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ABSTRACT 

An attempt is made for the study of steady two-dimensional flow of a viscous and incompressible fluid striking at 
some angle of incidence on a stretching sheet. Fluid is considered in the porous media obeying Darcy law, in the 
presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. The stream function 
splits into a Hiemenz and a tangential component. Using similarity variables, the governing partial differential 
equations are transformed into a set of three non-dimensional ordinary differential equations. These equations are 
then solved numerically using fifth order Runge-Kutta Fehlberg method with shooting technique. In the present 
reported work the effects of striking angle, radiation parameter, porosity parameter and the Prandtl number on flow 
and heat transfer characteristics have been discussed. Variations of above discussed parameters with the stretching 
sheet parameter have been graphically presented. 
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NOMENCLATURE 

A Porosity parameter 
,,, cba   are some positive constant  

Cp specific heat at constant pressure 
gf ,  dimensionless primary and secondary flow, 

respectively   
k permeability of saturated porous media 
K thermal Conductivity 

1k  mean absorption coefficient 

 p pressure of fluid 
Pr  Prandtl number 
qr radiative  heat flux 
R  radiation parameter 
T temperature profile 
T∞ constant temperature of the fluid far away 

from sheet 
 

wT  temperature of stretching sheet 

u velocity component along  x-axis 
uw velocity of stretching sheet 
v velocity component along  y-axis 
  Stefan’s-Boltzmann constant 
 dimensionless temperature 
  stream function 
  kinematic viscosity 
  striking angle of the fluid 

 ,  similarity variables 

 stretching sheet parameter 

w  shear stress 

s        stagnation point. 

 

 

1. INTRODUCTION 

The flow of an incompressible viscous fluid over a 
stretching surface is important in various processes. In 
technical processes concerning extrusion of polymer 
sheets, rolling and manufacturing plastic films and 
artificial fibers, involves the drawing of strips. Strips 
which are extruded from a die through a moving fluid 
with controlled cooling system may become sometime 
stretched. The stretching surfaces undergo 
cooling/heating that causes surface velocity and 

temperature variations. In stagnation point flow, a rigid 
wall or a stretching surface occupies the entire 
horizontal x-axis. The fluid domain is y > 0 and the 
flow strikes on the stretching surface either orthogonal 
or at some angle of incidence. This simple model of 
oblique stagnation point would enable us to understand 
how a boundary layer begins to develop. Therefore, 
location of stagnation point is of great importance to 
analyze behavior of boundary layer. Present research 
field has attracted many researchers in recent years due 
to its astounding applications. Crane (1970) studied the 
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steady two-dimensional flow of a viscous and 
incompressible fluid induced by the stretching of an 
elastic flat sheet in its own plane with a velocity 
varying linearly with the distance from a fixed point 
due to the application of a uniform stress. Gupta and 
Mahapatra (2003), and Sharma and Singh (2009) 
analyzed stagnation-point flow towards a stretching 
surface. They reported that a boundary layer is formed 
when stretching velocity is less than the free stream 
velocity. As the stretching velocity exceeds the free 
stream velocity than an inverted boundary layer is 
formed.  Singh et al. (2011) reported effect of porosity 
parameter and radiations on stretching sheet for 
orthogonal flow. Reza and Gupta (2005) analyzed 
oblique stagnation-point flow towards a stretching 
surface. 
 
