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ABSTRACT 

We present a versatile three – dimensional two – phase model for simulating snow drift relocation around buildings 
utilizing deflection fins of various shapes and sizes. The first phase involves numerically obtaining the air velocity 
profile around the building and fin using a velocity – pressure Navier – Stokes algorithm, while the second phase 
involves direct classical simulation of snowfall with particle – particle, particle – surface and one – way particle – 
gusting wind  interactions introduced to control accumulation, erosion, clumping and drifting. Because the simulation 
technique is direct, it is potentially useful for storms and surfaces with widely varying conditions. We are also able to 
consider the effect of crosswinds. 
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NOMENCLATURE 

A, B, C     computational cell dimensions 
a               drag force coefficient 
b               snowflake repulsion coefficient 
c               snowflake sticking coefficient 
g               acceleration of gravity 
i,j,k           indices in  x, y and z directions 
m              mass of smowflake 
nx, ny, nz   number of x, y and z grid points 
P               pressure 
R               radius of snowflake 
rij               separation between two snowflakes 
u               x – component of velocity 
 

v          y – component of velocity 
 vij           relative velocity of two snowflakes 
 റ         air velocityݒ
W         z– component of velocity 
x           horizontal coordinate 
y           lateral coordinate 
z           vertical coordinate 
ρ           density of air 
θ           Heaviside step function 
Δt          time step 
µ           kinematic viscosity of air 
 

 

1. INTRODUCTION 

Snow exhibits a wide range of characteristic dynamics, 
ranging from slow, almost vertical snowfall to the 
chaotic whirling and drifting seen in blizzards. 
Especially at extreme latitudes the drifting of snow can 
present significant challenges to people along many 
different fronts. Because computer simulations and 
mathematical modeling are very useful in 
understanding and even predicting the behavior of 
physical systems, especially ones that are associated 
with negative impact on people, researchers have 
mathematically investigated snowfall and its effects in 
one, two and three dimensions. The drifting and 
accumulation of snow in natural environments is 
directly related to avalanche danger; computer 
simulations have been used to estimate snow 
loading,(Lehning et al. 2000) transport (Doorschot et 
al. 2001) and drifting (Schneiderbauer et al. 2008; 

Lehning et al. 2002) in natural settings with the purpose 
of avalanche warning.(Lehning et al. 2000; Doorschot 
et al. 2001; Schneiderbauer et al. 2008; Lehning et al. 
2002). In addition to snow behavior in natural settings, 
snow drifting in three dimensions around buildings of 
different shapes and aspect ratios (Akiyoshi et al. 1999; 
Kim et al. 1992; Beyers et al. 2008) and even cubes 
(Beyers et al. 2004) has been modeled.  
 
Although it is very useful to understand the dynamics 
of snow drifting and transport, results of the processes 
themselves can present significant challenges to the 
activities of building occupants as well as to the 
structural integrity of buildings themselves. With such a 
purpose in mind, two recent studies (Sundsbø 1998; De 
Chant 2005) have been completed regarding two – 
dimensional numerical simulation of displacement of 
snowdrifts away from building walls using deflection 
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fins. The first involves a two – phase model which 
entails (i) numerical simulation of airflow due to the 
building and vertical deflection fin followed by (ii) a 
histogram cell model of snowfall accumulation and 
drifting. The geometry of the study (Sundsbø 1998) 
involves a 3m long deflection fin fixed 1.5m away from 
the top of a 3m high building and the results for 
deflecting the snow were very promising. The study 
also employed boundary conditions for turbulent flow 
(De Chant 2005) and an analytical solution for 
modeling snow accumulation involving various 
saltation, erosion and solidification processes. 
 
The simulations and models for snow discussed above 
involve commercial codes (CFD; FLUENT; FLOW-
3D, etc.) that calculate the air velocity profile coupled 
with analytical models that describe the snow profiles 
on relevant surfaces. Although the work discussed 
above is useful and well thought out, the very nature of 
snowfall suggests that direct numerical simulations 
incorporating snowflake-air, snowflake-snowflake and 
snowflake-surface interactions could reproduce 
essential elements of drifting and drift remediation. The 
second drift relocation study arose through concerns of 
drifting near two buildings on the University of 
Northern Iowa campus, and entails direct numerical 
simulation of the storm (Maldonado et al. 2012).  It is 
also a two – phase model which incorporates (i) a 
pressure – velocity Navier – Stokes algorithm (Matyk et 
al. 2012) that solves for the air velocity field and (ii) 
direct numerical simulation of snow accumulation and 
erosion incorporating the interactions mentioned above 
using Newtonian dynamics and one – way coupling of 
the snowflakes to the air velocity field. We found that 
(i) the vertical placement of the fin affects the 
placement and dispersion of the snowdrift it creates, 
and the higher the fin is placed, the farther out from the 
building and more dispersed the drift is, (ii) The 
horizontal placement of the deflection fin affects how 
dispersed the snow drift will become, and (iii) the data 
suggests that a large fin (2 m – 3 m in length) placed 
within  1.6  m – 2 m from the building wall with half 
above the roof and half below could be very effective at 
preventing drifting near the building, which is 
consistent with results from previous work.(Sundsbø et 
al. 1998). 
 
