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ABSTRACT 

The paper examines transient MHD Couette flow of an electrically conducting fluid in the presence of an applied 

transverse magnetic field and thermal radiation through a porous medium. The dimensionless governing equations of 

the flow are coupled non-linear partial differential equations and are solved by an efficient and unconditionally stable 

finite difference scheme of Crank–Nicolson type. The influence of the medium permeability is also assessed. The 

velocity and temperature profiles for the flow are studied for various interesting parameters of Prandtl number, 

Nahme number and Hartmann number, and are presented graphically. The results show that the thermal radiation has 

appreciable influence on the flow. 

 

Keywords: MHD Couette flow, Thermal radiation, Porous medium, Prandtl number, Nahme number and Hartmann 

number. 

NOMENCLATURE 

b thickness of the fluid layer
  

B0 magnetic induction
  

Cp specific heat at constant pressure
                  

fr fluid resistance
 

M         Hartmann number 

Na Nahme number 

Pr Prandtl number 

q  radiactive heat flux 

r convergent term 

r1 radius of the inner cylinder 

r2 radius of the outer cylinder 

R radiation parameter  

t dimensionless time 

t* local time 

T local temperature 

T0 reference temperature 

T̍         temperature at time t
 

∆t        time step 

 

∆t        time step 

u dimensionless velocity 

U linear velocity of the outer cylinder 

u* local fluid velocity 

v velocity of flow direction 

y flow direction 

y* local flow direction 

α2 absorption coefficient 

θ dimensionless temperature 

κ* thermal conductivity 

λ* permeability of the porous medium 

λ’ dimensionless permeability 

μ dynamic viscosity 

μ0 dynamic viscosity at T0  

ν kinematic viscosity 

ρ fluid density 

σ0 magnetic permeability 

ω angular velocity 

 
 

1. INTRODUCTION 

In recent years, considerable progress has been made in 

the study of the thermophysical properties affecting 

Magnetohydrodynamic (MHD) flow due to its 

applications in many scientific and engineering studies. 

Under certain conditions, a moving electrically 

conducting fluid itself induces a magnetic field so that 

an MHD phenomenon may not require the presence of 

an external magnetic field. However, this internally-

generated magnetic field may be very small to simplify 

the problem. Also, as magnetic field has its source by 

either moving charges or changing electric field, the 

magnetic field of the earth undergoes complex changes 

due to electric currents flowing in the ionosphere. The 

study of MHD flow and magnetic field has gained the 

attention of many researchers because of their 

applications in the design of heat exchangers, MHD 
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pumps, induction pumps, MHD generators, nuclear 

reactors, in oil exploration and in space vehicle 

propulsion. 

 

Chamka (2003) examined a generalized problem of heat 

and magnetic fields on MHD flow. He investigated 

analytical solutions for the problem of heat and mass 

transfer with steady flow of an electrically conducting 

and heat generating / absorbing fluid on a uniform 

moving vertical permeable surface in the presence of a 

magnetic field. He concluded that the fluid velocity 

decreases as the Prandtl number, Schmidt number or 

strength of the magnetic field is increased. Israel-

Cookey and Sigalo (2003) reported the study of an 

unsteady MHD free-convection and mass transfer flow 

past an infinite heated porous vertical plate with time-

dependent suction in an optically thin environment.  

 

Also, Gbadeyan and Dada (1998) considered the effect 

of variable fluid properties and radiative MHD flow of 

a fluid in a vertical channel. Alagoa et al. (1999) 

investigated the problem of MHD free-convection flow 

with radiation heat transfer in a porous medium. It was 

shown that the field is affected mainly by radiation and 

convection parameters in addition to magnetic factors. 

Hazeem (2006) examined the effect of variable 

viscosity on the transient MHD Couette flow of dusty 

fluid with heat transfer between parallel plates. He 

showed some important effects for the variable 

viscosity and the uniform magnetic field on the 

transient flow and heat transfer of both the fluid and 

dust particles. 

 

Similarly, heat transfer by radiation occurs between 

solid surfaces, although radiation from gases is also 

possible. Solid radiates over a wide range of 

wavelengths while some gases emit and absorb 

radiation on certain wavelengths only. Hence, thermal 

radiation has effects on electrically conducting fluid at 

high operating temperature. When radiative heat 

transfer sets in, a high temperature fluid will generate 

heat by thermal radiation and the radiation can actually 

affect the motion and more importantly the energy 

mechanism of the fluid. Raptis and Massalas (1998) 

studied the radiation effect on the unsteady MHD flow 

of an electrically conducting viscous fluid past a plate. 

