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ABSTRACT 

A numerical program is been developed to simulate the natural convection in a rectangular cavity in presence of a 

magnetic field. The cavity in filled with mercury with a Prandtl number equal to 0.024. The flow is induced by a 

vertical temperature gradient. This type of configuration concerns the crystal growth using the Bridgman vertical 

method. The mass, momentum and energy equations, adopting the Boussinesq approximation, are solved numerically 

using the finite-volume method in conjunction with the SIMPLER algorithm the flow under consideration is steady, 

laminar and two-dimensional. The temperature gradients are assumed to be weak. The results show that the dynamic 

and temperature fields are strongly affected by variations of the magnetic field intensity and the angle of inclination. 

Numerical simulations have been carried out considering different combinations of Grashof and Hartmann numbers 

to study their effects on the streamlines, the isotherms and the Nusselt number. 
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NOMENCLATURE 

A Aspect ratio                                                  u Horizontal velocity m/s                                               

B Vector of  the magnetic field T                                  U Dimensionless horizontal velocity  

b Source term v Vertical velocity m/s                                             

C Cold V Dimensionless vertical velocity 

F Electromagnetic force N/m3                                X Cartesian coordinate in the horizontal direction  

Gr Grashof number Y Cartesian co-ordinate in the vertical direction 

g Acceleration of gravitym/s2                                α Thermal diffusivitym2/s                                        

H Heat βt Thermal coefficient of expansion 1/K        

H Width of the cavity m                                                ∆t Dimensionless increment of time 

Ha Hartmann number  φ Electric potentialV                                                         

J Vector of density of the electrical current A/m2  Φ Generalized function 

L Length of the cavity m ρ Mass density kg/m3 

Nu  Average Nusselt number  γ Angle of inclination 

P Pressure N/m2                                                          θ Dimensionless temperature  

Pr Prandtl number σ Electric conductivity1/Ω.m 
T temperature K                                            ν Kinematic viscosity m2/s 
t Dimensionless time   

 
1. INTRODUCTION 

Natural convection in closed enclosures has been 

extensively studied numerically and experimentally. 

The study of thermal convection in inclined enclosures 

is motivated by a desire to find out what effect slope 

would have on certain thermally driven flows which are 

found in many engineering applications. These 

applications include: building systems containing multi-

layered walls, double windows, and air gaps in 

unventilated spaces; energy systems such as solar 

collectors, storage devices, furnaces, heat exchangers, 

and nuclear reactors; material processing equipment 

such as melting and crystal growth reactors. Thermally 

driven flows are also found in large scale geophysical, 

astrophysical, and environmental phenomena. Most of 

the research work that has been carried out in this area 

was focused on enclosures that were differentially 

heated in one direction (vertically or horizontally) with 
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adiabatic side walls in the other direction. Rather little 

work has been carried out considering more complex 

thermal boundary conditions that are normally found in 

most of the aforementioned practical applications. In 

these applications, the imposed temperature gradient is 

neither horizontal nor vertical.  

 

Thermal convection in enclosures heated from below 

and cooled from above is of special interest because of 

flow mode transition that had been observed and 

reported by many researchers (Hart 1971; Corcione 

2003). A numerical investigation on the effect of 

various thermal conditions of cavity side walls on flow-

mode transition of natural convection in rectangular 

horizontal enclosures, heated from below and cooled on 

the top. Different width-height aspect ratios were 

considered. Rayleigh numbers, based on cavity height, 

were betweens 103 to 106. Corcione results have shown 

that bidirectional differential heating has a significant 

effect on flow mode-transition of natural convection 

inside horizontal cavities.  

 

Some of these bidirectional differential heating 

configurations considered in involved temperature 

discontinuities at the cavity corners. No discussion was 

provided on the effect of these temperature 

discontinuities on the calculated Nusselt numbers. 

numerically investigated the effect of angle of 

inclination on flow mode-transition in an inclined 

rectangular enclosure heated from below and cooled 

from above with two insulated side walls (Song 1996). 

Different aspect ratios were considered and Rayleigh 

number ranged from 1.5×103 to 2×104. Flow mode-

transition and Hysteresis phenomenon for Ra >2000 

have been demonstrated.  

