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ABSTRACT 

The problem of a transient three dimensional MHD flow of an electrically conducting viscous incompressible rotating 
fluid past an impulsively started infinite horizontal porous plate taking into account the Hall current is presented. It is 
assumed that the fluid rotates with a constant angular velocity about the normal to the plate and a uniform magnetic 
field applied along the normal to the plate and directed into the fluid region. The magnetic Reynolds number is 
assumed to be so small that the induced magnetic field can be neglected. The non-dimensional equations governing 
the flow are solved by Galerkin finite element method. The expressions for the primary and secondary velocity fields 
are obtained in non-dimensional form. The effects of the physical parameters like M (Hartmann number), Ω 
(Rotation parameter) and m (Hall parameter) on these fields are discussed through graphs and results are physically 

interpreted. 
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1. INTRODUCTION 

MHD is the science of motion of electrically 
conducting fluid in presence of magnetic field. There 
are numerous examples of application of MHD 
principle. Engineers apply MHD principle in fusion 
reactors, dispersion of metals, metallurgy, design of 
MHD pumps, MHD generators and MHD flow meters 
etc. The dynamo and motor is a classical example of 
MHD principle. Geophysics encounters MHD 
characteristics in the interaction of conducting fluid and 
magnetic field. MHD convection problems are also 
very significant in fields of Stellar and Planetary 
magnetospheres, aeronautics and chemical and 
electrical Engineering. The MHD principle also finds 
its application in Medicine and Biology. Application in 
biomedical engineering includes cardiac MRI, ECG etc. 
The principle of MHD is also used in stabilizing a flow 
against the transition from laminar to turbulent flow. 
 
MHD, in its present form is due to the pioneer 
contributions of several notable authors. It was 
emphasized by Cowling (1957) that when the strength 
of the magnetic field is sufficiently large, Ohm’s law 
needs to be modified to include Hall current. The Hall 
effect is due merely to the sideways magnetic force on 

the drifting free charges. The electric field has to have a 
component transverse to the direction of the current 
density to balance this force. In many works on plasma 
physics, the Hall effect is ignored. But if the strength of 
magnetic field is high and the number density of 
electrons is small, the Hall effect cannot be disregarded 
as it has a significant effect on the flow pattern of an 
ionized gas. Hall effect results in a development of an 
additional potential difference between opposite 
surfaces of a conductor for which a current is induced 
perpendicular to both the electric and magnetic field. 
This current is termed as Hall current. Model studies on 
the effect of Hall current on MHD convection flows 
have been carried out by many authors due to 
application of such studies in the problems of MHD 
generators and Hall accelerators.  
 
Some of them are Datta and Jana (1976) studied 
oscillatory magneto hydrodynamic flow past a flat plate 
with Hall Effect. Das et al. (1996) studied the radiation 
effects on flow past an impulsively started vertical plate 
an exact solutions. Muthucumaraswamy and Ganesan 
(1998) investigated the unsteady flow past an 
impulsively started vertical plate with heat and mass 
transfer. Singh (2000) studied an oscillatory 
hydromagnetic couette flow in a rotating system. 
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Aboeldahab and Elbarbary (2001) investigated hall 
current effect magnetohydrodynamics free convection 
flow past a semi infinite vertical plate with mass 
transfer. Acharya et al. (2001) discussed Hall Effect 
with simultaneous thermal and mass diffusion on 
unsteady hydromagnetic flow near an accelerated 
vertical plate. Kinyanjui et al. (2001) presented 
magnetohydrodynamic free convection heat and mass 
transfer of a heat generating fluid past an impulsively 
started infinite vertical porous plate with hall current 
and radiation absorption. Ganesan and Palani (2002) 
studied the effects of mass transfer on the MHD flow 
past an impulsively started isothermal inclined plate. 
Takhar et al. (2002) studied MHD flow over a moving 
plate in a rotating fluid with magnetic field, hall 
currents and free stream velocity. Abdul Maleque and 
Abdul Sattar (2005) studied the effects of variable 
properties and Hall current on steady MHD laminar 
convective fluid flow due to a porous rotating disk. 
Prasad et al. (2006) reported transient radiative 
hydromagnetic free convection flow past an 
impulsively started vertical plate with uniform heat and 
mass flux. Prasad et al. (2007) studied the radiation and 
mass transfer effects on two-dimensional flow past an 
impulsively started infinite vertical plate. Sharma et al. 
(2007) studied the Hall Effect on MHD mixed 
convective flow of a viscous incompressible fluid past a 
vertical porous plate immersed in porous medium with 
heat source/sink. Chaudhary and Kumar Jha (2008) 
discussed the heat and mass transfer in elastico viscous 
fluid past an impulsively started infinite vertical plate 
with hall effect. Heat and Mass transfer. Palani and 
Abbas (2009) studied the free convection MHD flow 
with thermal radiation from an impulsively started 
vertical plate.  
 
