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ABSTRACT 

In the present paper , an analysis is carried out the chemical reaction effects on an unsteady magneto hydrodynamics 
(MHD) free convection fluid flow past a semi-infinite vertical plate embedded in a porous medium with heat 
absorption was formulated. The non dimensional governing equations are formed with the help of suitable 
dimensionless governing parameter. The resultant coupled non dimensional governing equations are solved by a 
finite element method. The effect of important physical parameters on the velocity, temperature and concentration are 
shown graphically and also discussed the skin-friction coefficient, Nusselt number and Sherwood number are shown 
in tables. 
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1. INTRODUCTION 

The present trend in the field of chemical reaction 
analysis is to give a mathematical model for the system 
to predict the reactor performance. A large amount of 
research work has been reported in this field. In 
particular, the study of heat and mass transfer with 
chemical reaction is of considerable importance in 
chemical and hydrometallurgical industries. Chemical 
reaction can be codified as either heterogeneous or 
homogeneous processes. This depends on whether they 
occur at an interface or as a single phase volume 
reaction. Frequently the transformations proceed in a 
moving fluid, a situation encountered in a number of 
technological fields. A common area of interest in the 
field of aerodynamics is the analysis of thermal 
boundary layer problems for two-dimensional steady 
and incompressible laminar flow passing a wedge. 
Simultaneous heat and mass transfer from different 
geometrics embedded in porous media has many 
engineering and geophysical applications such as 
geothermal reservoirs, drying of porous solids, thermal 
insulation, enhanced oil recovery, packed-bed catalytic 
reactors, cooling of nuclear reactors, and underground 
energy transport. A very significant area of research in 
radiative heat transfer, at the present time is the 
numerical simulation of combined radiation and 
convection/conduction transport processes. The effort 

has arisen largely due to the need to optimize industrial 
system such as furnaces, ovens and boilers and the 
interest in our environment and in non conventional 
energy sources, such as the use of salt-gradient solar 
ponds for energy collection and storage. In particular, 
natural convection induced by the simultaneous action 
of buoyancy forces resulting from thermal and mass 
diffusion is of considerable interest in nature and in 
many industrial applications such as geophysics, 
oceanography, drying processes, solidification of binary 
alloy and chemical engineering. Frequently the 
transformations proceed in a moving fluid, a situation 
en-countered in a number of technological fields. 
 

Heat flow and mass transfer over a vertical porous plate 
with variable suction and heat absorption/generation 
have been studied by many workers. Raji Reddy and 
Srihari (2009) studied numerical solution of unsteady 
flow of a radiating and chemically reacting fluid with 
time-dependent suction. Chen (2006) studied heat and 
mass transfer in MHD flow by natural convection from 
a permeable, inclined surface with variable wall 
temperature and concentration. Perdikis and Rapti 
(2006) studied the unsteady MHD flow in the presence 
of radiation. Rahman and Sattar (2006) analyzed the 
MHD convective flow of a micro polar fluid past a 
continuously moving vertical porous plate in the 
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presence of heat generation/ absorption. Kim (2000) 
investigated unsteady MHD convective heat transfer 
past a semi-infinite vertical porous moving plate with 
variable suction by assuming that the free stream 
velocity follows the exponentially increasing small 
perturb action law. Chamkha (2004) extended the 
problem of Kim (2000) to heat absorption and mass 
transfer effects. Elbashbeshy (1997) studied heat and 
mass transfer along a vertical plate under the combined 
buoyancy effects of thermal and species diffusion, in 
the presence of magnetic field. Soundagekar et al. 
(1979) analyzed the problem of free convection effects 
on stokes problem for a vertical plate under the action 
of transversely applied magnetic field with mass 
transfer. 
 