Many buildings present complexity in the boundary 
conditions they offer to the air as well as the snow 
particles; moreover the natural processes involved are 
inherently three – dimensional and so need for such 
drifting simulations in three dimensions is clear. Also it 
seems reasonable to believe that the simple direct 
numerical 2D simulation would also yield equally 
reasonable results in 3D because the natural processes 
and interactions are the same, and that the simulation 
could be easily adjusted for many different practical 
situations. 
 
The purpose of the work reported here is (i) to extend 
our two – dimensional direct numerical snowfall 
simulations to three – dimensions, describing the model 
in detail and (ii) to report and discuss initial results of 
snowdrift relocation by deflection fins having novel 
shapes as well as the effects of crosswinds.  
 

2. COMPUTATIONAL METHOD 

2.1 Phase 1: Navier-Stokes Theory 

The flow of air in this work is governed by the Navier 
Stokes equations for incompressible fluid flow: 

ߩ
ௗ௩ሬԦ

ௗ௧
ൌ െ׏ሬሬԦܲ െ Ԧݒଶ׏ߤ െ Ԧݒ൫ߩ ·  Ԧ                               (1)ݒሬሬԦ൯׏

Here, ρ is the fluid density (1.3 kg/m3 for air), ݒԦ is the 
velocity with Cartesian components (vx,vy,vz) = (u,v,w) 
at any point, P is the pressure at any point and μ is the 
fluid’s dynamic viscosity (1.983x10-5 kg/m s at 
temperature T = 300K  for air). Eq. (1) deals with the 
momentum of the system and is a mathematical 
relationship stating that any acceleration in the fluid 
comes from three sources: pressure gradients, 
momentum diffusion through viscosity and momentum 
diffusion through convection.  
 
Although required, Eq. (1) alone is not sufficient to 
model the system adequately. The equation of 
continuity 

డఘ

డ௧
൅ ሬሬԦ׏ߩ · Ԧݒ ൌ 0                                                           (2) 

is a statement of mass conservation which balances the 
change in density to the net fluid influx or outflux at 
any point in the system. Together, Eqs. (1) and (2) 
describe the physical behavior of the fluid phase of the 
system. A three – dimensional (3D) model is used 
because this work incorporates novel deflection fin 
shapes as well as side winds.  Eqs. (1) and (2) then take 
the following explicit forms:  
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For a unique solution to Eqs. (3) and (4), boundary 
conditions are needed, which are shown in Table 1. The 
computational cell is chosen to be a rectangle of 
dimensions (A,B,C) = (40m, 20m, 12m) and the 
building has dimensions (10m, 13.3m, 3m); the 
deflection fin can be placed at any position within the 
computational cell and its lateral ends can be bent.  
Reasonable initial conditions u(x,y,z,t=0) = u0(x,y,z), 
v(x,y,z,t=0) = v0(x,y,z), w(x,y,z,t=0) = w0(x,y,z) and 
P(x,y,z,t=0) = P0(x,y,z) are specified which match the 
boundary conditions for the system being described.  
 
In this work the high pressure is chosen such that the 
maximum gusting air speed above the building is about 
15m/s, and is modulated by a sinusoidal function in 
time to represent gusting. The no – slip boundary 
condition implemented on the top of the simulation is 
of computational utility only and is far enough away 
from the building top that it does not significantly affect 
the action of the deflection fins.  
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Table 1 Phase 1 Boundary Conditions 

 u V w P 
Ground 

u = 0 v = 0 w  = 0 
݀ܲ
ݖ݀

ൌ 0 

Ceiling 
u = 0 v = 0 w  = 0 

݀ܲ
ݖ݀

ൌ 0 

Inlet ݀ݑ
ݔ݀

ൌ 0 
ݒ݀
ݔ݀

ൌ 0 
ݓ݀
ݔ݀

ൌ 0 P = Pi(y,z) 