The rotating flow of an electrically conducting fluid in 
presence of a magnetic field is encountered in 
Geophysical fluid dynamics. It is also important in the 
solar physics dealing with the sunspot development, the 
solar cycle and the structure of rotating magnetic stars. 
It is well known that a number of astronomical bodies 
possess fluid interiors and magnetic fields. Changes that 
takes place in the rate of rotation, suggest the possible 
importance of hydromagnetic spin-up. Many authors 
have studied this problem of spin-up in MHD under 
different conductions of whom the names of Singh 
(2000) and Takhar et al. (2002) are worth mentioning. 
Prasad et al. (2011) discussed finite difference analysis 
of radiative free convection flow past an impulsively 
started vertical plate with variable heat and mass flux. 
Vasu et al. (2011) studied the radiation and mass 
transfer effects on transient free convection flow of a 
dissipative fluid past semi-infinite vertical plate 
with uniform heat and mass flux.  
 
Due to importance of studying MHD flow problems in 
rotating fluid, we have proposed in the present paper to 
investigate the problem of the unsteady MHD flow of 
an electrically conducting viscous fluid past a suddenly 
started infinite horizontal porous plate taking into 
account the effect of Hall current. Here our main 
objective is to study the effects of the magnetic field, 
rotation of the fluid and Hall current on the velocity 
fields and skin frictions at the plate. 

2. MATHEMATICAL FORMULATION 

The equations governing the motion of an 
incompressible viscous electrically conducting rotating 
fluid in presence of a magnetic field are 

Equation of continuity:  

. 0q 
 

                                (1) 

Momentum equation: 
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Kirchhoff’s law: 

. 0J 
 

                                                (3) 

General Ohm’s law: 
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Gauss’s law of magnetism: 

. 0B 
 

                                                       (5) 

Where ݍԦ is the velocity vector, ߗሬԦ the angular velocity 
of the fluid, ߩ the fluid density, p the pressure, ଔԦ the 
current density, ܤሬԦ the magnetic induction vector, ߤ the 
coefficient of viscosity, ߪ the electrical conductivity, ݐᇱ 

the time, ܤ଴ the strength of the applied magnetic field, 
߱௘ the electron frequency, ߬௘ the electron collision 
time, e the electron charge, ߟ௘ the number density of 
electron, ௘ܲ the electron pressure, ܧሬԦ the electric field 
and the other symbols have their usual meanings. 

We now consider an unsteady flow of an 
incompressible viscous electrically conducting rotating 
fluid past a suddenly started infinite horizontal porous 
plate with constant suction in presence of a uniform 
transverse magnetic field taking into account the effect 
of Hall current. Our investigation is restricted to the 
following assumptions. 

i) All the fluid properties are constants and the 

buoyancy force has no effect on the flow. 

ii) The plate is electrically non-conducting. 

iii) The fluid is rotating with angular velocity ߗሬԦ about 

the normal to the plate. 

iv) The magnetic Reynolds number is so small that the 

induced magnetic field can be neglected. 

v) ௘ܲ is constant  

vi) ܧሬԦ ൌ 0 

vii) The fluid away from the plate is undisturbed due 

to rotation 

Initially the plate was at rest and the fluid was rotating 
about the normal to the plate. At time ݐᇱ ൐ 0 , the plate 
is suddenly moved in its own plane with velocity ܷ଴

