. The non-dimensional restriction 

spacing between two restrictions has been considered to 

be 4.0 for initial condition of Model: M1.  So, in case-1, 

the S* changes accordingly as 3.9, 3.8 and 3.7 for the 

models AS1, AS2, and AS3 respectively. In case-2, the 

S* remains same as 4.0. 

 

 

Fig. 6. Different shapes 

 

 Case 1 

Model:AS3 

Model:AS2 

Model:AS1 

Model:M1 

0.4 

0.3 

0.2 

0.1 0.1 

P
R

1
=3

0
%

 

P
R

1
=5

0
%

 

P
R

1
=7

0
%

 

P
R

1
=9

0
%

 

PR2=30% 

0.1 0.1 

 Case 2 

P
R

2
=3

0
%

 

P
R

2
=5

0
%

 

P
R

2
=7

0
%

 

P
R

2
=9

0
%

 

0.4 

0.3 

0.2 

0.1 0.1 

Model:AS6 

Model:AS5 

Model:AS4 

Model:M1 

PR1=30% 

0.1 0.1 
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Fig. 7a. Variations of wall pressure for Re=100 for case-1 and case-2. 

 

The parameters during the study are identified as, 

(i) Reynolds number =100. 

(ii) Percentage of restriction =30%, 50%, 70% and 

90%.  

(iii) Stricture length = 0.2, 0.3, 0.4, 0.5. 

 

3.1.1 Variations of Wall Pressure  

The variations of wall pressure have been shown in  

Fig. 7a for Reynolds number of 100 for case-1 and 

case-2. The inset figures in model: AS3 and model: 

AS6 show the enlarged view of variation of wall 

pressure at second restriction for model AS3 and first 

restriction of model: AS6 respectively. Here, non-

dimensional pressure drop at first stenosis (ΔPw*
1) 

increases with the change of considered models from 

M1 to AS3 in case-1. In this type of aggravation, ΔPw*
1 

increases due the high impact of restriction PR 

compared to the effect of stricture length and restriction 

spacing.  
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Fig. 7b. Variations of wall pressure drop at stenosis zone for Re=100 for case-1 and case-2. 

 
Model:M1, S*=4.0 

 
Model:AS1, S*=3.9 

 
Model:AS4, S*=4.0 

 
Model:AS2, S*=3.8 

 
Model:AS5, S*=4.0 

 
Model:AS3, S*=3.7 

 
Model:AS6, S*=4.0 

 
Fig. 8. Contours plotting for Re=100 for case-1 and case-2. 



 D. K. Mandal et al. / JAFM, Vol. 4, No. 4, pp. 31-42, 2011.  

 

38 
 

For this case-1, it is interesting to note that the ΔPw*
2 

decreases instead of same shape of second restriction. 

These happenings may be due to the higher impact of 

higher length of recirculation bubble at the downstream 

of first restriction due to higher PR of first restriction. 

For case-2, no appreciable change in magnitude of 

ΔPw*
1 has been noticed when model changes from M1 

to AS6. Pressure drop at second restriction, ΔPw*
2 

increases due to increase in PR of second restriction in 

this case-2. It is also noted from Fig. 7a  that  the  

magnitude  of  pressure  drop  at  first stenosis in case-1 

and pressure drop in second restriction in case-2 are 

more or less same. All these observations have been 

substantiated with the help of Fig.7b. 

 

 Since, there is chance of tearing action on arterial wall 

due to low wall pressure, which causes of damaging the 

endothelium and adjacent wall layers, with subsequent 

thickening of the intima and eventual plaque 

development, therefore, the impact due to wall pressure 

drop on the chance of progression of disease increases 

at first restriction in case-1 and second restriction in 

case-2, and this quantum of magnitude of impact 

remains same for both the cases. This impact decreases 

for second restriction in case-1, and remains same for 

first restriction in case-2. 