 

When the fluid is electrically conducting and exposed 

to a magnetic field the Lorentz force is also active and 

interacts with the buoyancy force in governing the flow 

and temperature fields. Employment of an external 

magnetic field has increasing applications in material 

manufacturing industry as a control mechanism since 

the Lorentz force suppresses the convection currents by 

reducing the velocities. Study and thorough 

understanding of the momentum and heat transfer in 

such a process is important for the better control and 

quality of the manufactured products.  

 

The study of Oreper (1983) shows that the magnetic 

field suppresses the natural-convection currents and the 

magnetic field strength is one of the most important 

factors for crystal formation. Ozoe and Maruo (1987) 

numerically investigated the natural convection of a low 

Prandtl number fluid in the presence of a magnetic field 

and obtained correlations for the Nusselt number in 

terms of Rayleigh, Prandtl and Hartmann numbers. 

Garandet (1992) proposed an analytical solution to the 

governing equations of magnetohydrodynamics to be 

used to model the effect of a transverse magnetic field 

on natural convection in a two-dimensional cavity.  

 

Seth and Ghosh (1986) proposed unsteady 

hydromagnetic flow in a rotating channel in the 

presence of inclined magnetic field. Ghosh (1991) 

proposed a note on steady and unsteady hydromagnetic 

flow in a rotating     channel in the presence of inclined 

magnetic field. Ghosh (2001) proposed a note on 

unsteady hydromagnetic flow in a rotating channel 

permeated by an inclined magnetic field in the presence 

of an oscillator. Ghosh and Pop (2002) proposed a note 

on a hydromagnetic flow in a slowly rotating system in 

the presence of an inclined magnetic field. Ghosh et al. 

(2010) proposed transient hydromagnetic flow in a 

rotating channel permeated by an inclined magnetic 

field with magnetic induction and Maxwell 

displacement current effects.  

 

Rudraiah (1995) numerically investigated the effect of a 

transverse magnetic field on natural-convection flow 

inside a rectangular enclosure with isothermal vertical 

walls and adiabatic horizontal walls and found out that 

a circulating flow is formed with a relatively weak 

magnetic field and that the convection is suppressed 

and the rate of convective heat transfer is decreased 

when the magnetic field strength increases. Alchaar 

(1995) numerically investigated the natural convection 

in a shallow cavity heated from below in the presence 

of an inclined magnetic field and showed that the 

convection modes inside the cavity strongly depend on 

both the strength and orientation of the magnetic field 

and that horizontally applied magnetic field is the most 

effective in suppressing the convection currents.         

 

Al-Najem (1998) used the power law control volume 

approach to determine the flow and temperature fields 

under a transverse magnetic field in a tilted square 

enclosure with isothermal vertical walls and adiabatic 

horizontal walls at Prandtl number of 0.71 and showed 

that the suppression effect of the magnetic field on 

convection currents and heat transfer is more significant 

for low inclination angles and high Grashof numbers. 

The present study considers laminar natural convection 

flows in the presence of a magnetic field in an inclined 

rectangular enclosure heated from isothermal vertical 

walls and adiabatic horizontal walls. The object of the 

study is to obtain numerical solutions for the velocity 

and temperature fields inside the enclosure and to 

determine the effects of the magnetic field strength and 

direction, the aspect ratio and the inclination of the 

enclosure on the transport phenomena. 
 

2. GEOMETRY AND MATHEMATICAL 

MODEL 

The geometry considered is a rectangular enclosure 

having a length L and a width H, thus with an aspect 

ratio A=L/H=4, filled completely with a molten metal, 

the Prandtl number of which is Pr=0.024. The 

horizontal walls of the enclosure are maintained at 

different temperatures, the bottom wall at TH and the 

top wall at TC, (TH>TC). The other walls are supposed 

to be adiabatic. The inclination of the cavity was also 

considered, with a varying angle γ between the heated 

wall and the horizontal line. The flow is subjected to the 

action of an external uniform and constant magnetic 

field. MHD flow, likely to develop in this enclosure, is 

governed by the equations of continuity, momentum, 

energy conservation, the Ohm’s law and the 

conservation the electrical potential. The geometrical 

configuration is described in the Fig. 1. 
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Fig. 1. Geometry of the problem. 