Chamka (2000) investigated thermal radiation and 

buoyancy effects on hydromagnetic flow over an 

accelerating permeable surface with heat source or sink. 

Takhar et al. (2001) analyzed the unsteady laminar 

MHD flow and heat transfer in the stagnation region of 

an impulsively spinning and translating sphere in the 

presence of buoyancy forces. They found out that the 

surface shear stresses in the longitudinal and rotation 

directions and heat transfer increase with time, 

magnetic field, buoyancy parameter and rotation 

parameter. 

 

In the same vein, Makinde and Mhone (2005) 

investigated the combined effect of a transverse 

magnetic field and radiactive heat transfer to unsteady 

flow of a conducting optically thin fluid through a 

channel filled with saturated porous medium and non-

uniform walls temperature. The velocity and 

temperature profiles are obtained analytically and used 

to compute the wall shear stress and rate of heat transfer 

at the channel walls. Anjali Devi and Ganga (2010) 

studied effects of viscous and Joule dissipation on 

MHD nonlinear flow and heat transfer past a stretching 

porous surface embedded in a porous medium under a 

transverse magnetic field. Analytical results of the 

transformed MHD boundary layer equations were 

obtained and significant effects of dissipation and 

porosity were enunciated. 

 

More so, flows in porous media have gained the 

attention of many researchers because of their 

applications in geothermal, oil reservoir engineering 

and astrophysics. Sharma and Mathur (1995) 

investigated steady laminar free-convection flow of an 

electrically conducting fluid along a porous shot 

vertical infinite plate in the presence of source or sink. 

Also, Sharma and Singh (2009) analyzed effects of 

variable thermal conductivity, heat source/sink on flow 

of a viscous incompressible electrically conducting 

fluid in the presence of uniform transverse magnetic 

field and variable free stream near a stagnation point on 

a non-conducting stretching sheet. They discussed the 

influence of the flow parameters used and their physical 

implications. Daskalaskis (1990) studied Couette flow 

through a porous medium of a high Prandtl number 

fluid with temperature dependent viscosity. He 

concluded that, in the steady state, the medium 

permeability (  ) for both velocity and temperature 

profiles are positively skew and their skewness 

increases with  . He also affirmed that the lower the 

permeability of the medium the faster the velocity but it 

does not significantly influence the temperature profile 

development. The influence of plate porosity on steady 

MHD flow profile is evident in the work of Makinde 

and Osalusi (2006) and Osalusi and Sibanda (2006). 

Min Chan et al. (2004) considered theoretically an 

initially quiescent, fluid saturated horizontal porous 

layer heated from below with constant heat flux. They 

used Darig’s law as a model to the fluid motion and 

linear stability theory, and predicted the onset of 

buoyancy-driven convective flow. 

 

The model under investigation considers the influence 

of thermal radiation on a transient MHD Couette flow 

through a porous medium in the presence of an applied 

uniform magnetic field and has not received any 

attention in literature. Hence, the present work studies 

the transient MHD Couette flow of a high Prandtl 

number fluid with temperature-dependent viscosity 

through a porous medium. The governing flow 

equations are solved by an implicit finite difference 

scheme of Crank-Nicolson type with Pr, Na, M and R 

as controlling parameters. 

2. FORMULATION OF THE PROBLEM 

The geometry for the flow consists of two concentric 

infinite cylindrical surfaces with the outer surface 

having radius r2. The MHD fluid under investigation 

occupies the annular space of width b between the 

cylinders. The system is at rest at first instant and the 

two surfaces are at constant temperature to.  At time      

t* =0, the outer cylinder is suddenly set in motion and 

rotates with constant angular velocity  while the inner 

cylinder of radius r1 is stationary in the presence of an 

applied external transverse magnetic field. 
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The MHD fluid is considered to have a negligible 

internally-generated magnetic field and in the course of 

time, the fluid gradually participates in the motion and 

viscous dissipation increases the temperature. The 

electrically conducting fluid is presumed to have a very 

small electric current within the MHD fluid flow and 

the temperature of the two cylinders is maintained at the 

constant temperature 
oT  by cooling. The thickness b of 

the fluid layer is assumed to be small compared with 

the outer cylinder so that the problem is identical to that 

of Couette flow with a negligible pressure gradient. The 

permeability is also assumed to be constant. 