Lok et al. (2006-2007) investigated the non-orthogonal 
stagnation-point for Newtonian and non-Newtonian 
flows towards a stretching sheet. Numerical solutions of 
the similarity equation are obtained in details. They 
found that the position of stagnation point depend on 
stretching sheet parameter and angle of incidence. 
Labropulu et al. (2009, 2010) analyzed oblique 
stagnation point flow of incompressible visco-elastic 
fluid towards a stretching sheet. Tilley and Weidman 
(1998) studied interaction between two planar oblique 
stagnation–point flows of different immiscible fluid.  
Flow through porous media plays an important role in 
many practical applications such as ground water flows, 
extrusion of a polymer sheet from a dye, enhanced oil 
recovery processes and pollution movement. Attia 
(2007) discussed the effect of porosity parameter on the 
velocity and thermal boundary layer. Elbashbeshy and 
Bazid (2009) studied heat transfer in porous medium. 
Rosali et al. (2011) studied stagnation point flow and 
heat transfer over a stretching/shrinking sheet in a 
porous medium. They indicate that dual solutions exist 
for the shrinking case. Hayat et al. (2010) use 
Homotopy Analysis Method (HAM) to give analytic 
solution for flow through porous medium. All authors 
discuss above have taken Darcy flow. Pal and Modal 
(2010) discussed non-Darcian flow in porous medium. 
 
The study of heat transfer and flow field is necessary 
for determining the quality of the final product. In 
technological processes at high temperature, thermal 
radiation effect cannot be neglected. Free convection 
heat transfer with radiation effect near the isothermal 
stretching sheet near the stagnation point has been 
investigated by Ghaly and Elbarbary (2002). Pop et al. 
(2004) studied radiation effect over a flat plate near 
stagnation point. They found that a boundary layer 
thickness increases with radiation. El-Aziz (2009) 
investigated radiation effects for the case of unsteady 
stretching sheet. Amaouche and Boukari (2003) studied 
the influence of thermal convection on non-orthogonal 
stagnation point flow. In certain porous media 
applications such as those involving heat removals from 
nuclear fuel debris, underground disposal of radiative 
waste material, storage of food stuffs, the study of heat 
transfer is of much importance. 
 
The flow in the porous media deals with the analysis in 
which the differential equation governing the fluid 
motion is based on the Darcy’s law which accounts for 

the drag exerted by the porous medium. The authors in 
the present manuscript studied the steady two-
dimensional flow of a viscous incompressible fluid 
striking at different angles of incidence on a stretching 
sheet. Fluid is considered in porous medium in the 
presence of radiation effect. Rosseland approximation is 
use to model the radiative heat transfer. To the best of 
author’s knowledge, this problem has not been 
discussed so far. 

2. FORMULATION OF THE PROBLEM 

Consider steady two-dimensional flow of a viscous 
incompressible fluid striking at some angle of incidence 
γ on a stretching sheet. Fluid is considered in the porous 
medium obeying Darcy law in the presence of radiation 
effect. The stretching sheet has uniform temperature  

wT  and linear velocity wu . Stretching sheet is placed 

in the plane y = 0 and x-axis is taken along the sheet. 
The fluid occupies the upper half plane i.e. y ≥ 0   as 
shown in Fig. 1.  

 

Fig. 1. Physical model. 
 
It is assumed that external field is zero. The governing 
equations of continuity, momentum and energy under 
above assumptions are given by  
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where u  and v  are velocity components along  x  and 

y  axes  respectively,   is kinematic viscosity, k  is 

permeability of saturated porous medium,  T   is the 
temperature,   is density of the fluid, K  is thermal 

conductivity and pC  is specific heat at constant 

pressure. Boundary conditions are, 
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This flow model is called favorable flow for 
2/0   and unfavorable flow for   .2/    

Case ,2/  is known as orthogonal flow. 

3. METHOD OF SOLUTION 

Eliminating pressure p term from Eqs. (2) and (3), we 
have  
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Introducing the dimensionless variables 

ycxc  /,/   and the stream function 

),(   as defined by   /u  and ./  v   

We seek solution of Eq. (6) in the form of 
),()(  gf  where the function )(f  and )(g

are referring to the normal and tangential component of 
the flow. Therefore, velocity components are given by,  

)(')('),(  gfu   and ).(),(  fv   

Equation of Continuity (1) is identically satisfied by 
),( u  and ),( v  defined as above  and   Eq.  (6) 

reduces to, 

 )(''))(')('())('')('')(('  fgfgff
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)).('')(''())('''')(''''(  gfAgf   

Here )/( ckA   is porosity parameter. Comparing 

coefficient of , we get,  
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Equations (7) and (8) can be rewritten as, 
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where C1 and C2 are constant of integration to be 
determined by using the boundary conditions: 
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Using boundary condition (11) in Eqs. (9) and (10), we 
get, 
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where ac / is stretching parameter and bcr / is 
secondary stretching parameter in normal direction. 