 

3.1.2 Variations of Streamlines Contour  

The variations of streamline contour have been shown 

in Fig. 8 for Reynolds number of 100 in case-1 and 

case-2. In case-1, i, e., when the model changes from 

M1 to AS3, Lr*
1 increases in spite of opposite impact of 

stricture length on the length of recirculation zone. This 

indicates higher impact of PR on recirculation length 

compared to stricture length. In case of models of AS2 

and AS3, the inner zone between two restrictions is 

fully filled up by recirculation bubble. Moreover, it is 

noted that the recirculating eddy between the two 

constrictions spreads beyond the second restriction and 

merges with the eddy that formed behind it. This 

supplements our earlier prediction stated in the wall 

pressure drop analysis. For case-2, the recirculation 

zone formed behind the first restriction has been 

observed to be more or less same. This zone increases 

for second restriction as PR increases. 

 

The recirculation zone is the cause of stagnation of 

blood stream and it allows platelets and fibrin to form a 

mesh at the inner wall in this zone by trapping lipid 

particles to form atheromatous plaque. So, the plaque 

deposition zone at R1 increases for case-1.  This zone is 

noted to be increasing with increase in PR1 considering 

both impact of R1 and R2 for the models of AS2 and 

AS3. In case-2, the plaque deposition zone at R1 does 

not change appreciably. This zone has been noted to be 

increasing at R2.  

 

3.1.3 Variations of Wall Shear Stress 

The non-dimensional wall shear stress at any position is 

computed with the help of the following expression:  

* w
w

w ref





 where, τw is wall shear stress and wref  is 

the reference wall shear stress, which is considered as 

the wall shear stress far away from the stenosis. 

Figure 9a shows the variations of wall shear stress for 

Reynolds number of 100 for case-1 and case-2. Inset 

figures in case of model: AS3 and AS6, show the 

variation of wall shear stress at the second restriction 

(R2) in case-1 and first restriction in case-2  

respectively. It is evident from the figure that the 

magnitude of τwp
*
1 increases as PR1 increases in case-1. 

The magnitude of τwp
*
2 decreases in case-1 and finally 

the effect of negative wall shear stress appears, 

although there is no change in the shape of second 

restriction. This happens due to merging of 

recirculation eddy of the first restriction with the eddy 

formed behind the second restriction. For case-2, the 

developed peak wall shear stress does not change 

appreciably at R1 and this stress increases at R2 as PR2 

increases. It is also noted that the magnitude of peak 

wall shear stress at first stenosis in case-1 and peak wall 

shear stress in second restriction in case-2 are more or 

less same. All the above mentioned observations have 

been supplemented by Fig. 9b. 

 

 It is known that high wall shear stress damages the 

vessel wall and causes intimal thickening and low wall 

shear stress causes the mass transportation across the 

arterial wall. Therefore, the damaging chance of arterial 

wall due to peak wall shear stress at R1 increases in 

case-1. This impact of peak wall shear stress on the 

phenomenon for second restriction decreases with the 

increase in percentage of restriction of first restriction. 

Finally at higher PR1, the impact of low wall shear 

stress appears and chance of aggravation of the disease 

takes place accordingly. For case-2, this impact at first 

restriction does not change appreciably and the said 

impact increases at second restriction. It can also be 

said that the impact due to peak wall shear stress 

remains same at first restriction in case-1 and second 

restriction in case-2 both. 

 

3.2 Effect of Reynolds Number  

In this subsection, the simulation of flow characteristics 

for the models AS1 with S*=3.9, and AS4 with S* =4.0 

has been carried out for the Reynolds numbers of 100, 

200, 300 and 400. 

 

The variations of wall pressure drop at the restrictions 

zone, streamline contour, and variations of peak wall 

shear stress for all Reynolds numbers for considered 

models of AS1 and AS4 have been shown in Figs. 10a, 

10b and 10c. From the figure of wall pressure drop, it is 

noted that the magnitude of non-dimensional pressure 

drop decreases with the increase in Reynolds number 

for all considered models and for both restrictions (R1 

and R2). The magnitude of ΔPw*
2 for the model AS1 

decreases with Re, but after some value of Re this value 

becomes zero, it may be due to merging of recirculation 

eddy of first restriction with the recirculating eddy of 

the second restriction. This is substantiated by the 

figure of streamline contours (Fig. 10b). From the 

figure of streamline contour, it is observed that the size 

of recirculation bubble for both the restrictions 

increases with Reynolds number for all models. From 

Fig. 10c, it can be mentioned that the magnitude of 

peak wall shear stress for first restriction increases with 

Reynolds number, but this value decreases with 

Reynolds number for second restriction and attains  
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Fig. 9a. Variations of wall shear stress for Re=100 for case-1 and case-2. 