 

We reduce the complicated motion of a viscous fluid in 

a porous solid to that of the motion of a homogeneous 

fluid with some additional resistance fr and the non-

homogeneous medium is homogeneous with dynamical 

properties equal to the local averages of the original 

fluid continuum.  This resistance is modelled as: 

*

*rf u




 
  

 
 and the temperature law for the 

viscosity is taken as:   0 0exp T T      where β 

is a constant. The magnetic field parameter for the 

MHD flow is also represented by: 0
0M B




  and 

following Takhar et al. (1996), the radiative heat flux 

is:  2

0*
4

q
T T

y



 


. It is assumed that the flow we 

studied takes place in a porous medium and concerns a 

high viscosity fluid exhibiting a strong dependence on 
temperature and constant thermal conductivity. Hall 

effect, Joule heating and other variable thermo-physical 

parameters are assumed to be constants.                                                                      

 

Under the above assumptions, the incompressible MHD 

fluid flow, relevant for the problem, is governed by the 

following equations: 
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        (3) 

Subject to the initial and boundary conditions where 

Eq. (1) gives v(y) = v0: 

0,t  0u  ,       T T  

0y  ,  0u  ,    T T         (4) 

y b  ,   u U  ,  T T  

where U is the linear velocity of the outer cylinder  

 2U r .            

Introducing the following dimensionless parameters: 

y
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we then transform the above governing equations into 

their dimensionless form: 
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where 0
0

0

M bB



   and  

*

1
2R b


  

The appropriate initial and boundary conditions are 

written as: 

0, 0, 0, 0;t y u      

0, 0, 0, 0;

1, 1, 0.

t y u

y u





   

  
       (7) 

3. METHOD OF SOLUTION 

The transient non-linear coupled partial differential Eqs. 

(5) and (6) with the initial and boundary conditions (7) 

are solved by employing the finite difference scheme of 

Crank-Nicolson type which is discussed in Ganesan and 

Ekambayanan (1992), Ganesan and Palani (2002) and 

Kreyzig (2003). We discretize the governing Eqs. (5) 

and (6) based on the transient state conditions. The 

numerical method of finite difference scheme of Crank-

Nicolson type does not restrict the value of r to be 

chosen. The finite difference equations corresponding 

to these equations are given by: 
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+  
2

1, 1, 1, ,2i j i j i j i jr r rNa u u             (9) 

where i designates the grip point along the y-direction 

and j along the t-direction and r = ∆t/h2. Hence, the 

momentum and energy equations in finite difference 

equations are reduced to algebraic system of linear 

equations. The mesh size h is 0.2 with time step ∆t = 

0.33, 0.001, 0.01, 0.05, 0.0025 and 0.5. The values of 

u(y, t) are known at all grid points when t = 0 from the 

initial conditions. Computations are carried out by 

moving along y-direction. After computing values 

corresponding to each i at a time level, the values at the 

next time level are determined in similar manner.
 

 

These are the necessary and sufficient conditions for 

consistency and stability of the solutions. The implicit 

nature of Crank-Nicolson method is unconditionally 

stable and has local truncation error O [(∆t) 2+ h2] 

which tends to zero as ∆t and h2 tend to zero, and there 

is no drawback of conditionally stability from one level 

to the next. The implicit method gives stable solutions 

and requires matrix inversions which we did at step 

forward in time because this problem is an initial - 

boundary value problem with a finite number of spatial 

grid points. Though, the corresponding difference 
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equations do not automatically guarantee the 

convergence of the mesh h→0. To achieve maximum 

numerical efficiency, we used the tridiagonal procedure 

to solve the two point conditions governing the main 

coupled governing equations of momentum and energy. 

The convergence (consistency) of the process was quite 

satisfactory and the numerical stability of the method 

was guaranteed by the implicit nature of the numerical 

scheme. Hence, the scheme is consistent. Stability and 

consistency ensure convergence. 