Radiative heat flux rq  in governing boundary layer 

equation of energy (4) is approximated by Rosseland 
approximation, which gives  
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It is assumed that the temperature difference within the 

flow is so small that 4T  can be expressed as a linear 

function of T . This can be obtained by expanding 4T  

in a Taylor series about T  and neglecting the higher 

order terms. Thus we get,  .34 434
  TTTT   Heat 

is transferred by forced convection which involve the 
only normal component of flow field, therefore )( is 
dimensionless temperature defined as
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Eq.  (4), we have  
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where R  is radiation parameter )/4( 1
3 KkT  and Pr

is Prandtl number ),/( KC p with boundary conditions 

.0)(,1)0(                                                (15) 

In the absence of an analytical solution of a problem, a 
numerical solution is indeed an obvious and natural 
choice. Thus, the governing boundary layer and thermal 
boundary layer Eqs.  (12-14) with boundary conditions 
(11) and (15), are solved using fifth order Runge-Kutta 
Fehlberg method with shooting technique. A physical 
quantity of interest is the skin friction, or shear stress 

w   at the wall, which is defined as  

0
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The dividing streamlines 0  and the curve 0u  

intersect the wall at the stagnation point where ,0w  

hence the location of stagnation point s  is given by,   
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4. NUMERICAL SIMULATION 

The set of non-linear coupled differential Eqs. (12),       
( 13) and (14) subject to the boundary conditions (11)  
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Table 1. Comparision of value of  )0(''f  for different values of   

Value of )0(''f  for different   for 0,2/  A  

Value of   Present paper Lok et al. 
(2006) 

Gupta and Mahapatra 
(2003) 

Pop et al. 
(2004) 

Singh et al. 
(2011) 

  = 0.1  0.976371  0.969388  0.9694  0.9694  0.976371 

  = 0.2  0.921594  0.918110  0.9181  0.9181  0.921592 

  = 0.5  0.667686  0.667271  0.6673  0.6673  0.667685 

  =    2 2.0174763 2.017615 2.0175 2.0174 2.0174765 

  =    3 4.7290669 4.729694 4.7293 4.7290 4.7290671 

 
Table 2. Values of )0(''f  for different values of stretching  parameter  , A  and  . 

Value of )0(''f  for different  ,  A  and   

Value of 
  

3/   4/   5/   

A = 0 A = 3 A = 0 A = 3 A = 0 A = 3 
  = 0.1  0.98245903  1.85670878  0.98928540  1.88347580  0.976371  0.976371 

  = 0.2  0.93785336  1.70726572  0.95565382  1.76280961  0.921594  0.921594 

  = 0.5  0.73512206  1.22387716  0.80740039  1.37706387  0.667686  0.667686 

  =    2 1.40094697 1.88577538 0.73844740 1.02742229 0.29454561 0.42244459 

  =    3 3.56624221 4.50668261 2.31296994 3.01463037 1.47033096 1.97345837 
 

Table 3. Values of )0(''g  for different values of stretching  parameter  ,  A  and  . 