We will adopt the following simplifying assumptions: 

the flow is laminar, the physical properties of the fluid 

are supposed constant, the viscous dissipation and the 

Joule effect are negligible, the approximation of 

Boussinesq is valid and the induced magnetic field is 

negligible (on the scale of the laboratory) because the 

magnetic Reynolds number R M < < 1, (Moreau 1991). 

As a result, the equations of MHD are written as 

follows:  

( )j V B                                                         
(1) 

. 0j                                                                  
(2) 

EMF j B                                                    (3) 

j V B                                                   (4)  

EMF V B B                                             
(5)   
This gives:  

2 2 2

0. ( cos sin sin ) ( sin cos cos )EM x yF B v u e u v e           
        (6)

 
 

The dimensionless equations describing the flow are as 

follows. 

At t = 0 : U=V=0.
        

 At t > 0
 

0
U V

X Y

 
 

 
                                                              

(7)
  

2 2

2 2
sin EMX

U U U P U U
U V Gr F

t X Y X X Y
 

      
       

      
         

(8) 

2 2

2 2
cos EMY

V V V P V V
U V Gr F

t X Y Y X Y
 

      
       

      
           

(9) 

2 2

2 2

1

Pr
U V

t X Y X Y

         
    

     
          

(10) 

We note that p is the dimensionless pressure, U and V 

are the dimensionless velocity components,  is the 

dimensionless temperature, ρ it is supposed linear 

distribution. α, g, β and σ are respectively the thermal 

diffusivity, the gravity acceleration, the thermal 

coefficient of expansion and the electrical conductivity. 

The dependant variables are nondimensionnalized using 
the following characteristic parameters: H, H2/ν, ν/H, ρ 

(ν /H)2 and TH-TC for the length, time, velocity, the 

pressure  and  the temperature respectively. ν, ρ and t 

represent the kinematic viscosity of the molten metal, 

the density and time respectively. 

 

The electrical potential φ equation is obtained by taking 

the divergence of the Ohm’s law (Series 1991). The 

dimensionless components of the Lorentz force F in the 

x and y directions appear in the x and y momentum 

equations respectively. In addition the boundaries are 

electrically insulated; therefore the electric potential φ 

is constant. The MHD control parameters of flow are: 

  3 2/H CGr g T T H   ,
0Ha B H    and  Pr /     

indicating the Grashof number, the Hartmann number 

and the Prandtl number respectively. 

 

2.1  Boundary Conditions  

The following boundary conditions are 

incorporated:  

 
-  At X=0 and X=A, U=V= d/dY =0.

 
-  At Y=0, U=V=0, =1 and at Y=1, =0. 

 

3.  NUMERICAL METHOD  

The finite-volume method is used for the numerical 

resolution the system of transport Eq. (11).  

 i

i i i

U
S

t X X X


 


    
    

    

               (11)  

The discretized form is:  

P P E E W W N N S SA A A A A b                  (12)  

The Eq. (12) are solved using the SIMPLER algorithm 

(Patankar 1980) the temporal derivative is discretized 

using the implicit scheme. Concerning the spatial 

discretization, all the convective and the diffusive terms 

are discretized using the central differencing scheme. 

 

In this study, we used a uniform grid of 112×42 in the 

X and Y directions respectively.  The time step Δt =10-

4. At this time one expects that the assessment of mass 

conservation and energy is satisfied. Convergence is 

attained when the difference between the average 

Nusselt numbers of the cold wall and the hot wall is 

negligible and the difference between the velocities and 

temperatures evaluated at times t and t+Δt is negligible. 

The average Nusselt number is defined in the present 

study by: 

  
0,1

0

.

A

YNu dX
Y








 

4. RESULTS AND DISCUSSIONS 

The computer program was validated initially with the 

solution Benchmark (Davis 1983) of the natural 

convection without the presence of the magnetic field.  

After that, we confronted our results with the results 

obtained by BenHadid (1997) and Gelfgat (2001) where 

the magnetic field is applied.  In a third case, both a 

magnetic field and a slope of the enclosure are 

considered and the results compared with those of 

Mehmet (2006).  
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1.  Gr=105 2. Gr=5.105 3.  Gr=106 

Fig. 2.  Structure of the flow represented by: a) contours of stream function, b) isothermal c) velocity vectors for:  

Pr=0.024, Ha=0, A=4, α = 0, γ=0 and for various Grashof number Gr. 