In all these investigations, the viscous dissipation is 
neglected. The viscous dissipation heat in the natural 
convective flow is important, when the flow field is of 
extreme size or at low temperature or in high 
gravitational field. Gebhar (1962) shown the 
importance of viscous dissipative heat in free 
convection flow in the case of isothermal and constant 
heat flux in the plate. Soundalgekar (1972) analyzed the 
effect of viscous dissipative heat on the two 
dimensional unsteady, free convective flow past an 
vertical porous plate when the temperature oscillates in 
time and there is constant suction at the plate. Israel 
Cookey et al. (2003) investigated the influence of 
viscous dissipation and radiation on unsteady MHD 
free convection flow past an infinite heated vertical 
plate in porous medium with time dependent suction. 
 
The objective of the present paper is to analyze the 
chemical reaction effects on an unsteady magneto 
hydrodynamics free convection fluid flow past a semi-
infinite vertical plate embedded in a porous medium 
with heat absorption. The dimensional less equations of 
continuity, linear momentum, energy and diffusion, 
which govern the flow field are solved numerically by 
using a finite element method. The behavior of the 
velocity, temperature, concentration, skin-friction 
coefficient, Nusselt number and Sherwood number has 
been discussed for variations in the governing 
parameters. 

2. MATHEMATICAL ANALYSIS 

An unsteady two-dimensional laminar free convective 
boundary layer flow of a viscous, incompressible, 
electrically conducting and the chemical reaction 
effects on an unsteady magneto hydrodynamics free 
convection fluid flow past a semi-infinite vertical plate 
embedded in a porous medium with heat absorption is 
considered. The x - axis is taken along the vertical 
plate and the y - axis normal to the plate. It is assumed 
that there is no applied voltage, which implies the 
absence of an electric field. The transverse applied 
magnetic field and magnetic Reynolds number are 
assumed to be very small so that the induced magnetic 
field and the Hall Effect are negligible. The 
concentration of the diffusing species in the binary 
mixture is assumed to be very small in comparison with 
the other chemical species which are present, and hence 
the Soret and Dufour are negligible. Further due to the 
semi-infinite plane surface assumption, the flow 

variables are functions of normal distance y and t
only. Now, under the usual Boussinesq’s 
approximation, the governing boundary layer equations 
of the problem are: 
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Where ,u v  are the velocity components in ,x y 
directions respectively. t - the time,   -the fluid 

density,  - the kinematic viscosity, pc - the specific 

heat at constant pressure, g -the acceleration due to 

gravity,  and   - the thermal and concentration 

expansion coefficient respectively, 0B - the magnetic 

induction ,  - the fluid thermal diffusivity, pk - the 

permeability of the porous medium, T - the 
dimensional temperature, C - the dimensional 

concentration, k -the thermal conductivity,  - 

coefficient of viscosity, 0Q  -the heat absorption,  D - 

the mass diffusivity, rk  - the chemical reaction 

parameter.  
 
The boundary conditions for the velocity, temperature 
and concentration fields are: 
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is the plate velocity, wT and wC are the wall 

dimensional temperature and concentration 
respectively, T and C  are the free stream 

dimensional temperature and concentration 
respectively, n - the constant. By using Rossel and 
approximation, the radiative heat flux rq is given by  
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Where s - the Stefan-Boltzmann constant and eK - the 

mean absorption coefficient. It should be noted that by 
using Rossel and approximation, the present analysis is 
limited to optically thick fluids. If temperature 
differences within the flow are sufficient, small, then 

Eq. (6) can be linearised by expanding 4T in the Taylor 
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series about T , which after neglecting higher order 

terms take the form 

4 3 44 3T T T T  
                        (7) 

In the view of Eqs. (6) and (7), Eq. (3) reduces to 
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From the continuity Eq. (1), it is clear that suction 
velocity normal to the plate is either a constant or 
function of time. Hence, it is assumed in the form 
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Where A is a real positive constant, ε and εA are small 
values less than unity and V0 is scale of suction velocity 
at the plate surface. In order to write the governing 
equations and the boundary condition in dimension less 
form, the following non- dimensional quantities are 
introduced. 
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In the view of Eqs. (6) - (9), Eqs. (2) - (4) reduced to 
the following dimensionless form. 
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Where , , , , Pr, , , ,RGr Gm M K N Ec Q Sc and rK are the 

thermal Grashof number, Solutal Grashof number, 
Magnetic parameter, Permeability parameter, Prandtl 
number, thermal radiation, Eckert number, heat 
absorption parameter, Schmidt number and chemical 
reaction parameter respectively.  