ᇱ  
and which is thereafter maintained constant. 
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We introduce a coordinate system (ݔᇱ , , ,ݕ -ᇱ) with Xݖ
axis horizontally in the direction of the plate velocity, 
Y-axis horizontally in the direction of the secondary 
velocity and Z-axis along the normal to the plate which 
is the axis of rotation. Let ݍԦ ൌ   ଓ̂ ݑᇱ ൅ ଔ̂ ݒᇱ ൅   ෠݇ ݓᇱ

 be 
the fluid velocity, ܬԦ ൌ    ̂ Ԣ௫݅ܬ ൅   ᇱ௬ଔ̂ܬ ൅ ᇱ௭ܬ  ෠݇  be the 

current density at the point ܲᇱ ሺݔᇱ , , ,ݕ  ᇱሻ andݖ
ᇱܤ ൌ  ଴ܤ  ෠݇ be the applied magnetic field, ଓ̂ , ଔ̂ , ෠݇  being 
the unit vectors along X-axis, Y-axis and Z-axis 
respectively.  
 
As the plate is infinite in X-direction and Y-direction, 
therefore all the quantities except possibly the pressure 
are independent of ݔᇱ and ݕᇱ. 

The Eq. (1) gives  
'

'
0

w

z





                                      (6) 

which is trivially satisfied by  '
ow w 


       (7) 

'
ow  being the suction velocity. 

 
Therefore the velocity vector ݍԦ is given by 

' ' 'ˆˆ ˆ
oq iu jv kw  

                               (8)                 

The Eq. (5) is satisfied by ˆ
oB B k


                      (9) 

The Eq. (3) reduces to 
'

'
0zJ

z





which shows that 

' 0zJ                                          (10)  

(as the plate is electrically non-conducting) 
Hence the current density is given by 

' 'ˆ ˆ
x yJ J i J j 


                      (11) 

Under the assumptions (v) and (vi), the Eq. (4) takes the 
form: 

   
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m
J J B q B

B
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                                     (12)  

Where  ݉ ൌ ߱௘ ߬௘  
is the Hall parameter. The Eqs. (8), 

(9), (11) and (12) yields, 
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                                    (13) 
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m
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 


                       (14) 

With foregoing assumptions and under the usual 
boundary layer and Boussinesq’s approximation the   
Eq. (2) reduces to 
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Where ݓ଴
ᇱ  is the constant suction velocity and ߥ is the 

kinematic viscosity. The relevant initial and boundary 

conditions are 

' '0, 0u v  for ' 0t   z                                    (17) 

' ' ' '
'

' ' '

, 0 0
0

0, 0

ou U v at z
t

u v at z

    
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               (18) 

We introduce the following non-dimensional variables 
and parameters. 

2

2

' ' ' ' ' '
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o
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z t u v
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  
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The non-dimensional form of the Eqs. (15) and (16) are 
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2 21
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v mv u

t z z m
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Subject to the initial and boundary conditions 

0, 0u v  for 0t   z                                    (21) 
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u v at z
t

u v at z

   
   

                                    

(22) 

3. METHOD OF SOLUTION 

By applying Galerkin finite element method for         
Eq. (19) over the element (e), j kz z z  is: 
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Where A=

21

M

m
, P = j j

i iAmv v  ; 

Integrating the first term in Eq. (23) by parts one 
obtains 
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Neglecting the first term in Eq. (24), one gets: 
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Let ( ) ( ) ( )e e eu N   be the linear piecewise 
approximation solution over the element (e)                    