Value of )0(''g  for different  , A  and    

Value of 
  

3/   4/   5/   

A = 0 A = 3 A = 0 A = 3 A = 0 A = 3 
  = 0.1  0.33909700 2.31168374  0.48986521 3.27346165  0.56965453 3.74889368 
  = 0.2  0.30381001 2.29538669  0.44688114 3.25460592  0.52695451 3.73093626 
  = 0.5  0.22593960 2.24744169  0.34861407 3.19884865  0.42652725 3.67765080 
  =    2  0.05336530 2.04001724  0.11252517 2.94932616  0.16791715 3.43320628 
  =    3  0.00331194 1.93127333  0.03941102 2.81226684  0.08264740 3.29385003 

 
and (15) constitute a two-point boundary value 
problem. In order to solve these equations numerically, 
we follow most efficient numerical shooting technique 
with fifth-order Runge–Kutta–Fehlberg integration 
scheme. In this method it is most important to choose 
the appropriate finite values of .  The solution 

process is repeated with another large value of   

until two successive values of )0(''f  and )0('  differ 
only after a desired digit signifying the limit of the 
boundary along  . The last value of  is chosen as 

appropriate value of the limit  for that particular 
set of parameters. The three ordinary differential       
Eqs. (12), (13) and (14) were first formulated as a set of 
eight first-order simultaneous equations. To solve this 
system we require eight initial conditions whilst we 
have only five initial conditions )0(f  and )0('f on 

),(f )0(g  and )0('g on ),(g  and one initial 

condition )0(  on )( . Still there are three initial 

conditions )0(''f , )0(''g and )0(' which are not 
prescribed.  
However the values of ),(' f )('' g  and )( are 
known at  . Now we employ the numerical 
shooting technique where these three ending boundary 

conditions are utilized to produce three known initial 
conditions at 0 . Finally, the problem has been 
solved numerically using fifth-order Runge–Kutta 
Fehlberg method. 

5. RESULTS AND DISCUSSION 

Fifth order Runge-Kutta Fehlberg method with the help 
of shooting method  is used to solve Eqs. (12)-(14) for 
different values of  Pr,,, R  and A  taking step size 

0.001. While numerical simulation, step size 0.002 and 
0.003 were all checked and values of  )0(''),0('' gf

and )0('  were found in each case correct up to six 
decimal places. Hence the scheme used in this paper 
stable and accurate. We have compared values of 

)0(''f  for orthogonal flow 2/   with Lok et al. 
(2006),  Gupta and Mahapatra (2003), Singh et al. 
(2011) and Pop et al. (2004) as shown in Table 1. 
Physically, positive sign of )0(''f implies that the fluid 
exerts a drag force on the sheet and negative sign 
implies the opposite. The streamline patterns for the 
orthogonal and oblique flows are shown in Figs. 2(a-e) 
for .0A  Both the favorable and unfavorable cases  
are considered. 
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Fig. 2a). Streamline pattern for oblique flow when 
4/  , taking .0A  

 

Fig. 2c). Streamline pattern for oblique flow when 
3/2  , taking .0A  

 

Fig. 2b). Streamline pattern for oblique flow when 
20/  , taking .0A  

 

 

Fig. 2d). Streamline pattern for oblique flow when 
16/15  , taking .0A  

 

Fig. 2e). Streamline pattern for oblique flow when 
2/  , taking .0A  

 
Figure 3 shows that the boundary layer thickness 
decreases considerably as   increases at the points 
where )(' f  reaches the boundary condition. The 

increase in the value of   implies that free stream 
velocity increases in comparison to stretching velocity, 
which results in the increase in pressure and straining 

motion near stagnation point and hence thinning of 
boundary layer takes place.  

 

Fig. 3. Velocity profile )(' f versus    for different 

values 3/,4/,   and .0A  

 
The phenomenon of thinning of boundary layer thus 
implies increased shear stress at the sheet, which is also 
seen in Table 2. The streamline 0  meets the wall at 

s   where  s   is the point of stagnation and zero skin  



P. Singh et al. / JAFM, Vol. 5, No. 3, pp. 29-37, 2012.  
 

34 
 

Table 4. Location of stagnation point s  for different values of  ,  A  and  . 