The corresponding boundary conditions are 
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3. SOLUTION OF THE PROBLEM 

The set of differential Eqs. (11) to (13) subject to the 
boundary conditions (14) are highly nonlinear, coupled 
and therefore it cannot be solved analytically.  Hence, 
following Reddy (Reddy 1985) and Bathe (Bathe 
1996), the finite element method is used to obtain an 
accurate and efficient solution to the boundary value 
problem under consideration. The fundamental steps 
comprising the method are as follows: 
 
Step 1: Discretization of the domain into elements: 
The whole domain is divided into finite number of sub-
domains, a process known as discretization of the 
domain. Each sub-domain is termed a finite element. 
The collection of elements is designated the finite 
element mesh. 
 
Step 2: Derivation of the element equations: 
The derivation of finite element equations i.e. algebraic 
equations among the unknown parameters of the finite 
element approximation, involves the following three 
steps: 

a. Construct the variational formulation of the 
differential equation. 

b. Assume the form of the approximate solution over a 
typical finite element. 

c. Derive the finite element equations by substituting 
the approximate solution into variational formulation. 
 
Step 3: Assembly of element equations:  
The algebraic equations so obtained are assembled by 
imposing the inter-element continuity conditions. This 
yields a large number of algebraic equations, 
constituting the global finite element model, which 
governs the whole flow domain. 
 
Step 4: Impositions of boundary conditions: 
The physical boundary conditions defined in Eq. (14) 
are imposed on the assembled equations.  
 
Step 5: Solution of the assembled equations: 
The final matrix equation can be solved by a direct or 
indirect (iterative) method. For computational purposes, 
the coordinate y  is varied from 0  to max 10y  , where 

maxy  represents infinity i.e. external to the momentum, 

energy and concentration boundary layers.  The whole 
domain is divided into a set of 100  line elements of 
equal width 0.05 , each element being three noded. Thus 
after assembly of all the elements equations we obtain a 
matrix of order 201 201 . This system of equations as 
obtained after assembly of the elements equations is 
non-linear therefore an iterative scheme has been used 
to solve it. The system is linearized by incorporating 
known functions. After applying the given boundary 
conditions only a system of 195  equations remains for 
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the solution which has been solved using Gauss 
elimination method. This process is repeated until the 
desired accuracy of 0.0005 is obtained. 

 

 

 

The skin-friction, Nusselt number and Sherwood 
number are important physical parameters for this type 
of boundary layer flow. The skin-friction at the plate, 
which in the non-dimensional form is given by 
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The rate of heat transfer coefficient, which in the non-
dimensional form in terms of the Nusselt number is 
given by  
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The rate of mass transfer coefficient, which in the non-
dimensional form in terms of the Sherwood number, is 
given by                                                   

0

1

0

R e (1 7 )

y

w

x
y

C

y
S h x

C C

S h
y











 
  

 


 
    

 

 Where  0Rex
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
   is the local Reynolds number. 