Outlet ݀ݑ
ݔ݀

ൌ 0 
ݒ݀
ݔ݀

ൌ 0 
ݒ݀
ݔ݀

ൌ 0 P = Po(y,z) 

Front 
 

ݑ݀
ݕ݀

ൌ 0 
ݒ݀
ݕ݀

ൌ 0 
ݒ݀
ݕ݀

ൌ 0 P = Pf(x,z) 

Back 
 

ݑ݀
ݕ݀

ൌ 0 
ݒ݀
ݕ݀

ൌ 0 
ݒ݀
ݕ݀

ൌ 0 P = Pb(x,z) 

Interior 
barriers 

u = 0 v = 0 w  = 0 ׏୬ܲ ൌ 0 

2.2 Phase 2: Implementation 

Figure 1 shows computational cell with relevant 
dimensions.  

 
Fig. 1. The computational cell of dimensions (A,B,C) 

used in this work. The Cartesian coordinate system is in 
blue, the building outline is red and the region where 

snow is created is outlined in green. Not drawn to scale. 
 
We follow a computational method for phase 1 similar 
to that shown in previous work (Maldonado et al. 2012) 
involving the SIMPLE algorithm (Matyk et al. 2012). 
The computational cell is divided into nx spaces 
horizontally, ny spaces laterally and nz spaces vertically 
such that distance increments are ∆ݔ ൌ ܣ ݊௫ െ 1⁄   
ݕ∆ , ൌ ܤ ݊௬ െ 1⁄   and ∆ݖ ൌ ܥ ݊௭ െ 1⁄ . The grid points 
are labeled as being either active or inactive, and the 
inactive cells are used to enforce any constant – value 
or free boundary conditions. The initial conditions are 
implemented for uijk, vijk, wijk and Pijk for i in [0,nx-1],  j 
in [0,ny-1] and k in [0,nz-1]. Now the velocity field is 
updated using a discretized form of Eq. (3) over all 
active cells: 
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The time step is chosen to be  ∆4-10 = ݐ s, which is 
around the largest value that allows algorithm 
convergence and no significant change in results when 
doubled. Constant – value as well as constant derivative 
boundary conditions are implemented where required. 
The algorithm continuously repeats until results 
converge based upon the average fractional changes of 
the velocity components being less than a specified 
tolerance value. Since directly updating the velocity 
field does not ensure a divergence – free field as 
required but the continuity equation (Eq. 4) the pressure 
is corrected by adding P’  to the pressure P0 everywhere 
such that  

′ଶܲߘ ൌ െߘሬԦ ·  .Ԧݒ

In discretized form the pressure correction is calculated 
in an iterative loop as  
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The iterative loop also includes any constant value as 
well as constant derivative pressure conditions. When 
convergence is attained through similar criteria as 
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imposed on the velocity field, the correction is added to 
the pressure: 

Pn
i,j,k = Pn

0 i,j,k + P’n
i,j,k   .    

The velocity field is now updated so that it has zero 
divergence:   
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Then constant value as well as constant derivative 
velocity boundary conditions are again implemented.  

2.3 Phase 2: Direct Simulation of Snow: 
Theory 

All after the air velocity field ݒԦ௔௜௥ is calculated in phase 
1, the points of drifting snow must be determined. We 
choose to model the classical trajectories using an 
initial boundary value problem involving a group of 
snowflakes modeled as spheres of radius R. 
 
The differential equation governing the motion of each 
snowflake (i) is 

݉
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In the left hand side of Eq. (6) , ݒԦ௜  is the velocity vector 
of snowflake (i) in an orthogonal Cartesian coordinate 
system with the origin at the lower left corner of the 
building wall. The first term on the right hand side is a 
constant gravitational force in the vertical direction. 
The second term is a viscous drag term that takes into 
account the force that the air exerts on each snowflake 
which can be advancing, retarding or zero. The last 
term represents snowflake – snowflake interactions and 
is zero if the particles are not touching, as prescribed by 
the Heaviside step function θ. Within the sum, the  ܾ̂ݎ௝௜ 
term expresses the normal force and is equal to a 
constant magnitude repulsive force directed along a line 
separating the flakes’ centers if the snowflakes are 
touching. The ܿݒො௝௜ term is a friction term similar to that 
of previous work (De Chant et al. 2005) but is constant 
in magnitude and directed opposite the relative velocity 
of two touching snowflakes. Here ̂ݎ௝௜ is the unit vector 
pointing to snowflake (i) from snowflake (j), ݒො௜௝  is the 
relative velocity vector pointing to snowflake (j) from 
snowflake (i). The values of important constants are 
shown in Table 2.  