4.1   Influence of the Grashof Number 

In effect, results obtained show that the flow and the 

thermal fields illustrated in the Figs. 2.1a and 2.1b, 

Figs. 2.2a and 2.2b and Figs. 2.3a; and 2.3b, 

respectively relatively intense straining of the fluid for 

large values of Gr. We note on these figures the 

evolution of the stream function by increasing the Gr 

number. At the beginning, circulation is stable and 

gives four cells distributed on the whole of the field, 

Fig. 2.1a. Then, one notices light modifications which 

appear by increasing the number of Gr. For Gr=106, 

small recirculation zones, also called "vortices", were 

observed between the principal cell in the middle of the 

upper wall and in the top-right and the bottom-left 

corners, Fig. 2.3a.  

 

The thermal field of the flow is presented in Figs. 2.1b, 

2.2b and 2.3b. It should be noted that for a weak Gr 

number, no good stratification of the isotherms with the 

horizontal walls of the enclosure is observed. Indeed 

when the Gr number increases, we notice the presence 

of the significant variations in temperature. This is 

explained by the existence of a convective transport 

dominating the flow (the acceleration of the particles 

cause this phenomenon). Figure 5 shows the average 

Nusselt number of the top wall, for Gr equal to 105, 

3.105 and 106. The convection flow along the two 

adiabatic vertical walls the beginning of the 

development of a multi-cell flow within the cavity, 

which enhanced effectiveness of heat transfer through 

top wall. This effect has been observed until Gr = 106, 

where the cross temperature gradient and the resulting 

multi-cell flow have become strong enough for heat 

transfer to be enhanced from the bottom wall to the top 

wall. In Fig. 2.1c, Fig. 2.2c and Fig. 2.3c, we present 

the distribution of the velocity vectors. We notice, 

whereas for a small number of Gr, the flow generates 

very weak velocity gradients, when the Gr number 

increases, the flow induced by the increasing buoyancy 

forces becomes animated. Significant velocity gradients 

are then localized near the walls, resulting in the 

production of vortices. This is well illustrated in Figs. 3 

and 4. 
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Fig. 3. Profiles of horizontal velocity component at 

x=2; Pr= 0.024, Ha=0, A=4, α =0, γ=0. 
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Fig. 4.  Profiles of vertical velocity component at 

Y=0.5: Pr=0.024, Ha=0, A=4,  α = 0, γ=0. 
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Fig. 5.  Variation the average Nusselt number according 

to Grashof number Gr for: Pr=0.024, Ha=0, A=4,  α = 

0, γ=0 and Gr= (105, 5.105 and 106). 

 

4.2 Effects of the Hartmann Number 

Figure 6 and Fig. 10 show the effect of the magnetic 

field in the two directions X and Y using different 

values of the Hartmann number (Ha = 0, 10, 50, 100).  



M.N.  Kherief et al. / JAFM, Vol. 5, No.1, pp. 113-120, 2012.  

 

117 

 

 
(a) 

 
(a) 

 
(a) 

 
(b) 

 
(b) 

 
(b) 

 
(c) 

  

1. Ha=10 
2. Ha=50 3. Ha=100 

Fig. 6.  Structure of the flow represented by: a) contours of stream function, b) isothermal and c) velocity vectors for: 

Gr =106, Pr=0.024, A=4, α = 0, γ=0 and for various Hartmann number Ha. 

 

To analyze the thermal natural convection was analyzed 

in the geometry for the following characteristic 

dimensionless numbers: Gr=106, Pr=0.024, A=4. We 

notice the results of the dynamic field presented, in the 

form of contours of the stream function, Fig. 6.1a and 

Fig. 10.1a. The figures show that for Ha=10, the flow is 

characterized by four cells. When the intensity of the 

magnetic field in the X direction increases, the number 

of cells reduces to two cells. On the other hand, in the Y 

direction, with the same intensities, the flow structure 

changes.  