4. RESULTS AND DISCUSSION 

In order to obtain a physical insight of the problem, and 
to observe that  the effects of various physical 
hydrodynamics parameters on the velocity, temperature 
and concentration, numerical calculations have been 
performed for different values of magnetic parameter
M , thermal Grashof number Gr , Solutal Grashof 

number Gm , Permeability parameter K , Eckert 

number Ec , heat absorption parameter Q , thermal 

radiation RN , Prandtl number Pr , Schmidt number Sc  

and chemical reaction parameter rK . In order to 

ascertain the accuracy of the numerical results, the 
present study is compared with the previous study. The 
velocity profiles for  

2.0,Gr Gm 

2.0, 0.3, 0.5, Pr 0.71,Gr Gm M K    
0.5, 0.2, 1.0, 0.22,RN Ec Q Sc   

0.5, 0.5, 0.2, 0.1, 1.0pU A n t    
 

are compared with the available solution of Raji Reddy 
and Srihari (Raji Reddy and Srihari  2009), in Fig. 1. It 
is observed that the present results are in good 
agreement with that of Raji Reddy and Srihari (Raji 
Reddy and Srihari  2009).

   
For various values of the thermal Grashof number Gr  
and solutal Grashof number Gm , the velocity profiles  
‘u ’ are plotted in Figs. (2) and (3). The thermal 
Grashof number Gr   signifies the relative effect of the 
thermal buoyancy force to the viscous hydrodynamic 
force in the boundary layer. As expected, it is observed 
that there is a rise in the velocity due to the 
enhancement of thermal buoyancy force. Also, as Gr  
increases, the peak values of the velocity increases 
rapidly near the porous plate and then decays smoothly 
to the free stream velocity.  
 
The solutal Grashof number Gm  defines the ratio of 
the species buoyancy force to the viscous 
hydrodynamic force. As expected, the fluid velocity 
increases and the peak value is more distinctive due to 
increase in the species buoyancy force. The velocity 
distribution attains a distinctive maximum value in the 
vicinity of the plate and then decreases properly to 
approach the free stream value. It is noticed that the 
velocity increases with increasing values of the solutal 
Grashof number. 
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The effect of the magnetic parameter M  is shown in 
Fig. 4. It is observed that the tangential velocity of the 
fluid decreases with the increase of the magnetic field 
number values. The decrease in the tangential velocity 
as the magnetic parameter M  increases is because the 
presence of a magnetic field in an electrically 
conducting fluid introduces a force called the Lorentz 
force, which acts against the flow if the magnetic field 
is applied in the normal direction, as in the present 
study. This resistive force slows down the fluid velocity 
component as shown in Fig. 4.  

 

 

 
 
Figure 5 shows the effect of the permeability of the 
porous medium parameter K  on the velocity 
distribution. It is found that the velocity increases with 
an increase in K . 
 
For different values of the Eckert number Ec  the 
velocity and temperature profiles are plotted in Fig. 6 
and Fig. 7. It is obvious that an increase in the Eckert 
number Ec   results in a increase in the velocity and 
temperature within the boundary layer. 

 

 

 
Figures 8 and 9 illustrate the velocity and temperature 
profiles for different values of heat absorption 
parameter  Q  , the numerical results show that the 
effect of increasing values of heat absorption parameter 
result in a decreasing velocity and temperature. 
 
Figures 10 and 11 show the behavior velocity and 
temperature for different values Prandtl number. The 
numerical results show that the effect of increasing 
values of Prandtl number results in a decreasing 
velocity. It is observed that an increase in the Prandtl 
number results a decrease of the thermal boundary layer 
thickness and in general lower average temperature 
within the boundary layer. The reason is that smaller 
values of Pr  are equivalent to increase in the thermal 
conductivity of the fluid and therefore, heat is able to 
diffuse away from the heated surface more rapidly for 
higher values of Pr . Hence in the case of smaller 
Prandtl number as the thermal boundary later is thicker 
and the rate of heat transfer is reduced. 
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For different values of thermal radiation RN
 the 

velocity and temperature profiles are shown in Figs. 12 
and 13. It is noticed that an increase in the thermal 
radiation results a increase in the velocity and 
temperature within the boundary layer. The effect of the 

Schmidt number Sc on the velocity and concentration 
are shown in Figs. 14 and 15. As the Schmidt number 
increases, the velocity and concentration decreases. 
This causes the concentration buoyancy effects to 
decrease yielding a reduction in the fluid velocity. 
Reductions in the velocity and concentration 
distributions are accompanied by simultaneous 
reductions in the velocity and concentration boundary 
layers. 