Table 2 Constants for Phase 2. 

Constant Value 
m 5x10-8 kg 
g 9.8 m/s2 

a 9.8 N/kg 
b 100N 
c 20 N 
R 1 cm 

It should be noted that the size of the snowflakes are 
exaggerated so as to accelerate piling and accumulation 

but this difference from the size of real snowflakes do 
not alter the conclusions of the study. Such a result is 
attainable because, in this study the size explicitly 
affects the snowflake – snowflake interactions but not 
the snowflake – air interactions. Hence, the wind directs 
then to the same areas on the ground but they pile more 
readily.  

The equation of motion (Eq. 5) is discretized and 
numerically integrated with respect to time utilizing 
Newton’s method.  As time advances, any snowflake 
may encounter a boundary, and so, in addition to the 
forces just discussed, there are three types of boundary 
conditions which must be implemented. First, the 
particle specularly reflects when it encounters a surface 
and its velocity component normal to the surface is 
reversed. Second, the surfaces perpendicular to gradient 
directions are free boundaries and so when a particle 
crosses through one it is returned to a random initial 
position. Finally, to account for friction with the 
ground, any snowflakes considered to be settled and 
moving slowly enough are stopped.  The boundary 
conditions for phase 2 are summarized in Table 3.  

Table 3 Phase 2 Boundary Conditions 

Surface Type Boundary Condition 
Surfaces  

Walls and fin Reversal of velocity 
component normal to the 

surface 
Ground sticking:  ݒԦ௜ ൌ 0 

Free boundaries  
Inlet, outlet, front, 

back  
Return snowflake to random 

initial position 
Drifting  

settled snowflakes If vxi > 0.001 m/s then vxi  = 0. 

2.4 Phase 2: Implementation 

Initially n spherical snowflakes are created in a 
rectangular region above the wall, placed at random 
positions within it and assigned initial velocities of 
zero. For the first quarter of the simulation, snow falls 
directly on the roof of the building because wind 
blowing snow off the loaded roof contributes to drifting 
in different way from saltation. When the remaining 
three quarters of the simulation begins, the air velocity 
(u,v,w) at the snowflake’s position is determined using 
the Navier – Stokes algorithm of Phase I. Next the force 
on each snowflake is calculated using Eq. (5) and the 
acceleration is obtained by dividing the force by the 
snowflake’s mass.  
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Here θ is the Heaviside theta (step) function and 
appears to take into account that snowflake-snowflake 
interactions take place only for certain pair particle 
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separations. Then the trajectories of the flakes are 
obtained by numerically integrating the acceleration 
with respect to time using Newton’s method:  
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A time step ∆3-10 = ݐ s is chosen so as to be large 
enough that the simulations complete in a reasonable 
time and yet small enough to give no significant change 
in results when doubled. After the system is advanced, 
any needed boundary conditions are implemented for a 
given snowflake and then the time integration loop 
continues. After a certain number of steps (in this case, 
one tenth of the total), another set of snowflakes are 
placed at initial random positions above the wall and 
the simulations continues until the total number of steps 
has been reached. Figure 2 illustrates the storm 
development, along with a typical ending configuration 
after 180,000 time steps and 200,000 particles have 
fallen. Since this work is not an intensive drifting study, 
the simulations were not run out so large drifts were 
obtained; rather statistically noticeable drifts were seen 
and then could be remediated. In addition, in cases of 
beginning drifting it is easier to see effects like 
shadowing and structure in the snow patterns.   

Fig. 2. Progression of the simulated snow storm, with 
snow falling vertically on the roof (a-c), the wind 

picking up and spreading the snow (d-f) and example 
final configuration with the deflection fin emphasized 

(g). 

3. RESULTS AND DISCUSSION 

Parameters in the simulation were adjusted so as to 
reproduce with reasonable accuracy the problematic 
drifting near the walls of the buildings on the UNI 
campus. Figure 3 shows the final snowfall profile on 
and around the building when a deflection fin is absent 
using visual rendering as well as height profile contours 
to emphasize subtle differences in the height field. Such 
results are utilized to not only validate the simulations 
but also to provide a reference for other systems with 
deflection fins in place. The results show problematic 
drifting close to the building as well as, surprisingly, 
high loading on the right edge of the roof. The depletion 
of accumulation on the ground a few meters downwind 
from the building has to do with the downdraft created 
by the building as the air rushes over it to the right.  