4. DISCUSSION OF THE RESULTS 

A MHD fluid flow problem for momentum and energy 

equations in a porous medium with thermal radiation in 

the presence of a transverse magnetic field is 

investigated in this work. Porous medium, viscous 

dissipation, magnetic field and thermal radiation effects 

are taken into consideration. The MHD governing 

equations of the problem are solved numerically and 

solutions are obtained for the dimensionless velocity 

and temperature profiles for prescribed controlling 

parameters. For the purpose of discussing the effects of 

various parameters on the flow profiles and the 

temperature distributions with the MHD fluid, 

numerical calculations have been carried out for 

different values of M, R, Pr and Na, and results have 

been presented in graphical forms. The permeability 

parameters λ’ = 0 corresponds to free flow; λ’ = 2 

corresponds to moderate permeability; λ’ ≥ 10 denotes 

low permeabilities and λ’ = ≤ 1 represents high 

permeabilities. The values of M were taken to be: 3 

while λ’ = 2 for t = 0.01; 1 while λ’ = 1 for t = 0.001; 5 

while λ’ = 5 for t = 0.5; 1 while λ’ = 1 for t = 0.001; 5 

while λ’ = 5 for t = 0.0001 in the case of Pr = 1000. 

However, when Pr = 100, the values of M were taken to 

be: 1 while λ’ = 10 for t = 0.001; 3 while λ’ = 2 for t = 

0.001; 3 while λ’ = 2 for t = 0.01 and 5 while λ’ = 5 for 

t = 0.001. 

 

Furthermore, the transient velocity profiles are 

significantly governed by the Prandtl number and 

permeability parameter with the magnetic field 

parameter.  The transient velocity profiles are 

significantly governed by the Prandtl number and 

permeability parameter with reference to the Hartmann 

number. The effects of Hartmann number on the 

velocity profiles are shown in Figs. 1–4. Influence of 

the high temperature is noticeable in the velocity 

profiles because of the fact that the conducting fluid 

viscosity is temperature-dependent and viscous 

dissipation increases with temperature increase. Also, 

the temperature distributions depict energy mechanism 

of the MHD flow with thermal radiation and Nahme 

number effects as displayed Figs. 5–6. 

 

Figure 1 shows the effect of permeability parameter and 

Hartmann number on the dimensionless velocity 

profile. It is found that corresponding increase in the 

permeability parameter leads to a corresponding 

increase in the velocity profile with Pr = 100. This is 

because the porosity of the medium allows more fluid 

flow at t = 0.001. However, the result is different when 

there is absence of magnetic field parameter with free 

flow as the velocity profile increases tremendously 

when M = 0 than when there is influence of magnetic 

field on the flow. This is because the effect of magnetic 

field parameter on the velocity profile is to reduce the 

transverse velocity of the flow. The imposition of the 

magnetic field normal to the flow direction is 

responsible. This magnetic field gives rise to a resistive 

force and slows down the movement of the fluid. 

Hence, the lower velocity profiles for the cases of       

M = 1 when λ’ = 1 and 10 at the time step of 0.001. All 

these are noticeable when the transverse magnetic field 

is uniformly applied for the MHD flow. As the 

magnetic flux becomes higher, there is corresponding 

decrease in the velocity profiles. 

 

Fig. 1. Velocity profiles against y at Pr = 100. 

 

Figure 2 analyzes the effect of Hartmann on the 

velocity profile when the medium permeability is 

moderate. It shows that increase in Hartmann number 

give rise to corresponding  decrease in the velocity 

profiles of the fluid flow at Pr = 100 in the transient 

state. The Hartmann number represents the importance 

of magnetic field on the flow.  

 

Fig. 2.  Dimensionless velocity profiles against y at     

Pr = 100 with different M and ' . 

 

The presence of transverse magnetic field sets in 

Lorentz force which results in retarding force on the 

velocity field and therefore as Hartmann number 

increases, so does the retarding force on the velocity 

field and hence the velocity profiles decrease.  The 

increase in magnetic field parameter which signifies 
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corresponding increase of Lorentz force in which more 

lines of force are frozen into conducting fluid and are 

carried along with it, thereby reducing the velocity of 

the fluid flow as the Hartmann number increases. Also, 

the reliability of the results was also tested by 

comparing the results obtained in the special case of λ’ 

= 0 (free flow) against those of Eckert and Faghri 

(1986), who carried out a similar calculation for the 

simpler case of a homogeneous flow without porous 

medium and magnetic field (i.e. λ’ = 0 and M = 0) 

when the Prandtl number is 100. 

 

Fig. 3. Dimensionless velocity profiles against y at      

Pr = 1000 with different M and 
' . 