Value of s  for different  ,  A  and   

Value of 
  

3/   4/   5/   

A = 0 A = 3 A = 0 A = 3 A = 0 A = 3 
  = 0.1  0.3452 1.2450  0.4952 1.7380  0.5730 1.9695 

  = 0.2  0.3239 1.3445  0.4676 1.8463  0.5444 2.0682 

  = 0.5  0.3073 1.8363  0.4318 2.3228  0.4983 2.4697 

  =    2 0.03810  1.0818 0.1524  2.8706 0.5701  8.1270 

  =    3 0.00092  0.4285 0.0170  0.9329 0.0562  1.6691 
 

Table 5.  Values of rate of heat transfer  for different values of stretching sheet parameter  , A  , striking angle   

taking radiation parameter 1R and Prandtl number .71.0Pr   

Value of )0('  for different  ,  A  and   

Value of 
  

1,71.0Pr,2/  R  1,71.0Pr,3/  R  1,71.0Pr,5/  R  

A = 0 A = 6 A = 0 A = 6 A = 0 A = 6 
  = 0.1 0.42212903 0.39032686 0.42198201 0.38893519 0.42174356 0.38604911 

  = 0.2 0.42725472 0.40103726 0.42669642 0.39823603 0.42578501 0.39243186 

  = 0.5 0.44683000 0.43351204 0.44389556 0.42642715 0.43895984 0.41174984 

  =    2 0.58059870 0.59321118 0.55921113 0.56653749 0.51801292 0.50937384 

  =    3 0.67204447 0.68963930 0.63992985 0.65310971 0.57452415 0.57253794 
 

 

Fig. 4. Velocity profile )(' f versus    for different 

values   taking 2 and .0A  

friction. Values of the stagnation point s   for the 

favorable flow are given in Table 4. Since the case of 
unfavorable flow can be mapped to a case of favorable 
flow by    and   ,  we will not present 

here values of s  for the case of unfavorable flow. It 

has been observed from Table 4 that stagnation point 
shifts towards origin as striking angle increased from 

5/  to 3/  for any value of  . Stagnation point 
shifts towards origin as porosity parameter  increased, 
and moves to opposite side of the origin, if porosity 
parameter is further increased. Effect of striking angle 
  on flow has been represented in Fig. 4. It is found 
that boundary layer thickness increase as striking angle 
increases for favourable flow.  Figs. 5 and 6 present the 
velocity profiles for various values of porosity 
parameter for 1.0 and 2, respectively. The effect of 
porosity parameter on velocity profile depends on 
stretching parameter. Figure 5 shows that the boundary 
layer thickness decrease considerably as porosity 
parameter increases for stretching parameter less than 
one. For ,1 the free stream velocity less than 

stretching velocity and as porosity parameter is 
increases implies increase in pressure and straining 
motion near stagnation point which results in thinning 
of velocity boundary layer. Whereas for ,1  velocity 
boundary layer thickness increase as porosity parameter 
increases.  This is due to inverted boundary layer 
formed for .1   

 
Fig. 5. Velocity profile )(' f versus    for different 

values A  taking 1.0 and .3/   

 

Fig. 6. Velocity profile )(' f versus    for different 

values A  taking 2 and .4/,3/    
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Table 6. Values of rate of heat transfer for different values of stretching sheet parameter  , Prandtl number Pr , 
striking angle   taking radiation parameter 1R , .0A  

Value of )0('  for different  , Pr  ,    

Value  of  
Pr  

0,1,2/  AR  0,1,3/  AR  0,1,5/  AR  

  = 0.1   =    2   = 0.1   =    2   = 0.1   =    2 
Pr  =0.01 0.3345341 0.3369292 0.3345321 0.33658927 0.33452890 0.3359544 
Pr  =0.71 0.4221290 0.5805987 0.4219820 0.55921113 0.42174356 0.5180129 
Pr  =    2 0.5929923 0.9121825 0.5926033 0.87422927 0.59197193 0.7969073 
Pr  =    5 0.9655322 1.3865492 0.9648970 1.33556688 0.96386461 1.2312005 

 