 
Fig.  3. Visual rendering (top) and contour map 
(bottom) of the snowfall depth pattern with no 
deflection fin present. In the contour map, red 

represents deepest snow and blue the shallowest relative 
to the horizontal surface below it. Values in the legend 
are calculated assuming realistic snowflake sizes and 
not exaggerated ones.  Any regions of white indicate 

the absence of snow. 
 
Figures 4, 5 and 6 show final snowfall profiles with 
straight fins placed at distances of 1.1m, 2.2 m and 3.3 
m away from the building’s edge, respectively. In each 
figure, the fin’s center is coincident with the building’s 
roof and the fin heights are varied (0.67 m – 5.36 m) 
with the fins centered vertically at the level of the 
building’s roof.. Evidently, fins placed closest to the 
building have little positive effect on snow relocation, 
although the largest fins do result in slight relocation of 
the problematic drift nearest the building. Clearly, fins 
of medium height placed at intermediate distances (2.2 
m) from the building do a better job of snow relocation, 
although placing them at 3.3 m from the building still 
has some positive effect. Such results are consistent 
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with previous work (Maldonado et al. 2012).  The fins 
farthest from the building still deplete the problematic 
drift slightly but are too far past the downdraft created 
by the wall itself to have outstanding effects.  

 

Fig. 4. Visual renderings (left column) and contour 
maps (right column) for final snowfall patterns with a 
straight deflection fins (yellow) increasing in height 

from 1.34m (a) through 5.34m (d) placed 1.1 m away 
from the building. 

 
Figure 5. Visual renderings (left column) and contour 
maps (right column) for final snowfall patterns with a 
straight deflection fins (yellow) increasing in height 

from 1.34m (a) through 5.34m (d) placed 2.2 m away 
from the building. 

 

 
Fig.  6. Visual renderings (left column) and contour 

maps (right column) for final snowfall patterns with a 
straight deflection fins (yellow) increasing in height 

from 1.34m (a) through 5.34m (d) placed 3.3 m away 
from the building. 

 

 
Fig. 7. Visual renderings comparing final snowfall 

patterns for straight and  bent deflection fins (yellow) of 
height 4m placed (a) 2.2 m and (b) 3.3 m away from the 

building. 
 

Because of the three dimensional nature of the 
simulations, the effects of bent fins were examined. In 
this study, straight fins occupy a constant x value but 
for bent fins the edges angle towards the center of the 
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system. Regardless of the effectiveness of the straight 
fin whose center is the same distance from the building 
as the bent fin, the bending has virtually no effect on 
snowdrift relocation. However, Fig. 7 shows that the 
bent edges have a secondary effect, crating shadows in 
the relocated drifts. So, the simulations presented here 
suggest that bent fins could be used to smooth or 
selectively shape relocated drifts from the deflection 
fin. 

 
Fig. 8. Visual renderings for final snowfall patterns 
without a deflection fin (a) and with selected fins 
(yellow) having typical effects of shadowing and 

structure in the drifting (a-c). 
 
In addition to bent fins the simulations were able to 
incorporate side winds, by creating a pressure gradient 
in the y – direction; Fig. 8 illustrates some typical final 
snowfall profiles for such simulations. For side gusting, 
lateral pressure differentials were scaled relative to 
those in the x – direction so that pressure gradients gave 
maximum wind speeds comparable to those in the x – 
direction, hence the 45 degree angle made by the snow 
edge off the horizontal in Fig. 8. The building itself 
created a shadow in the drift pattern and the fin creates 
an enhanced shadow as well as some structure in the 
pattern. Depending on where the fin is placed as well as 
its size, very intricate and complicated drifting patterns 
can be created. 

4. CONCLUSION 

Several conclusions from this work can be reached.  

(i) Fins of intermediate size (3m – 4m in height) placed 
about 2 m – 3 m  from the building have the best 
potential for problematic drift relocation. 

(ii) Bent fins don’t affect drift relocation significantly 
but does create shadows in relocated drifts and could be 
used to manipulate them.  

(iii) Side winds result in drift shadowing patterns and 
interesting drift structures which can be controlled by 
manipulating the deflection fin the results could prove 
very useful in situations where the building architecture 
is asymmetric. Certainly more investigation of the 
effects of crosswinds is warranted.  
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