 

For Ha = 10, the cells begin to lose their organized 

shape. When Ha is increased further, the flow becomes 

unstable and a somewhat perturbed cell is apparent. The 

effect of the magnetic field is significant when α takes 

the value of 900. It is also noted that when the magnetic 

field is applied in the Y direction, the natural 

convection is clearly weakened. An elimination of the 

thermal stratification is obtained by the increase in the 

Gr number. However, an increase in the intensity of the 

magnetic field leads to isotherms nearly parallel to the 

horizontal walls explaining the elimination of the 

convective phenomena and the presence of the 

conductive phenomena. This also explains the 

deceleration of the thermal transfer as confirmed by the 

average Nusselt number Fig. 9 to Fig. 13. Concerning 

the horizontal and vertical normalized velocity profiles, 

they are shown in Figs7 and 8 (in the case of the X-

direction magnetic field) and Fig. 11 and Fig.12 (in the 

case of the Y-direction magnetic field) respectively.   

 

 

0.0

0.2

0.4

0.6

0.8

1.0

-600 -400 -200 0 200 400 600

U

Y

 Ha=0

 Ha=10

 Ha=50

 Ha=100

 

Fig.7.  Profiles of horizontal velocity component at 

x=2: Pr=0.024, Gr= 106, A=4, α = 0, γ=0. 

 

It is clear from the results that as Ha are increased; the 

velocity components tend to diminish. In fact, for 

Ha=100, their values are practically equal to zero in the 

major part of the cavity except near the end walls. It is 

thus clear that the use of a magnetic field can strongly 

decrease the flow intensity, but cannot completely 

inhibit fluid motion. 
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Fig. 8. Profiles of vertical velocity component at 

Y=0.5: Pr= 0.024, Gr= 106, A=4,  α = 0, γ=0. 
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Fig.9. Variation the average Nusselt number according 

to Ha for: Pr=0.024, Gr=106, A=4, α = 00.γ =00. 

4.3 Influence Angle of Inclination γ  

The analysis of the Fig. 14.1, Fig. 14.2 and Fig. 14.3 

shows that the enclosure slope has a strong effect on the 

flow and the heat transfer behavior. A single cell is 

obtained which appears to be completely stable, 

symmetrical and fills all the enclosure. On the other 

hand an accelerated flow with convective heat transfer 

along the vertical walls induced by the gravity forces is 

observed when the differently heated walls become 

vertical, Fig. 15 and Fig. 16. 
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1. Ha=10 
2. Ha=50 3. Ha=100 

Fig. 10. Structure of the flow represented by: a) contours of stream function, b) isothermal and c) velocity vectors for: 

Gr=106, Pr=0.024, A=4, α =900, γ=0 and for various Hartmann number. 
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Fig.11.  Profiles of hori-zontal velocity component at 

x=2:  Pr=0.024, Gr=106, A=4, α = 900, γ=0. 
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Fig.12. Profiles of vertical velocity component at 

Y=0.5: Pr=0.024, Gr=106, A=4, α = 900, γ=0. 
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Fig.  13. Variation the average Nusselt number 

according to Ha for: Pr=0.024, Gr=106, A=4,  α = 900, 

γ=0. 

5. CONCLUSION 

The results of the numerical simulation, enabled us to 

come out with several observations on the effects on the  

 

hydrodynamic and thermal structure of the flow, caused 

by temperature gradient. We summarize in what 

follows the principal results obtained: 

 

Circulation and convection become stronger with 

increasing Grashof numbers but they are significantly 

suppressed by the presence of a strong magnetic field. 

Formation of multiple cells as a result of 

counterclockwise inclination greatly influences the 

temperature field. The average Nusselt number 

increases considerably with Grashof number since the 

circulation becomes stronger. The magnetic field 

significantly reduces the average Nusselt number by 

suppressing the convection streams. 
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Fig. 14.  Structure of the flow represented by: a) contours of stream function, b) the isotherm for: Gr = 106, Pr=0.024, 

A=4, α = 900, Ha=50 and for various inclination values angle γ. 
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Fig. 15. Profiles of hori-zontal velocity component at 

x=2:Pr=0.024, Gr=106, Ha=50, A=4,  α = 900. 

 

Fig.16.  Profiles of verti-cal velocity component at 

Y=0.5;Pr=0.024, Gr=106, Ha=50, A=4,  α = 900 
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