J. Anand Rao et al. / JAFM, Vol. 5, No. 3, pp. 105-112, 2012.   
 

108 
 

where ( ) ( ),
Te e
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Simplifying we get  
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where prime and dot denotes differentiation w.r.to ‘z’ 
and time ‘t’ respectively. Assembling the element 
equations for two consecutive elements 1 ]i iz z z  
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Now put row corresponding to the node ‘i’ to zero, 
from Eq. (25) the difference schemes with ( )el h is:
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Applying the trapezoidal rule, following system of 
equations in Crank-Nicholson method are obtained: 
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Applying the same procedure to the Eq. (20) then the 
following equation is obtained:  
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where  A1 = 2 + Ak + 3rh – 6r;  
A2 = 4Ak + 12r + 8;  
A3 = 2 + Ak – 3rh - 6r; 
A4 = 2 - Ak – 3rh + 6r;   
A5 = 8 – 4Ak – 12r;  
A6 = 2 - Ak + 3rh + 6r;              
B1 = 2 - Ak + 3rh – 6r;   
B2 = 8 + 12r - 4Ak;   
B3 = 2 - Ah – 3rh - 6r;  
B4 = 2 + Ak – 3rh + 6r;  
B5 = 8 + 4Ak – 12r;  
B6 = 2 + Ak + 3rh + 6r;  

* 12 12 ;j j
i iP kAmv k v  

 
* 12 12 ;j j

i iQ kAmu k u    

Here r= 
2

k

h
  and h, k are mesh sizes along y-direction 

and time-direction respectively. Index ‘i’ refers to space 
and ‘j’ refers to the time. In the Eqs. (27) and (28) 
taking i = 1(1) n and using boundary conditions (21) 
and (22), then the following system of equations are 
obtained: 

1(1)2i i iA X B i                                          (25) 

where '
iA s are matrices of order n and iX , '

iB s are 

column matrices having n-components. The solutions 
of above system of equations are obtained by using 
Thomas algorithm for primary velocity and secondary 
velocity. Also, numerical solutions for these equations 
are obtained by C – programme. In order to prove the 
convergence and stability of Galerkin finite element 
method, the same C – programme was run with smaller 
values of h and k and no significant change was 
observed in the values of u and v. Hence the Galerkin 
finite element method is stable and convergent.                                                     

4. SHEAR STRESS 

The skin friction at the plate in the direction of the 
primary velocity is given by 

0
x

z

u

z




    
                      (26) 
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The skin friction at the plate in the direction of the 
secondary velocity is given by 

0
y

z

v

z




    
                      (27) 

5. RESULTS AND DISCUSSIONS 

In order to study the effect of magnetic field for flow 
configuration shown in Fig. 1, Hall current and rotation 
of the fluid, we have carried out numerical calculations 
for the dimensionless primary velocity u, secondary 
velocity v and skin frictions x  and y  at the plate due 

to the primary and secondary velocity fields 
respectively for different values of the rotation 
parameter Ω, Hartmann number M and Hall parameter 
m keeping the value of time t fixed at t = 1. 

 

Fig. 1. Flow configuration 

 
Fig. 2. The primary velocity ‘u’ versus ‘z’ for M = 1.0, 

m = 0.5, t = 1 

 
Fig. 3. The primary velocity ‘u’ versus ‘z’ for Ω = 0.4, 

m = 0.5, t = 1 

Figures 2, 3 and 4 exhibit the variation of the primary 
velocity u versus z under the influence of the rotation 
parameter Ω, Hartmann number M and the Hall 
parameter m. These three figures show that the primary 
velocity u falls when Ω and M are increased, it rises due 
to increasing value of the Hall parameter m. That is the 
primary motion is retarded under the effects of the 
transverse magnetic field and the rotation of the fluid 
where as this motion is accelerated under the Hall 
Effect. This phenomenon is clearly supported by the 
physical reality. The same figures further establish the 
fact that the primary velocity asymptotically decreases 
from maximum value u = 1 to its minimum value u = 0 
as z increases. 

 
Fig. 4. The primary velocity ‘u’ versus ‘z’ for M = 1.0, 

Ω = 0.4, t = 1 

 
Fig. 5. The secondary velocity ‘v’ versus ‘z’ for          

M = 1.0, m = 0.5, t = 1 

 
Fig. 6. The secondary velocity ‘v’ versus ‘z’ for            

Ω = 0.4, m = 0.5, t = 1 
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The change of behaviour of the secondary velocity v 
against z due to variations of Ω, M and m is displayed 
in Figs. 5, 6 and 7. It is inferred from these figures that 
are velocity field first increases in a very thin layer 
adjacent to the plate and after this layer it 
asymptotically decreases to its zero value as z increases. 
It is also marked from these figures that an increase in 
the value of the parameters Ω, M and m results in a 
steady growth in v. in other words it may be stated that 
the secondary motion is accelerated under the effects of 
Hall current and rotation and due to the application of 
the transverse magnetic field. 