Table 7. Values of rate of heat transfer for different values of stretching sheet parameter  , radiation parameter R , 
striking angle   taking Prandtl number 71.0Pr   and .0A  

Value of )0('  for different  ,  R  and    

Value of 
R  

0,71.0Pr,2/  A  0,71.0Pr,3/  A  0,71.0Pr,5/  A  

  = 0.1   =    2   = 0.1   =    2   = 0.1   =    2 
R  = 1 0.42212903 0.58059870 0.42198201 0.55921113 0.42174356 0.51801292 
R  = 2 0.38910117 0.49477158 0.38900808 0.48004844 0.38885710 0.45218450 
R  = 5 0.35963757 0.41139940 0.35959352 0.40405250 0.35952209 0.39030890 
R  = 10 0.34731237 0.37507536 0.34728896 0.37112535 0.34725100 0.36375190 

 

Fig. 7. Temperature profile )(  versus similarity 

variable   at different values of Prandtl  number  Pr  

taking 1,3/,1.0  R  and .0A  

 

Fig. 8. Temperature profile )(  versus similarity 

variable   at different values of Prandtl  number  Pr  

taking 1,3/,2  R  and .0A  

It is observed from Table 5 that temperature gradient 
increase as porosity parameter increases. It is observed 
from Figs. 7 and 8, and Table 6 that the temperature 
profile decreases with an increase in the Prandtl number 
Pr  for striking angle .3/    

 
This is in agreement with the physical fact that at higher 
Prandtl number, fluid has a thinner thermal boundary 
layer and this increases the gradient of temperature. 
Prandtl number does not depend on stretching sheet 
parameter.  

 

Fig. 9. Temperature profile )(  versus similarity 

variable   at different values o radiation parameter R   

taking 3/,1.0    and .0A  

On the other hand, it is also observed from Figs. 9 and 
10, and Table 7 that increase of radiation parameter 
leads to increase in the temperature. This result can be 
explained by the fact that increase in the values of R  
for a given of T  means a decrease in the Rosseland 

radiation absorptivity 1k . The divergence of the 

radiative heat flux yqr  / increases as 1k  decreases 

which in turn increases the rate of radiative heat 
transferred to the fluid and hence the fluid temperature 
increases. In view of this explanation, the effect of 
radiation becomes more significant as R  and can 
be neglected when 0R .  Also, it is seen from figures 
that the for small value of R , the thermal boundary 
layer thickness is thinner. Therefore higher value of 
radiation parameter implies higher surface heat flux. 
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Fig. 10. Temperature profile )(  versus similarity 

variable   at different values of radiation parameter R   

taking 3/,2    and .0A  

Attia (2007), Elbashbeshy and Bazid (2009), Anjali 
Devi and Ganga (2008), Hayat et al. (2010) and Pal and 
Modal (2010) studies stagnation point flow for porous 
medium. All the above mention studies consider 
orthogonal flow only whereas flow can impinge the 
surface at any angle. We have investigated non-
orthogonal flow for above studied parameters. These 
results have possible technological applications in 
liquid-based systems involving stretching materials. 

6. CONCLUSION 

The two dimensional stagnation point flow through a 
porous medium of a viscous incompressible fluid 
impinging on a stretching sheet at some angle is 
studied. A numerical solution for the governing 
equations is obtained which allows the computation of 
the flow and heat transfer characteristics for various 
values of the porosity parameter, the stretching sheet 
parameter, striking angle, radiation parameter and the 
Prandtl number. The main results of the paper can be 
summarized as follows: 
 
1) The boundary layer thickness decreases as 

stretching parameter increases. 
2) Stagnation point shifts towards origin as striking 

angle increases. 
3) Boundary layer thickness increases as striking 

angle increases. 
4) Effects of porosity parameter depend on stretching 

parameter. 
5) Temperature gradient increases as porosity 

parameter  increases. 
6) Temperature decreases with increase in the Prandtl 

number. 
7) Radiation parameter increases with increase of the 

temperature. 
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