 

negative peak wall shear stress value due to merging of 

recirculation bubble in case of model: AS1. In case of 

model: AS4, the magnitude of peak wall shear stress 

increases with Reynolds number for both the 

restrictions. The tearing chance of arterial wall due to 

wall pressure and plaque deposition zone due to 

recirculation eddy increase with the increase in 

Reynolds number for both restrictions (R1 and R2) for 

model AS1 and AS4. The chance of damaging of 

arterial wall due to peak wall shear stress increases with 

Reynolds number at R1 for AS1 and AS4.  

 

In case of AS1 at R2, the aggravation of disease initially 

decreases with Re due to peak wall shear stress, but 

gradually the chance of aggravation of the disease due 

to low wall shear stress appears finally. In case of. R2, 

the chance of aggravation of the disease due to peak 

wall shear stress for AS4 increases with Re.  
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Fig. 9b. Variations of peak wall shear stress for Re=100 for case-1 and case-2 

 

Fig. 10a. Variations of wall 

pressure drop 

 
Model: AS1, S*=3.9, Re=100 

 
Model: AS4, S*=4.0, Re=100 

 
Model: AS1, S*=3.9, Re=200 

 
Model: AS4, S*=4.0, Re=100 

 
Model: AS1, S*=3.9, Re=300 

 
Model: AS4, S*=4.0, Re=100 

 
Model: AS1, S*=3.9, Re=400 

 
Model: AS4, S*=4.0, Re=100 

 

Fig. 10b. Contours plotting to show the effect of Re. 
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Fig. 10c. Variations of peak wall shear stress. 

 
4. CONCLUSIONS  

In the present numerical study, the effect of different 

shaped stenoses, and Reynolds number on the flow 

characteristics like wall pressure, streamline contour 

and wall shear stress of blood flow through different 

double bell shaped stenosed coronary artery has been 

investigated and role of all the flow characteristics on 

the progression of the disease, atherosclerosis is 

discussed.       

 

During our study on the effect of different shaped 

stenoses on flow characteristics and finally on the 

progression of the disease, it is revealed that the chance 

of tearing possibilities of arterial wall due to pressure 

drop, the zone of plaque deposition on the artery wall 

due to the length of recirculating bubble, and the chance 

of damaging of arterial wall due to peak wall shear 

stress increase at first restriction in case-1 and at second 

restriction in case-2. The quantum of magnitude of 

impact also remains same for both the cases. In case-1, 

the impact due to pressure drop and peak wall shear 

stress decreases at second restriction. The magnitude of 

peak wall shear stress becomes negative value at higher 

percentage of restriction of first restriction in case-1. 

The impact due to pressure drop, reattachment length 

and peak wall shear stress remains same at first 

restriction in case-2. 

 

 The impact due to pressure drop and recirculating eddy 

on the progression of the disease increases with 

Reynolds number for both the restrictions for both the 

considered models i, e., AS1 and AS4. The impact of 

peak wall shear stress is also noted to be increasing 

with Reynolds number for first restriction for both the 

models. In case of second restriction, this impact due to 

peak wall shear stress increases for model:AS4. For 

model:AS1, the impact at second restriction decreases 

with the final appearance of the effect of low wall shear 

stress. 

 

Therefore, it can be stated that when the shapes of 

stenosis change at primary stenosis keeping no change 

in the shape of secondary stenosis, the impact of 

changes in primary stenosis on secondary one is noted 

to be more, whereas, no impact of primary stenosis on 

secondary stenosis and vice versa is observed in case of 

changes in the shapes of secondary stenosis keeping no 

change in the shape of primary stenosis. When 

Reynolds number changes, the impact of changes in 

primary stenosis on secondary one is also noted to be 

higher.  
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