 
Fig. 7. The secondary velocity ‘v’ versus ‘z’ for          

M = 1.0, Ω = 0.4, t = 1 

 
Fig. 8. The skin friction ‘τx’ versus ‘m’ for M = 1.0,      

t = 1.0 

 
Fig. 9. The skin friction ‘τx’ versus ‘m’ for Ω = 0.4,       

t = 1.0 

The profiles for skin-friction x  due to primary velocity 

under the effects of Ω, M and m are presented in the 
Figs. 8 and Fig. 9. We see from these figures that when 
the strength of the applied magnetic field and the 
angular velocity of rotation of the fluid are increased 
the skin-friction x  increases and x  falls due to Hall 

effect. From this observation we may interpret that the 
viscous drag on the plate due to primary motion is 
reduced under Hall Effect, but this frictional force 
increases under the effects of the magnetic field and 
rotation.  

 
Fig. 10. The skin friction ‘τy’ versus ‘m’ 

for M = 1.0, t = 1.0. 

 
Fig. 11. The skin friction ‘τy’ versus ‘m’ 

for Ω = 0.4, M = 1.0, t = 1.0 

Fig. 12. Comparison of primary velocity ‘u’ versus ‘z’ 
for m = 0.5, M = 1.0, Ω = 0.4 and t = 1.0. 
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Figures 10 and 11 demonstrate the variation of skin-
friction y  due to the secondary velocity under the 

effects of Ω, M and m. It is seen that y  rises under the 

effects of M and Ω. These figures further predict that 
for small and moderate values of m, y  rises as m 

increases but for large values of m this behaviour takes 
reverse trend.  
 
In order to ascertain the accuracy of the Galerkin finite 
element method, the present results are compared with 
the previous results of Chaudhary (2008) for M = 1.0, 
Ω = 0.4, t = 1 in Fig. 12. They are found to be in an 
excellent agreement. 

6. CONCLUSION 

Our results of investigation may be summarized to the 
following important conclusions. 

1. The primary motion is retarded under the 
effects of transverse magnetic field and the 
rotation of the fluid where as this motion is 
accelerated under the Hall Effect. 

2. The secondary motion is accelerated under the 
effects of the Hall current and rotation and due 
to the application of the transverse magnetic 
field. 

3. The viscous drag due to primary motion is 
reduced under Hall Effect, but this frictional 
force increases under the effects of the magnetic 
field and rotation. 

4. The skin-friction y  due to secondary velocity 

rises under the effects of the Hartmann number 
M and the angular velocity of rotation Ω. 

REFERENCES 

Abdul Maleque, Kh. and Md. Abdur Sattar (2005). The 
Effects of Variable properties 
and        Hall        current on         steady MHD 
laminar        convective         fluid flow due to 
a        porous        rotating disk. Int. Journal of 
Heat and   Mass Transfer 48, 460 – 4466. 

 
Aboeldahab, E.M. and E.M.E. Elbarbary (2001). Hall 

current effect magneto hydrodynamics free 
convection flow        past a semi infinite vertical 
plate with        mass transfer, Int. J. Engg. Sci. 39, 
1641 – 1652. 

 
Acharya, M., G.C. Dash and L.P Singh (2001). Hall 

effect with simultaneous thermal and mass 
diffusion on unsteady hydromagnetic flow near 
an accelerated vertical plate. Ind.  J. Physics. B. 
75B, 68 – 70. 

 
Chaudhary R. C. and A. Kumar Jha (2008).        Heat 

and mass transfer in elastico –viscous fluid past an 
impulsively started infinite vertical plate with Hall 
Effect. Latin American Applied Research 38, 17 – 
26. 

 
Cowling, T.G. (1957). Magneto Hydrodynamics. Wiley 

Inter Science, New York. 
 

Crammer, K. P. and S.L. Pai (1978). Magneto-fluid 
Dynamics for Engineers and Applied Physics. Mc-
Graw Hill book Co New York. 