 

 

 
 
Figures 16 and 17, illustrates the behavior velocity and 
concentration for different values of chemical reaction 
parameter rK .  It is observed that an increase in leads to 

a decrease in both the values of velocity and 
concentration. The numerical calculations have been 
computed to understand the physical aspect of the 
problem. Tables 1, 2 and 3 show the numerical values 
of the skin friction coefficient, Nusselt number and 
Shear wood number.  
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Table 1 Effect of Gr , Gm , M  and K  on fC  

( RN =0.5, Pr =0.71, Ec =0.2, Q =1.0, Sc =0.22, rK =0.5) 

Gr   Gm   M   K   fC  

2.0 
4.0 
2.0 
2.0 
2.0 

2.0 
2.0 
4.0 
2.0 
2.0 

1.0 
1.0 
1.0 
2.0 
1.0 

0.5 
0.5 
0.5 
0.5 
1.0 

1.0608 
1.9892 
2.2753 
0.6947 
1.5923 

 
Table 2 Effect of RN , Pr , Ec   and Q   on  fC  and Nu  

( Gr =2.0, Gm =2.0, M =0.3, K =0.5, Sc =0.22, rK =0.5) 

RN  Pr  Ec  Q  fC  Nu  

0.5 
1.0 
0.5 
0.5 
0.5 

0.71 
0.71 
7.0 

0.71 
0.71 

0.5 
0.5 
0.5 
1.0 
0.5 

1.0 
1.0 
1.0 
1.0 
2.0 

1.4229 
1.5169 
0.6341 
1.4498 
1.2884 

1.1105 
0.9271 
5.5109 
1.0500 
1.4207 

 
Table 3   Effect of Sc  and rK   on  fC  and Sh  

( Gr =2.0, Gm =2.0, M =0.3, K =0.5, 
RN =0.5, Pr

=0.71, Ec =0.2, Q =1.0) 

Sc  rK  fC  Sh  

0.22 
0.60 
0.22 

0.5 
0.5 
1.0 

1.4073 
1.1212 
1.2800 

0.5506 
1.0094 
0.7438 

 
The effects of where , , , , Pr, , , ,RGr Gm M K N Ec Q Sc

and rK on the skin-friction fC , Nusselt number Nu , 

Sherwood number Sh  are shown in Tables 1 to 3. 

From Table 1, it is observed that as Gr  or Gm or K  

increases, the skin-friction coefficient increases, where 
as the skin-friction coefficient decreases as M increases. 
From Table 2, it is noticed that as RN  or Ec  increases, 

the skin-friction coefficient increases while the Nusselt 
number decreases and Pr  or Q  increases, the skin-
friction coefficient decreases while the Nusselt number 
increases. From Table 3, it is found that as Sc  or rK   

increases, the skin-friction coefficient decreases while 
the Sherwood number increases. 

5. CONCLUSION 

In this paper, an unsteady two dimensional radiations 
and MHD free convection viscous dissipative past a 

moving vertical porous plate with chemical reaction 
was considered. The non- dimensional governing 
equations are solved with the help of finite element 
method. The conclusions of the study are as follows: 

1. The velocity increases with the increase in thermal 
Grashof number and solutalGrashof number. 

2. The velocity decreases with an increase in the 
magnetic parameter. 

3. The velocity increases with an increase in the 
permeability of the porous medium parameter. 

4. An increase in the Eckert number increases the 
velocity and temperature. 

5. An increase in the prandtl number decreases the 
velocity and temperature. 

6. An increase in the thermal radiation leads to 
increase in the velocity and temperature. 

7. Increasing the heat absorption parameter reduces 
both velocity and temperature. 

8. The velocity as well as concentration decreases 
with an increase in the Schmidt number. 

The velocity as well as concentration decreases with an 
increase in the chemical reaction parameter. 
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