 

Fig. 4.  Dimensionless velocity profiles against y at     

Pr = 1000 with different M and 
' . 

 

Figure 3 shows that velocity profiles increase with 

increase in Prandtl number when we have moderate 

permeability than the case of high permeability which is 

associated with very low velocity profile. The increase 

in Prandtl number translates to an increase in the 

viscosity of the conducting fluid. Viscous dissipation 

effect is more noticeable in this case as it increases the 

temperature of the fluid flow, coupled with radiative 

heat flux and this accounts for the very high 

temperature experienced by the fluid flow. This high 

temperature weakens the magnetic field strength which 

emanated from the magnetic field to increase velocity 

profile as the fluid flow is no more resisted by the 

magnetic field to such an extent that the conducting 

fluid flow loses its magnetic properties. Thereby, as 

Hartmann number increases the velocity profile 

increases when there is low and medium permeabilities 

in the transient state. It is worth mentioning that at high 

permeability of the medium, the velocity profile is very 

low. 

 

Fig. 5. Dimensionless temperature profiles against y at 

Na = 100. 

 

Fig. 6. Dimensionless temperature profiles against y at 

Na = 10. 

 

Similarly, in Fig. 4, the similar effect is noticed when a 

high magnetic field of M = 5 is examined for moderate 

permeability while Pr = 1000 at t = 0.0001. The 

interaction of the radiative heat flux and magnetic field 

results in depolarization of the magnetic flux.  These 

lines of forces with which the MHD fluid is frozen are 

broken and the fluid can no longer carry along the 

magnetic flux. The fluid also loses its conducting 

properties. At a point in short time step, when M = 2 

with λ’ = 2 and M = 1 with λ’ = 1, the velocity profiles 

in these cases are equal. Until the latter’s velocity 

profile continues to lead that of the former. High 

porosity accounts for this phenomenon. Therefore, 

application of external magnetic field, at this time, 

reduces the velocity profile of the fluid flow. This is 

because of the fact that the magnetic field strength is 

unable to resist the flow as in the cases of Fig. 1 and 

Fig. 2 above. Therefore, at moderate permeability, 

higher Hartmann number shows considerable high 
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velocity profiles. Figure 5 shows that there is 

corresponding increase in the temperature profiles as 

the thermal radiation increases in the fluid flow. This is 

because the thermal radiation is associated with high 

temperature, thereby increasing the temperature 

distribution of the fluid flow. When R = 0 at a time 

space of 0.33, the results corresponds to that of 

Daskalaskis (1990) who carried out similar work 

without the presence of thermal radiation. Figure 6 

further shows that increase in thermal radiation results 

to increase in temperature profile as in the case of Fig. 

5. At some high time space, the temperature profiles 

continue to overshoot the boundary. Figures 5 and 6 

also show that increase in Nahme number leads to 

increase in temperature profiles.
 

5. CONCLUSIONS 

A numerical study has been carried out to investigate 

the influence of thermal radiation on transient MHD 

Couette flow of a high Prandtl fluid with temperature-

dependent viscosity and thermal conductivity through a 

porous medium. The dimensionless governing 

equations are solved by an implicit finite difference 

method of Crank-Nicolson type. The following 

conclusions are made: 

 

(i) The velocity profiles of the flow increase when the   

parameter Pr is increased. 

(ii) Increase in thermal radiation of the fluid leads to 

increase in the temperature profiles. 

(iii) Increase in permeability parameters results to an 

increase in temperature of the fluid but it reduces when 

the velocity of the fluid increases. 

(iv) The temperature profiles of the flow increase as 

Nahme number increases. 

(v) The velocity profiles for the flow maintain the 

boundary conditions of flow at very low time space but 

overshoot the boundary at moderate and high time 

steps. 

(vi) Increasing Hartmann number increases the velocity 

profiles of the flow when Pr is high and decreases the 

velocity profiles Pr is low with significant effects of 

viscous heating, thermal radiation and permeability 

parameter.  

(vii) The permeability of the porous medium and 

thermal radiation have insignificant effects on the 

transient MHD Couette fluid flow. 

(viii) Finally, as stated in Daskalaskis (1990) for t = 

0.33, the presence of the porous medium provokes an 

overshoot of the temperature profile causing a 

considerable skewness of the distribution with a shift 

towards the mobile cylindrical surface, this corresponds 

with our result for t = 0.33 and R = 0 
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