 
Das, U.N, R. Deka and V.M. Soundalgekar (1996). 

Radiation effects on flow past an impulsively 
started vertical plate-an exact solutions. J. Theo. 
Appl. Fluid Mech. 1(2), 111 – 115. 

 
Datta, N. and R.N. Jana (1976). Oscillatory 

magnetohydrodynamic flow past a flat plate wilth 
hall effects. J. Phys. Soc. Japan 40, 1469. 

 
Ferraro, V.C.A. and C. Plumpton 

(1966). An Introduction to Magneto Fluid 
Mechanics. Clarandon Press, Oxford. 

 
Ganesan, P. and G. Palani (2002). The effects of mass 

transfer on the MHD flow past an impulsively 
started isothermal inclined plate. Journal of 
Energy, Heat and Mass Transfer 24, 1 – 12. 

 
Kinyanjui, M., J.K. Kwanza and S.M. Uppal (2001). 

Magnetohydrodynamic free convection heat and 
mass transfer of a heat generating fluid past 
an impulsively started infinite vertical porous plate 
with Hall current and radiation absorption. 
Energy Conservation and Management. 42, 917 – 
931. 

 
Muthucumaraswamy, R., and P. Ganesan (1998). 

Unsteady flow past an impulsively started vertical 
plate with heat and mass transfer. Journal 
of  Energy, Heat and Mass Transfer 34, 187-193. 

 
Palani, G. and I.A. Abbas (2009). Free convection 

MHD flow with thermal radiation from an 
impulsively started vertical plate. Nonlinear 
Analysis: Modelling and Control 14(1), 73 – 84. 

 
Prasad, V.R., N. Bhaskar Reddy and        R. 

Muthucumaraswamy (2011). Finite Difference 
analysis of radiative free convection flow past an 
impulsively started vertical plate with variable heat 
and mass flux. Journal of Applied Fluid 
Mechanics 4(1), 59 – 68. 

 
Prasad, V.R., N. Bhaskar Reddy and R. 

Muthucumaraswamy (2007). Radiation  and mass 
transfer effects on two- dimensional flow past an 
impulsively  started infinite vertical plate.   Int. J. 
Thermal Sciences 46(12), 1251 – 1258. 

 
Prasad, V.R., N. Bhaskar Reddy and R. 

Muthucumaraswamy (2006). Transient radiative 
hydromagnetic free   convection flow past an 
impulsively started vertical plate with uniform 
heat and mass flux, Theoretical Applied Mechanics 
33(1), 1 – 63. 

 
Sharma, B.K., A.K. Jha and R.C. Chaudhary (2007). 

Hall Effect on MHD Mixed Convective Flow of a 
Viscous Incompressible Fluid Past a Vertical 
Porous Plate Immersed in Porous Medium with 
Heat Source/Sink. Rom. Journal Phys 52(5), 487 – 
503. 



J. Anand Rao et al. / JAFM, Vol. 5, No. 3, pp. 105-112, 2012.   
 

112 
 

Shercliff, J.A. (1965). A Text Book of Magneto 
Hydrodynamics. Pergamon Press, London. 

 
Singh, K.D. (2000). An oscillatory hydromagnetic 

Couette flow in a rotating system. ZAMM 80, 429 
– 432. 

 
Suneetha, S., N. Bhaskar Reddy and V. Ramachandra 

Prasad (2011). Radiation and Mass transfer effects 
on MHD free convective Dissipative fluid in the 
presence of heat source/sink. Journal of Applied 
Fluid Mechanics 4(1), 107 – 113. 

 
Takhar, H.S., A. J. Chamkha and G. Nath (2002). MHD 

flow over a moving plate in a rotating fluid with 
magnetic field, Hall currents and free stream 
velocity. Int. J. Engng Sci. 40(13), 1511 – 1527. 

 
Vasu B, V. Ramachandra Prasad and N. Bhaskar Reddy 

(2011). Radiation and mass transfer effects on 
transient free convection flow of a dissipative fluid 
past semi-infinite vertical plate with uniform heat 
and mass flux. Journal of Applied Fluid 
Mechanics 4(1), 15 – 26. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


